CN112463701B - 一种基于scl实时高电平脉宽的i2c从机电路 - Google Patents

一种基于scl实时高电平脉宽的i2c从机电路 Download PDF

Info

Publication number
CN112463701B
CN112463701B CN202011289303.1A CN202011289303A CN112463701B CN 112463701 B CN112463701 B CN 112463701B CN 202011289303 A CN202011289303 A CN 202011289303A CN 112463701 B CN112463701 B CN 112463701B
Authority
CN
China
Prior art keywords
scl
period
pulse width
register
level pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011289303.1A
Other languages
English (en)
Other versions
CN112463701A (zh
Inventor
卓越
朱建银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Keda Hengxin Semiconductor Technology Co ltd
Original Assignee
Jiangsu Keda Hengxin Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Keda Hengxin Semiconductor Technology Co ltd filed Critical Jiangsu Keda Hengxin Semiconductor Technology Co ltd
Priority to CN202011289303.1A priority Critical patent/CN112463701B/zh
Publication of CN112463701A publication Critical patent/CN112463701A/zh
Application granted granted Critical
Publication of CN112463701B publication Critical patent/CN112463701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0016Inter-integrated circuit (I2C)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明公开了一种基于SCL实时高电平脉宽的I2C从机电路,包括同步及判断电路模块和I2C从机状态机模块,所述同步及判断电路模块和I2C从机状态机模块之间设置有检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块,所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块能够预测SCL下降沿位置,并将预测出的SCL下降沿位置通知I2C从机状态机模块。本发明一方面可以使得I2C从机电路在现有的工作时钟频率下,完成更高频更高带宽I2C通信;另一方面也可以通过调低I2C从机电路的工作时钟频率,有效降低芯片的功耗。

Description

一种基于SCL实时高电平脉宽的I2C从机电路
技术领域
本发明涉及I2C从机电路领域,具体涉及一种基于SCL实时高电平脉宽的I2C从机电路。
背景技术
I2C总线是由Philips公司开发的一种简单、双向二线制同步串行总线。它只需要两根线(SCL和SDA)即可在连接于总线上的器件之间传送信息。
I2C总线中,SCL是时钟线,一般由主机发起,从机负责接收。
I2C总线中,SDA是数据线,主机和从机都会通过SDA发送信息给对方。主机和从机并不会同时在SDA上发送数据,通常会根据I2C协议中规定的时序,主机和从机选取适当的时刻发送数据到SDA。
根据I2C的协议,无论主机或者从机,想要在SDA上发送信息时,必须要遵守在SCL低电平区间,I2C主机或者从机才能改变SDA电平发送数据,在SCL高电平期间,不能改变SDA电平的规定。同时还需要满足SDA的建立时间以及保持时间等要求。否则,会造成数据传输的失败。
在芯片内实现I2C从机电路时,需要考虑到I2C总线上的时钟SCL和数据SDA相对于芯片内部工作时钟是异步关系,所以需要先对SCL和SDA做同步处理。如图2-3所示,I2C从机电路一般分为同步及判断电路模块和I2C从机状态机模块,所示同步处理一般是使用芯片内部时钟驱动的2个串联DFF采样异步信号,所以需要耗费2个工作时钟周期。I2C从机电路拿到同步后的SCL和同步后的SDA,会做出SCL/SDA上升沿和SCL/SDA下降沿的判断,再根据自身电路中设计的状态机,处理总线上主机需要的读写操作。
当I2C从机电路需要发送ACK或者发送寄存器读数据时,根据I2C协议必须要选择在SCL的低电平时发送。如果采用上述常规电路设计,如图2所示首先要对SCL做同步处理,同步处理过后,才能判断SCL的下降沿的时刻。在SCL的下降沿判断为真时,从机才能改变SDA电平,发送适当的数据。
因为SCL同步需要消耗2个工作时钟周期,判断SCL下降沿判断为真又需要一个时钟周期,再加上I2C从机电路内部的逻辑延迟,会导致最终I2C从机电路驱动SDA实际电平的变化,会晚于SCL实际的下降沿至少3个工作时钟周期。
当I2C主机需要较高的SCL频率来提高数据带宽,从而保证数据通信的实时性,此时I2C从机电路为了保证3个工作时钟周期的延迟不会违反SDA建立时间的要求,只能选择提高自身的工作时钟频率,如图1所示。
一方面,提高工作时钟频率意味着将会提升芯片的功耗,另一方面,如果芯片内部无法给I2C从机电路提供更高频率的工作时钟,I2C从机电路将无法支持I2C主机发起的高频高数据带宽I2C通信。
发明内容
本发明要解决的技术问题是提供一种基于SCL实时高电平脉宽的I2C从机电路,一方面该电路可以在现有的工作时钟频率下,完成更高频更高带宽I2C通信;另一方面也可以通过调低I2C从机电路的工作时钟频率,有效降低芯片的功耗。
为了解决上述技术问题,本发明提供了一种基于SCL实时高电平脉宽的I2C从机电路,包括同步及判断电路模块和I2C从机状态机模块,所述同步及判断电路模块和I2C从机状态机模块之间设置有检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块,所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块能够预测SCL下降沿位置,并将预测出的SCL下降沿位置通知I2C从机状态机模块。
本发明一个较佳实施例中,进一步包括所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块包括SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块、SCL高电平脉宽周期数判断及缓存模块和预测SCL下降沿时刻模块。
本发明一个较佳实施例中,进一步包括所述SCL实时高电平脉宽计数模块实时计数SCL每个高电平脉宽所需的工作时钟周期,所述SCL实时高电平脉宽计数模块在每个工作时钟上升沿的工作逻辑为:
逻辑S1-1:当检测到SCL时钟上升沿后,寄存器i2c_scl_period_cnt清零;
逻辑S1-2:当逻辑S1-1中没有检测到SCL时钟上升沿时,寄存器i2c_scl_period_cnt自动加1。
本发明一个较佳实施例中,进一步包括所述SCL有效高电平脉宽期间判断模块识别I2C数据传输区间,所述SCL有效高电平脉宽期间判断模块在每个工作时钟上升沿的工作逻辑为:
逻辑S2-1:当检测到i2c_stop和i2c_start时,寄存器i2c_scl_period_start清零;
逻辑S2-2:当没有检测到i2c_stop和i2c_start时,且检测到SCL上升沿时,寄存器i2c_scl_period_start置高;当检测到SCL下降沿时,寄存器i2c_scl_period_start清零;
逻辑S2-3:当没有检测到i2c_stop和i2c_start时,且没有检测到SCL上升沿或下降沿时,寄存器i2c_scl_period_start保持原值。
本发明一个较佳实施例中,进一步包括所述SCL高电平脉宽周期数判断及缓存模块根据SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块计数结果,计算出本次I2C全部传输周期内平均SCL高电平脉宽周期数,所述SCL高电平脉宽周期数判断及缓存模块在每个工作时钟上升沿的工作逻辑为:
逻辑S3-1:当检测到i2c_stop和i2c_start时,寄存器i2c_scl_period清零;
逻辑S3-2-1:当没有检测到i2c_stop和i2c_start时,且检测到SCL下降沿与寄存器i2c_scl_period_start为高时,如果寄存器i2c_scl_period当前值为0时,直接将寄存器i2c_scl_period_cnt赋值给寄存器i2c_scl_period;
逻辑S3-2-2:当没有检测到i2c_stop和i2c_start时,且检测到SCL下降沿与寄存器i2c_scl_period_start为高时,如果寄存器i2c_scl_period当前值不为0时,当寄存器i2c_scl_period当前值比寄存器i2c_scl_period_cnt值大的话,寄存器i2c_scl_period减1;当寄存器i2c_scl_period当前值比寄存器i2c_scl_period_cnt值小的话,寄存器i2c_scl_period加1;当上述两个条件都不成立时,寄存器i2c_scl_period保持原值;
逻辑S3-3:当没有检测到i2c_stop和i2c_start时,且没有检测到SCL下降沿与寄存器i2c_scl_period_start为高时,寄存器i2c_scl_period保持原值。
本发明一个较佳实施例中,进一步包括所述预测SCL下降沿时刻模块根据SCL高电平脉宽周期数判断及缓存模块计算出的数据和已知的SCL上升沿,及时向I2C从机状态机模块提供预测的SCL下降沿位置,所述预测SCL下降沿时刻模块的工作逻辑为:
逻辑S4-1:当寄存器i2c_scl_period等于1时,代表SCL的频率刚好是工作时钟频率的4分频,此时预测下降沿i2c_scl_h2l_predict就是上升沿i2c_scl_l2h;
逻辑S4-2:当寄存器i2c_scl_period不等于1时,则将寄存器(i2c_scl_period_cnt==(i2c_scl_period-2))&&i2c_scl_period_start的结果赋值给预测下降沿i2c_scl_h2l_predict。
本发明一个较佳实施例中,进一步包括用于接收I2C主机发送的SCL高电平脉宽,所述SCL高电平脉宽为稳定脉宽。
本发明的有益效果:
本发明根据接收的SCL高电平脉宽可以计算出SCL平均高电平脉宽周期数,进而再利用计算出来的SCL平均高电平脉宽周期数和已知的SCL上升沿就可以准确的预测出SCL下降沿的位置,通过快速预测SCL下降沿的位置取代了现有技术中对SCL采样做同步处理和判断SCL的下降沿的方法,实现了两方面的有益效果:
一方面,保持I2C从机在现有的工作时钟频率下,支持与I2C主机最高通信频率为I2C从机工作时钟频率4分频的I2C通信,实现了更高频更高带宽I2C通信;
另一方面,保持现有的I2C通信的频率和带宽,可以通过调低I2C从机电路的工作时钟频率,有效降低芯片的功耗。
附图说明
图1是现有技术芯片顶层部分架构图;
图2是现有技术I2C从机电路的电路图;
图3是现有技术I2C从机电路的原理框图;
图4是本发明的基于SCL实时高电平脉宽的I2C从机电路的原理框图;
图5是本发明的检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块的电路原理框图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图4所示,本发明的基于SCL实时高电平脉宽的I2C从机电路的一实施例,包括同步及判断电路模块和I2C从机状态机模块,所述同步及判断电路模块和I2C从机状态机模块之间设置有检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块,所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块预测SCL下降沿位置,并将预测出的SCL下降沿位置通知I2C从机状态机模块。
本发明的原理是:借助I2C协议规定,在I2C从机第一次需要发送信息到SDA数据线的时刻之前,I2C从机已经接收了8个SCL高电平脉宽。本专利根据已经接收的8次SCL高电平脉宽可以计算出SCL平均高电平脉宽周期数。本专利利用计算出来的高电平脉冲数和已知的SCL上升沿就可以准确的预测出SCL下降沿的位置,并将预测出的下降沿位置通知I2C从机状态机模块。
本发明取代了现有技术中对SCL采样做同步处理和判断SCL的下降沿的方法,实现了两方面的有益效果:
一方面,保持I2C从机在现有的工作时钟频率下,支持与I2C主机最高通信频率为I2C从机工作时钟频率4分频的I2C通信,实现了更高频更高带宽I2C通信;
另一方面,保持现有的I2C通信的频率和带宽,可以通过调低I2C从机电路的工作时钟频率,有效降低芯片的功耗。
参照图5所示,所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块包括SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块、SCL高电平脉宽周期数判断及缓存模块和预测SCL下降沿时刻模块;所述SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块用于获取真实的SCL高电平脉宽;所述SCL高电平脉宽周期数判断及缓存模块用于利用上述SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块得到的真实SCL高电平脉宽,计算和存储I2C本次传输周期内平均SCL高电平脉宽周期数;所述预测SCL下降沿时刻模块根据上述模块提供的数据和上升沿,及时向I2C从机状态机模块提供预测的SCL下降沿位置。
具体地,所述SCL实时高电平脉宽计数模块实时计数SCL每个高电平脉宽所需的工作时钟周期,用寄存器i2c_scl_period_cnt来实现计数,所述SCL实时高电平脉宽计数模块在每个工作时钟上升沿的工作逻辑为:
逻辑S1-1:当检测到SCL时钟上升沿后,寄存器i2c_scl_period_cnt清零;
逻辑S1-2:当逻辑S1-1中没有检测到SCL时钟上升沿时,寄存器i2c_scl_period_cnt自动加1。
具体地,所述SCL有效高电平脉宽期间判断模块识别I2C数据传输区间,只有在I2C真正数据传输区间内,计算出的SCL高电平脉宽周期数才是真实的,所述SCL有效高电平脉宽期间判断模块在每个工作时钟上升沿的工作逻辑为:
逻辑S2-1:当检测到i2c_stop和i2c_start时,寄存器i2c_scl_period_start清零;
逻辑S2-2:当没有检测到i2c_stop和i2c_start时,且检测到SCL上升沿时,寄存器i2c_scl_period_start置高;当检测到SCL下降沿时,寄存器i2c_scl_period_start清零;
逻辑S2-3:当没有检测到i2c_stop和i2c_start时,且没有检测到SCL上升沿或下降沿时,寄存器i2c_scl_period_start保持原值。
具体地,所述SCL高电平脉宽周期数判断及缓存模块根据SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块计数结果,计算出本次I2C全部传输周期内平均SCL高电平脉宽周期数,用寄存器i2c_scl_period来实现存储,所述SCL高电平脉宽周期数判断及缓存模块在每个工作时钟上升沿的工作逻辑为:
逻辑S3-1:当检测到i2c_stop和i2c_start时,寄存器i2c_scl_period清零;
逻辑S3-2-1:当没有检测到i2c_stop和i2c_start时,且检测到SCL下降沿与寄存器i2c_scl_period_start为高时,如果寄存器i2c_scl_period当前值为0时,直接将寄存器i2c_scl_period_cnt赋值给寄存器i2c_scl_period;
逻辑S3-2-2:当没有检测到i2c_stop和i2c_start时,且检测到SCL下降沿与寄存器i2c_scl_period_start为高时,如果寄存器i2c_scl_period当前值不为0时,当寄存器i2c_scl_period当前值比寄存器i2c_scl_period_cnt值大的话,寄存器i2c_scl_period减1;当寄存器i2c_scl_period当前值比寄存器i2c_scl_period_cnt值小的话,寄存器i2c_scl_period加1;当上述两个条件都不成立时,寄存器i2c_scl_period保持原值;
逻辑S3-3:当没有检测到i2c_stop和i2c_start时,且没有检测到SCL下降沿与寄存器i2c_scl_period_start为高时,寄存器i2c_scl_period保持原值。
具体地,所述预测SCL下降沿时刻模块根据SCL高电平脉宽周期数判断及缓存模块计算出的数据和已知的SCL上升沿,及时向I2C从机状态机模块提供预测的SCL下降沿位置,所述预测SCL下降沿时刻模块的工作逻辑为:
逻辑S4-1:当寄存器i2c_scl_period等于1时,代表SCL的频率刚好是工作时钟频率的4分频,此时预测下降沿i2c_scl_h2l_predict就是上升沿i2c_scl_l2h;
逻辑S4-2:当寄存器i2c_scl_period不等于1时,则将寄存器(i2c_scl_period_cnt==(i2c_scl_period-2))&&i2c_scl_period_start的结果赋值给预测下降沿i2c_scl_h2l_predict。
具体地,本实施例的I2C从机电路用于实现与I2C主机之间的通讯,对与I2C主机能够保障正常通信的I2C高电平宽度有一定限制,I2C从机电路能够保障与主机正常通信的I2C高电平最长宽度取决于,本专利内部用于检测SCL实时高电平脉宽的寄存器i2c_scl_period和i2c_scl_period_cnt的具体实现位宽,以及取决于I2C从机电路的工作时钟频率,因此,根据不同的I2C主机需求,可以推导出实现两组寄存器i2c_scl_period和i2c_scl_period_cnt不同的位宽。
具体地,本实施例的I2C从机电路用于接收I2C主机发送的SCL高电平脉宽,所述SCL高电平脉宽为稳定脉宽,所述I2C主机还应保证每次发送的SCL高电平脉宽不应波动过大,对于波动较大的数据传输片段,导致计算出的SCL高电平平均脉宽无法应用于波动较大的数据传输片段。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (2)

1.一种基于SCL实时高电平脉宽的I2C从机电路,包括同步及判断电路模块和I2C从机状态机模块,其特征在于,所述同步及判断电路模块和I2C从机状态机模块之间设置有检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块,所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块能够预测SCL下降沿位置,并将预测出的SCL下降沿位置通知I2C从机状态机模块;
所述检测SCL实时高电平脉宽及预测SCL下降沿时刻功能模块包括SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块、SCL高电平脉宽周期数判断及缓存模块和预测SCL下降沿时刻模块;
所述SCL实时高电平脉宽计数模块实时计数SCL每个高电平脉宽所需的工作时钟周期,所述SCL实时高电平脉宽计数模块在每个工作时钟上升沿的工作逻辑为:
逻辑S1-1:当检测到SCL时钟上升沿后,寄存器i2c_scl_period_cnt清零;
逻辑S1-2:当逻辑S1-1中没有检测到SCL时钟上升沿时,寄存器i2c_scl_period_cnt自动加1;
所述SCL有效高电平脉宽期间判断模块识别I2C数据传输区间,所述SCL有效高电平脉宽期间判断模块在每个工作时钟上升沿的工作逻辑为:
逻辑S2-1:当检测到i2c_stop和i2c_start时,寄存器i2c_scl_period_start清零;
逻辑S2-2:当没有检测到i2c_stop和i2c_start时,且检测到SCL上升沿时,寄存器i2c_scl_period_start置高;当检测到SCL下降沿时,寄存器i2c_scl_period_start清零;
逻辑S2-3:当没有检测到i2c_stop和i2c_start时,且没有检测到SCL上升沿或下降沿时,寄存器i2c_scl_period_start保持原值;
所述SCL高电平脉宽周期数判断及缓存模块根据SCL实时高电平脉宽计数模块、SCL有效高电平脉宽期间判断模块计数结果,计算出本次I2C全部传输周期内平均SCL高电平脉宽周期数,所述SCL高电平脉宽周期数判断及缓存模块在每个工作时钟上升沿的工作逻辑为:
逻辑S3-1:当检测到i2c_stop和i2c_start时,寄存器i2c_scl_period清零;
逻辑S3-2-1:当没有检测到i2c_stop和i2c_start时,且检测到SCL下降沿与寄存器i2c_scl_period_start为高时,如果寄存器i2c_scl_period当前值为0时,直接将寄存器i2c_scl_period_cnt赋值给寄存器i2c_scl_period;
逻辑S3-2-2:当没有检测到i2c_stop和i2c_start时,且检测到SCL下降沿与寄存器i2c_scl_period_start为高时,如果寄存器i2c_scl_period当前值不为0时,当寄存器i2c_scl_period当前值比寄存器i2c_scl_period_cnt值大的话,寄存器i2c_scl_period减1;当寄存器i2c_scl_period当前值比寄存器i2c_scl_period_cnt值小的话,寄存器i2c_scl_period加1;当上述两个条件都不成立时,寄存器i2c_scl_period保持原值;
逻辑S3-3:当没有检测到i2c_stop和i2c_start时,且没有检测到SCL下降沿与寄存器i2c_scl_period_start为高时,寄存器i2c_scl_period保持原值;
所述预测SCL下降沿时刻模块根据SCL高电平脉宽周期数判断及缓存模块计算出的数据和已知的SCL上升沿,及时向I2C从机状态机模块提供预测的SCL下降沿位置,所述预测SCL下降沿时刻模块的工作逻辑为:
逻辑S4-1:当寄存器i2c_scl_period等于1时,代表SCL的频率刚好是工作时钟频率的4分频,此时预测下降沿i2c_scl_h2l_predict就是上升沿i2c_scl_l2h;
逻辑S4-2:当寄存器i2c_scl_period不等于1时,则将寄存器(i2c_scl_period_cnt ==(i2c_scl_period-2))&& i2c_scl_period_start的结果赋值给预测下降沿i2c_scl_h2l_predict。
2.如权利要求1所述的基于SCL实时高电平脉宽的I2C从机电路,其特征在于,用于接收I2C主机发送的SCL高电平脉宽,所述SCL高电平脉宽为稳定脉宽。
CN202011289303.1A 2020-11-17 2020-11-17 一种基于scl实时高电平脉宽的i2c从机电路 Active CN112463701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011289303.1A CN112463701B (zh) 2020-11-17 2020-11-17 一种基于scl实时高电平脉宽的i2c从机电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011289303.1A CN112463701B (zh) 2020-11-17 2020-11-17 一种基于scl实时高电平脉宽的i2c从机电路

Publications (2)

Publication Number Publication Date
CN112463701A CN112463701A (zh) 2021-03-09
CN112463701B true CN112463701B (zh) 2024-02-23

Family

ID=74836457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011289303.1A Active CN112463701B (zh) 2020-11-17 2020-11-17 一种基于scl实时高电平脉宽的i2c从机电路

Country Status (1)

Country Link
CN (1) CN112463701B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116028403B (zh) * 2023-03-27 2023-06-06 江苏润石科技有限公司 基于异步电路的i2c总线电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028340A1 (en) * 1998-10-07 2000-05-18 Teradyne, Inc. Analog clock module
KR20020002610A (ko) * 2000-06-30 2002-01-10 박종섭 반도체 집적 회로의 클럭 입력 장치
WO2002039683A2 (en) * 2000-11-10 2002-05-16 Silicon Image, Inc. Apparatus and method for sending and receiving data signals over a clock signal line by pulse with modulation
CN102163180A (zh) * 2011-01-20 2011-08-24 电子科技大学 一种i2c总线接口电路模块及其控制方法
KR101411036B1 (ko) * 2012-12-28 2014-06-30 대한전선 주식회사 고속 클럭을 이용한 전력케이블의 부분방전 위치추정시스템
CN104850170A (zh) * 2015-06-04 2015-08-19 万高(杭州)科技有限公司 一种无晶体计量SoC芯片及其时钟获取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028340A1 (en) * 1998-10-07 2000-05-18 Teradyne, Inc. Analog clock module
KR20020002610A (ko) * 2000-06-30 2002-01-10 박종섭 반도체 집적 회로의 클럭 입력 장치
WO2002039683A2 (en) * 2000-11-10 2002-05-16 Silicon Image, Inc. Apparatus and method for sending and receiving data signals over a clock signal line by pulse with modulation
CN102163180A (zh) * 2011-01-20 2011-08-24 电子科技大学 一种i2c总线接口电路模块及其控制方法
KR101411036B1 (ko) * 2012-12-28 2014-06-30 대한전선 주식회사 고속 클럭을 이용한 전력케이블의 부분방전 위치추정시스템
CN104850170A (zh) * 2015-06-04 2015-08-19 万高(杭州)科技有限公司 一种无晶体计量SoC芯片及其时钟获取方法

Also Published As

Publication number Publication date
CN112463701A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN106603367A (zh) 一种用于时间同步的can总线通信方法
CN101719110B (zh) 光通信器件中多路i2c器件的实时监控方法
CN101834715B (zh) 一种数据处理方法及数据处理系统以及数据处理装置
US8103896B2 (en) Method and system for I2C clock generation
US20120110387A1 (en) Trace synchronization
CN112463701B (zh) 一种基于scl实时高电平脉宽的i2c从机电路
CN103141066A (zh) 发送电路、接收电路、发送方法、接收方法、通信系统及其通信方法
CN105975416B (zh) 基于fpga的多通道异速数据发送系统
CN105117319A (zh) 基于fpga实现对多路mdio设备实时监控的方法
CN104536924A (zh) 面向板级高速传输总线的多通道延迟斜偏纠正方法及装置
US8520789B2 (en) Method and apparatus for implementing pulse synchronization
CN102355394B (zh) 针对多路can总线进行数据传输控制的方法及装置
CN102231700B (zh) 交换卡切换信息的下发方法和交换卡热备份系统
KR101143690B1 (ko) 데이터 송신 장치, 라우터, 기능 유닛 및 데이터 송신 방법
CN105007151A (zh) 一种高低速总线通讯方法及装置
JP3638769B2 (ja) 通信制御装置
CN101478448A (zh) 以太网交换设备的控制方法及装置
CN116155843B (zh) 一种基于pynq的脉冲神经网络芯片数据通信方法及系统
EP1242897B1 (en) Method and apparatus for differential strobing in a communications bus
CN102223298B (zh) 报文处理方法、装置和通讯设备
CN219181725U (zh) Can数据帧同步结构及氛围灯光流帧同步控制系统
CN114328334A (zh) 一种基于emif总线扩展多路串口的装置及方法
CN112540942A (zh) 一种多通道同步串行通信电路及方法
JP3921407B2 (ja) データ転送におけるデータ監視システムおよびデータ監視方法
KR101084583B1 (ko) Mac 하드웨어 전력절감 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant