CN112458092A - 一种基于CRISPR/Cas9的酵母基因组编辑方法 - Google Patents

一种基于CRISPR/Cas9的酵母基因组编辑方法 Download PDF

Info

Publication number
CN112458092A
CN112458092A CN202011457196.9A CN202011457196A CN112458092A CN 112458092 A CN112458092 A CN 112458092A CN 202011457196 A CN202011457196 A CN 202011457196A CN 112458092 A CN112458092 A CN 112458092A
Authority
CN
China
Prior art keywords
gene
seq
fragment
grna
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011457196.9A
Other languages
English (en)
Inventor
孙杰
尹东
魏春
袁围
郑建永
汪钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011457196.9A priority Critical patent/CN112458092A/zh
Publication of CN112458092A publication Critical patent/CN112458092A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01021Aldehyde reductase (1.1.1.21), i.e. aldose-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种基于CRISPR/Cas9的酵母基因组编辑方法,所述方法根据酿酒酵母基因组上的靶位点设计靶标序列,再将靶标序列构建gRNA表达盒,然后将gRNA表达盒与出发载体、供体DNA片段,共同转化酿酒酵母细胞,实现同时对酿酒酵母多个基因组位点的编辑;所述gRNA表达盒的两侧具有与出发载体相同序列的同源臂;所述供体DNA片段两端具有与酿酒酵母基因组靶位点上下游序列相同的同源臂;所述酿酒酵母细胞表达有Cas9蛋白。该方法既无需在大肠杆菌体内或利用Golden Gate等技术进行gRNA质粒构建,也无须扩增gRNA载体骨架,缩短了实验时间和成本,并且可同时高效编辑多个基因组位点。

Description

一种基于CRISPR/Cas9的酵母基因组编辑方法
(一)技术领域
本发明涉及一种酿酒酵母基因组编辑的方法,该编辑方法利用重叠延伸PCR技术将20bp的靶标序列构建到含有gRNA表达盒的DNA片段上,再将该片段与另一个完整的gRNA出发载体同时转化酵母,使他们在酵母体内发生同源重组,由此目的靶点的gRNA表达盒经过同源重组稳定存在于质粒上。该方法既无需在大肠杆菌体内或利用Golden Gate等技术进行gRNA载体构建,也无须扩增gRNA载体骨架,缩短了实验时间和成本,并且可同时高效编辑多个基因组位点。
(二)背景技术
CRISPR-Cas系统是细菌在长期进化过程中形成的一种适应性免疫防御机制,其通过RNA介导的DNA剪切机制使细菌具有抵御外源DNA的侵扰的能力。根据Cas蛋白基因序列的不同,CRISPR/Cas系统可划分I型、II型和III型。化脓链球菌的II型细菌CRISPR系统需要RNA复合物,将Cas9核酸酶引导至(外源)DNA的特定序列。Cas9内切核酸酶可在靶标序列指定的DNA位点进行切割,可以设计为靶向基因组中任何包含原间隔子相邻基序NGG序列的位点,其5'端的20个核苷酸的靶标序列指定了切割位点,向导RNA(gRNA)通过与DNA靶序列碱基配对来工作,Cas9蛋白在gRNA的指引下,识别靶基因位点并对其进行特异性切割,形成双链断裂缺口,从而引发细胞自身的修复机制,在双链断裂部位进行非同源末端连接或同源重组修复,实现基因组高效编辑的目的。
CRISPR-Cas9系统对多个基因组位点的编辑需要构建多个gRNA表达质粒。通常使用两种方法同时表达多种gRNA:一种方法是用单独的RNA聚合酶启动子转录每个gRNA表达盒,通常使用RNA聚合酶III(Pol III)启动子,来驱动gRNA的表达,从而提高基因组编辑效率。另一种方法是使用一个单一的启动子在一个单独的转录物中转录所有gRNA,然后通过不同的方法进行处理释放单个gRNA的策略。例如,在第一个步骤中构建了单个gRNA盒,然后使用Golden-Gate装配或Gibson装配将多个gRNA表达盒串联在一起。这些策略要求每个gRNA均带有可切割的RNA序列,例如可自我切割的核酶序列(例如Hammerhead核酶和HDV核酶),外源切割因子识别序列(例如Cys4)和内源RNA处理序列(例如tRNA序列和内含子)。
上述CRISPR-Cas9系统对多个基因组位点的编辑缺乏快速且简便的程序,需要大肠杆菌中进行gRNA质粒构建,或使用Golden Gate等DNA体外拼接技术构建gRNA质粒。为简化方法,Farhana等在酵母中开发了gRNA瞬时表达系统(gRNA TES),用于在酵母中递送gRNA。在gRNA-TES中,通过两个简单的PCR步骤制备包含启动子和gRNA的DNA片段,并与DNA模块共转化为宿主菌株(Easmin F,et al.Journal of bioscience and bioengineering2019,128(3),373-378)。与传统的基于质粒的gRNA递送系统相比,实验时间大大缩短。但由于其DNA模块选择标记的存在导致该细胞无法反复进行基因组编辑,且无法高效编辑多个基因组位点。Horwitz等也开发了多重基因编辑方法,将多个gRNA表达盒与载体骨架同时转入酿酒酵母体内进行同源重组(Horwitz AA,et al.Cell systems,2019,2049:39-72)。但是通常载体骨架的PCR产物浓度较低,不利于后续操作,尤其是当gRNA和Cas9在同一个质粒时,载体骨架超过10000bp时。
(三)发明内容
本发明的目的是提供一种基于CRISPR/Cas9的简便的酵母基因组编辑方法,该编辑方法利用gRNA表达盒,与同时转化的另一个完整的出发载体在酵母体内发生同源重组,使gRNA表达盒稳定存在于载体上并进行持续的表达。其他没有与出发载体同源重组的gRNA表达盒,也可在细胞中瞬时表达gRNA。该方法在保证编辑效率的前提下,既无需大肠杆菌体内或Golden Gate技术的gRNA载体构建过程,也无须扩增gRNA载体骨架,缩短了实验时间和成本,从而实现对酿酒酵母基因组高效便捷的编辑。
本发明采用的技术方案:
本发明提供一种基于CRISPR/Cas9的酵母基因组编辑方法,所述方法为:根据酿酒酵母基因组上的靶位点设计靶标序列,再将靶标序列体外扩增到gRNA表达盒片段上,然后将gRNA表达盒与出发载体、供体DNA片段,共同转化(优选乙酸锂化学转化法)酿酒酵母细胞,实现同时对酿酒酵母多个基因组位点的编辑;所述gRNA表达盒的两侧具有与出发载体相同序列的同源臂,使得gRNA表达盒在酿酒酵母体内同源重组到出发载体上,gRNA得以稳定表达;所述供体DNA片段两端具有与酿酒酵母基因组靶位点上下游序列相同的同源臂(优选同源臂长度大于200bp);所述酵母细胞含有Cas9蛋白。
进一步,所述gRNA表达盒依次由上游同源臂、启动子、靶标序列、gRNA Scaffold片段、终止子和下游同源臂组成;所述上游同源臂和下游同源臂分别与出发载体有60bp以上的相同序列;所述启动子为SNR52p启动子;所述终止子为SUP4t终止子;所述靶标序列是根据酿酒酵母基因组上靶位点基因,利用chopchop网站,设计20bp的靶标序列。
进一步,所述gRNA靶点表达盒为1-3个。
进一步,所述SNR52p启动子核苷酸序列为SEQ ID NO:2所示。
进一步,所述SUP4t终止子核苷酸序列为SEQ ID NO:3所示。
进一步,所述gRNA Scaffold片段核苷酸序列如SEQ ID NO:4所示。
进一步,所述靶位点包括GRE3(醛糖还原酶)、PHO13(4-硝基苯基磷酸酶)、ASC1(鸟嘌呤核苷酸结合蛋白亚基β样蛋白),
其中靶位点GRE3的靶标序列为:ACCAATCATAGATACGTACC(SEQ ID NO.10);
靶位点PHO13的靶标序列为:ATGGGGTACGAATCTCTAGG(SEQ ID NO.11);
靶位点ASC1的靶标序列为:GAAACCTACCAAAGATTCGT(SEQ ID NO.12)。
本发明所述基因编辑方法是将木糖代谢相关基因XKS1(木酮糖激酶)、XLYA3(木糖异构酶)、RPE1(核糖磷酸3-表异构酶)、TAL1(转醛缩酶)同时插入酿酒酵母基因组中GRE3(醛糖还原酶)、PHO13(4-硝基苯基磷酸酶)、ASC1(鸟嘌呤核苷酸结合蛋白亚基β样蛋白)编码基因的三个靶位点,实现了木糖代谢途径一步导入酵母菌中。
进一步,所述方法为:首先分别构建靶位点GRE3、PHO13、ASC1的gRNA表达盒,与出发载体和供体DNA片段,同时转化含有Cas9蛋白的酿酒酵母细胞。
进一步,所述出发载体为p426-SNR52p-gRNA.CAN1.Y-SUP4t(Addgene公司#43803),简称p426载体。
进一步,所述供体DNA片段用于将XKS1(木酮糖激酶)、XLYA3(木糖异构酶)、RPE1(核糖磷酸3-表异构酶)、TAL1(转醛缩酶)编码基因整合到酿酒酵母基因组靶位点;所述供体DNA片段是由靶位点上游同源臂、启动子、供体基因、终止子、靶位点下游同源臂组成。
进一步,所述XKS1基因采用GAl1/10启动子(核苷酸序列SEQ ID NO:16);所述XKS1基因片段由下列片段依次连接构成为:靶位点GRE3上游同源臂(SEQ ID NO.14,片段1)、木酮糖激酶基因(XKS1)及其终止子(SEQ ID NO.15,片段2)、Gal1/10启动子(SEQ ID NO.16,片段3)。
进一步,所述XLYA3基因采用GAl1/10启动子(核苷酸序列SEQ ID NO:16);所述XLYA3基因片段由下列片段依次连接构成:GAl1/10启动子(SEQ ID NO.16,片段3)、木糖异构酶基因XLYA3及其终止子(SEQ ID NO.13,片段4)、靶位点GRE3下游同源臂(SEQ IDNO.17,片段5)。
进一步,RPE1基因片段由下列片段依次连接构成:靶位点PHO13上游同源臂(SEQID NO.18,片段1)、GAL1启动子(SEQ ID NO.19,片段2)、核糖5-磷酸差向异构酶基因(RPE1)及其终止子(SEQ ID NO.20,片段3)、靶位点PHO13下游同源臂(SEQ ID NO.21,片段4)。
进一步,TAL1基因片段由下列片段依次连接构成:靶位点ASC1上游同源臂(SEQ IDNO.22,片段1)、GAL1启动子(SEQ ID NO.19,片段2)、反式醛缩酶基因(TAL1)及其终止子(SEQ ID NO.23,片段3)、靶位点ASC1下游同源臂(SEQ ID NO.24,片段4)。
本发明所述基因编辑后的重组酿酒酵母在YPD培养基中诱导培养的条件:温度30℃,时间24–48h,转速200rpm。
所述酿酒酵母为(Saccharomyces cerevisiae)BY4741。
所述Cas9蛋白转入酿酒酵母的方法为将Cas9蛋白通过乙酸锂化学转化法整合至酿酒酵母基因组上。
与现有技术相比,本发明有益效果主要体现在:
本发明方法使用重叠延伸PCR将片段连接在一起,形成带有同源臂的gRNA表达盒。该PCR产物可以不经纯化,连同出发载体、供体DNA片段,共同转化已经导入Cas9基因的酵母菌。其中gRNA表达盒片段可以同时靶向至少3个目标基因。
本发明方法无需进行大肠杆菌体内或Golden Gate技术的gRNA质粒构建,在保证编辑效率的前提下,缩短了实验时间和成本,实现对酿酒酵母基因组高效便捷的编辑。且与gRNA瞬时表达系统相比,无需在基因模块上添加筛选标记,可以多次循环基因编辑且进行多位点基因编辑。与载体骨架方法相比,无需PCR扩增回收载体骨架。
(四)附图说明
图1为本发明中CRISPR/Cas9方法的示意图。
图2为本发明中菌株的构建方式示意图。
图3为YD005和YD007在YPD培养基中摇瓶培养的生长曲线。
图4为BY4741和YD006在木糖培养基中摇瓶培养的生长曲线。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
以木糖代谢途径构建为例,说明本发明的实施方法。下述实施例中所用方法如无特别说明均为常规分子克隆方法。
实施例1、表达Cas9菌株YD005的构建
葡萄糖抑制的主要作用因子是一种锌指蛋白MIG1,它可以与许多基因的启动子结合并通过抑制编码转录激活因子的基因抑制其转录。MIG1的抑制作用可以是直接的也可以是间接的。半乳糖代谢受GAL基因编码的酶的控制,但是,在葡萄糖存在下,GAL基因被阻遏基因抑制。其中大多数GAL基因都是直接被抑制,而GAL4基因通过MIG1间接抑制(Jakub etal.Combinatorial control of gene expression by the three yeast repressorsMig1,Mig2 and Mig3[J].Bmc Genomics,2008.)。为提高GAL型启动子的活性,我们敲掉MIG1的同时实现Cas9蛋白的表达,为后续的基因编辑提供了基础。
1、Cas9蛋白表达盒的构建及转化
使用表1中所列模板,利用引物P1/P2扩增得到整合位点MIG1上游同源臂(SEQ IDNO.6,片段1),P3/P4扩增得到Cas9蛋白(SEQ ID NO.7,片段2),P5/P6扩增得到筛选标记MET15(SEQ ID NO.8,片段3),利用引物P7/P8扩增得到整合位点MIG1下游同源臂(SEQ IDNO.9,片段4)。按照文献(Modular pathway engineering of diterpenoid synthases andthe mevalonic acid pathway for miltiradiene production,J.Am.Chem.Soc.(2012)134:3234-3241)的方法,使用重叠延伸PCR将这些DNA片段拼接为有重叠区的长片段。例如需要将上述4个片段整合到基因组上,可以使用重叠延伸PCR方法将片段1、片段2、片段3拼接成第一个大片段。将片段3和片段4拼接成第二个大片段。按照文献(DNA assembler,anin vivo genetic method for rapid construction of biochemical pathways,Nucleic.Acid.s Res.(2009)37:16)中的DNA装配方法,将上述带有同源臂和重叠区的第一个大片段和第二个大片段,通过乙酸锂化学转化法(Gietz et al.Method.Enzymol.2002,350,87–96),整合至酿酒酵母BY4741基因组上。
所述的PCR扩增体系为50ul:PrimeSTAR Max Premix(2×)25μL,浓度10μmol/L的上游引物1μL,浓度10μmol/L的下游引物1μL,模板1μL,用ddH2O补足50μL。
所述的PCR扩增程序为:98℃预变性5min;98℃变性30sec,63-58℃(每循环降低0.5℃)退火10sec,72℃延伸1min,10个循环;98℃变性30sec,58℃退火10sec,72℃延伸1min,25个循环;72℃充分延伸10min,-20℃保存。
2、酵母基因组MIG1位点编辑验证
随机挑选10个酿酒酵母转化子,以引物P9/P10进行菌落PCR扩增,并将PCR产物测序。测序结果显示,10个转化子的目的基因MIG1位点均插入Cas9表达盒,Cas9蛋白成功整合到酿酒酵母BY4741基因组上,获得重组酿酒酵母菌株S.cerevisiae BY4741ΔMIG1::cas9,记为酿酒酵母YD005。
表1实施例中所使用的引物列表
Figure BDA0002829765230000061
Figure BDA0002829765230000071
实施例2 GRE3、PHO13和ASC1gRNA表达盒的准备
1、含有靶位点GRE3的gRNA表达盒的构建
利用chopchop网站,根据靶位点GRE3基因(Saccharomyces Genome DatabaseYHR104W)设计靶标序列,所述靶标序列如下:
GRE3靶标序列:ACCAATCATAGATACGTACC(SEQ ID NO.10)。
以Addgene公司商业化质粒p426-SNR52p-gRNA.CAN1.Y-SUP4t(简称为p426)为模板,采用引物P11/P12,PCR扩增得到靶位点GRE3的gRNA表达盒的上游同源臂片段(SEQ IDNO.1);采用引物P13/P14,PCR扩增得到靶位点GRE3的gRNA表达盒的下游同源臂片段(SEQID NO.5)。DNA拼接方法如实施例1所述,将上游同源臂片段、SNR52p启动子片段(SEQ IDNO.2)、靶标序列(SEQ ID NO.10)、gRNA Scaffold片段(SEQ ID NO.4)、SUP4t终止子(SEQID NO.3)、下游同源臂片段(SEQ ID NO.5)拼接成一个大片段,得到靶位点GRE3的gRNA表达盒。
所述的PCR扩增体系和程序同实施例1。
2、PHO13的gRNA表达盒的构建
利用生物学网站chopchop,根据靶位点PHO13基因(Saccharomyces GenomeDatabase YDL236W)设计靶标序列,所述靶标序列如下:
PHO13靶标序列:ATGGGGTACGAATCTCTAGG(SEQ ID NO.11)。
以P426质粒为模板,采用引物P11/P15,PCR扩增得到PHO13的gRNA表达盒的上游同源臂片段(SEQ ID NO.1);采用引物P16/P14,PCR扩增得到PHO13的gRNA表达盒的下游同源臂片段(SEQ ID NO.5)。DNA拼接方法如实施例1所述,将上游同源臂片段、SNR52p启动子片段(SEQ ID NO.2)、靶标序列(SEQ ID NO.11)、gRNA Scaffold片段(SEQ ID NO.4)、SUP4t终止子(SEQ ID NO.3)、下游同源臂片段(SEQ ID NO.5)拼接成一个大片段,得到PHO13的gRNA表达盒。
所述的PCR扩增体系和程序同实施例1。
3、ASC1的gRNA表达盒的构建
利用生物学网站chopchop,根据靶位点ASC1基因(Saccharomyces GenomeDatabase YMR116C)设计靶标序列,所述靶标序列如下:
ASC1靶标序列:GAAACCTACCAAAGATTCGT(SEQ ID NO.12)。
以P426质粒为模板,以P11/P17为引物PCR扩增得到ASC1 gRNA表达盒的上游同源臂片段(SEQ ID NO.1),P18/P14扩增得到ASC1 gRNA表达盒的下游同源臂片段(SEQ IDNO.5),DNA拼接方法如实施例1所述,将上游同源臂片段、SNR52p启动子片段(SEQ IDNO.2)、靶标序列(SEQ ID NO.12)、gRNA Scaffold片段(SEQ ID NO.4)、SUP4t终止子(SEQID NO.3)、下游同源臂片段(SEQ ID NO.5)拼接成一个大片段,得到ASC1的gRNA表达盒。
所述的PCR扩增体系和PCR扩增程序同实施例1。
实施例3、木糖代谢途径相关基因的转化
以实施例2构建的GRE3的gRNA表达盒、PHO13的gRNA表达盒、ASC1的gRNA表达盒,连同p426-SNR52p-gRNA.CAN1.Y-SUP4t载体、XKS1片段、XLYA3片段、RPE1片段、TAL1片段一起转化酵母菌,实现酵母基因组GRE3、PHO13、ASC1的敲除的同时,引入木糖代谢途径(XKS1片段、XLYA3片段、RPE1片段、TAL1片段)。CAN1基因编码质膜上的精氨酸透性酶,p426-SNR52p-gRNA.CAN1.Y-SUP4t载体靶向CAN1基因,因为在基因组上还存在CAN1的同源基因ALP1,因此,即使p426-SNR52p-gRNA.CAN1.Y-SUP4t载体通过非同源修复编辑了CAN1,也不会影响酵母的生长,通过实验也证明了这一点(如图3所示)。p426-SNR52p-gRNA.CAN1.Y-SUP4t载体上的CAN1 gRNA靶向序列换为任意酵母非同源序列,也可以实现本申请所述的发明内容。
1、基因及来源
将来源于拟杆菌属(Piromyces sp.)木糖异构酶基因(XLYA3)氨基酸序列(UNIPROT数据库登录号Q9P8C9)按酿酒酵母密码子偏好性,由杭州擎科生物科技有限公司合成核苷酸序列(SEQ ID NO.13),克隆在pESC-HIS质粒骨架上构建pESC-HIS-XLYA3载体。
2、酵母XKS1基因,外源基因XLYA3的表达盒构建
使用表1中所列模板,利用引物P19/P20扩增得到整合位点GRE3上游同源臂(SEQID NO.14,片段1)、P21/P22扩增得到木酮糖激酶基因(XKS1)及其终止子(SEQ ID NO.15,片段2)、P23/P24扩增得到Gal1/10启动子(SEQ ID NO.16,片段3)、P25/P26扩增得到(XLYA3)木糖异构酶基因及其终止子(SEQ ID NO.13片段4)、P27/P28扩增得到整合位点GRE3下游同源臂(SEQ ID NO.17,片段5)。DNA拼接方法如实施例1所述,将片段1、片段2、片段3拼接成第一个大片段,即为XKS1基因表达盒。将片段3、片段4、片段5拼接成第二个大片段,即为外源基因XLYA3基因表达盒。再将第一个大片段和第二个大片段合成一个DNA片段。
3、过表达基因RPE1的表达盒构建
使用表1中所列模板,利用引物P29/P30经PCR扩增得到整合位点PHO13上游同源臂(SEQ ID NO.18,片段1)、P31/P32扩增得到GAL1启动子(SEQ ID NO.19,片段2)、P33/P34扩增得到核糖5-磷酸差向异构酶基因(RPE1)及其终止子(SEQ ID NO.20,片段3)、P35/P36扩增得到整合位点PHO13下游同源臂(SEQ ID NO.21,片段4)。DNA拼接方法如实施例1所述,将片段1、片段2、片段3、片段4拼接成一个大片段,即为RPE1基因表达盒。
4、过表达基因TAL1的表达盒构建
使用表1中所列模板,利用引物P37/P38扩增得到整合位点ASC1上游同源臂(SEQID NO.22,片段1)、P39/P40扩增得到GAL1启动子(SEQ ID NO.19,片段2)、P41/P42扩增得到反式醛缩酶基因(TAL1)及其终止子(SEQ ID NO.23,片段3)、P43/P44扩增得到整合位点ASC1下游同源臂(SEQ ID NO.24,片段4)。DNA拼接方法如实施例1所述,将片段1、片段2、片段3、片段4拼接成一个大片段,即为TAL1基因表达盒。
5、酵母基因组GRE3、PHO13、ASC1位点编辑验证
将p426载体、GRE3的gRNA表达盒;PHO13的gRNA表达盒;ASC1的gRNA表达盒;XKS1表达盒和外源基因XLYA3表达盒的DNA片段;RPE1基因表达盒;TAL1基因表达盒通过乙酸锂化学转化法(Gietz D,R.[methods in enzymology]guide to yeast genetics andmolecular and cell biology-part b volume 350||transformation of yeast bylithium acetate/single-stranded carrier dna/polyethylene glycol method[J].)2002:87-96.),同时转入酿酒酵母YD005感受态细胞中。
GRE3的gRNA表达盒、PHO13的gRNA表达盒、ASC1的gRNA表达盒的DNA片段,与p426载体在酵母体内发生同源重组,在Cas9蛋白协助下,GRE3、PHO13、ASC1基因被其gRNA分别定位,实现酵母基因组GRE3、PHO13、ASC1基因的敲除及木糖代谢途径XKS1、XLYA3、RPE、TAL1基因的导入,获得重组酿酒酵母菌株S.cerevisiaeΔGRE3ΔPHO13ΔASC1,记为酿酒酵母YD006。
随机挑选10个酿酒酵母转化子,以P45/P46、P47/P48、P49/P50、P51/P52、P53/P54、P55/P56引物进行菌落PCR扩增,并将PCR产物测序。测序结果显示,10个转化子的目的基因ASC1位点,PHO13位点,GRE3位点均发生了基因组编辑,其中GRE3位点插入了GAL启动子驱动的xks1和xlyA基因,PHO13位点插入了GAL1启动子驱动的rpe1基因,ASC1插入了GAL1启动子驱动的TAL1基因,编辑效率为100%。
6、实施例3酿酒酵母基因组编辑中p426载体与gRNA表达盒同源重组率评估
挑取上述阳性突变子,以引物P57/P60、引物P58/P60,引物P59/P60验证GRE3、ASC1和PHO13的gRNA表达盒DNA片段,与p426载体在酵母体内是否发生同源重组,并将PCR产物送测。测序结果(表2)显示,10个阳性突变子的GRE3、ASC1和PHO13的gRNA表达盒DNA片段,与p426载体在酵母体内均发生同源重组,同源重组率为100%。该结果表明带同源臂的gRNA表达盒可以与p426载体在酵母体内发生同源重组,使得gRNA表达盒稳定存在于质粒上进行持续的表达,且并未影响CRISPR/Cas9系统对酵母基因组的编辑能力。
7、酿酒酵母基因组编辑载体丢失
将上述步骤所得的阳性转化子在YPD培养基中30℃培养1-2天,吸取100μL培养物离心后用无菌水清洗,涂布在含有1mg/mL的5-氟乳清酸的葡萄糖合成最小培养基平板上,生长出的菌落即为去除筛选标记ura3的菌株。
所述YPD培养基质量终浓度组成:2%葡萄糖,2%蛋白胨,1%酵母提取物,溶剂为蒸馏水。
所述葡萄糖合成最小培养基质量终浓度组成:2%葡萄糖,0.17%酵母氮源,0.5%硫酸铵,微量营养素,溶剂为蒸馏水,pH 5.0;其中微量营养素是指组氨酸(His)、亮氨酸(Leu)和尿嘧啶(Ura3),它们在培养基中的终浓度均为20mg/L;根据筛选不同选择标记的需要,在培养基中添加不同微量营养素,例如:筛选标记为ura3,则培养基中添加微量营养素为组氨酸和亮氨酸。固体平板在上述组分基础上再加入2%琼脂。
表2 gRNA表达盒同源重组率统计
Figure BDA0002829765230000111
实施例4、工程菌YD006和出发菌株BY4741分别以葡萄糖,木糖为唯一碳源进行发酵
1.以实施例3构建的酿酒酵母YD006和实验出发菌株BY4741一起进行发酵,测量其利用葡萄糖效果。
分别将酿酒酵母YD006,酿酒酵母BY4741接种至SM-葡萄糖合成最小培养基,在30℃,摇瓶转速200rpm下培养过夜,取培养物接种至18mL葡萄糖合成最小培养基,在30℃,摇瓶转速200rpm条件下培养96h,绘制生长曲线。如图3所示。
2.以实施例3构建的酿酒酵母YD006和实验出发菌株BY4741一起进行发酵,测量其利用木糖效果。
分别将酿酒酵母YD006,酿酒酵母BY4741接种至SM-葡萄糖合成最小培养基,在30℃,摇瓶转速200rpm下培养过夜,取培养物接种至18mL木糖合成最小培养基,在30℃,摇瓶转速200rpm条件下培养96h,绘制生长曲线。如图4所示,出发菌株BY4741无法在木糖为唯一碳源的培养基中生长,成功构建了木糖利用菌株。综上所述,利用本发明所述CRISPR/Cas9方法成功的用于构建木糖代谢途径。
所述木糖合成最小培养基为上述葡萄糖合成最小培养基中2%葡萄糖替换为2%木糖;固体平板在上述组分基础上再加入2%琼脂。
表3实施例中所构建的菌株
Figure BDA0002829765230000121
以上实施例的说明只是用于帮助理解本发明方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。
序列表
<110> 浙江工业大学
<120> 一种基于CRISPR/Cas9的酵母基因组编辑方法
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 696
<212> DNA
<213> 未知(Unknown)
<400> 1
gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 60
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 120
cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 180
cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 240
cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 300
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 360
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 420
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 480
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttacct 540
cactcattag gcaccccagg ctttacactt tatgcttccg gctcctatgt tgtgtggaat 600
tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg ccaagcgcgc 660
aattaaccct cactaaaggg aacaaaagct ggagct 696
<210> 2
<211> 269
<212> DNA
<213> 未知(Unknown)
<400> 2
tctttgaaaa gataatgtat gattatgctt tcactcatat ttatacagaa acttgatgtt 60
ttctttcgag tatatacaag gtgattacat gtacgtttga agtacaactc tagattttgt 120
agtgccctct tgggctagcg gtaaaggtgc gcattttttc acaccctaca atgttctgtt 180
caaaagattt tggtcaaacg ctgtagaagt gaaagttggt gcgcatgttt cggcgttcga 240
aacttctccg cagtgaaaga taaatgatc 269
<210> 3
<211> 20
<212> DNA
<213> 未知(Unknown)
<400> 3
tttttttgtt ttttatgtct 20
<210> 4
<211> 75
<212> DNA
<213> 未知(Unknown)
<400> 4
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtg 75
<210> 5
<211> 839
<212> DNA
<213> 未知(Unknown)
<400> 5
tcgagtcatg taattagtta tgtcacgctt acgttcacgc cctcccccca catccgctct 60
aaccgaaaag gaaggagtta gacaacctga agtctaggtc cctatttatt tttttatagt 120
tatgttagta ttaagaacgt tatttatatt tcaaattttt cttttttttc tgtacagacg 180
cgtgtacgca tgtaacatta tactgaaaac cttgcttgag aaggttttgg gacgctcgaa 240
ggctttaatt tgcggccggt acccaattcg ccctatagtg agtcgtatta cgcgcgctca 300
ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc 360
cttgcagcac atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc 420
ccttcccaac agttgcgcag cctgaatggc gaatggcgcg acgcgccctg tagcggcgca 480
ttaagcgcgg cgggtgtggt ggttacgcgc agcgtgaccg ctacacttgc cagcgcccta 540
gcgcccgctc ctttcgcttt cttcccttcc tttctcgcca cgttcgccgg ctttccccgt 600
caagctctaa atcgggggct ccctttaggg ttccgattta gtgctttacg gcacctcgac 660
cccaaaaaac ttgattaggg tgatggttca cgtagtgggc catcgccctg atagacggtt 720
tttcgccctt tgacgttgga gtccacgttc tttaatagtg gactcttgtt ccaaactgga 780
acaacactca accctatctc ggtctattct tttgatttat aagggatttt gccgatttc 839
<210> 6
<211> 511
<212> DNA
<213> 未知(Unknown)
<400> 6
tcttgagttc tcctggcttt tctccacgtg tctgcttgtt gcctttgatt tcgcgagaga 60
ctgcggactg ccaccccact ccgggaaaac ctggagtgat ggtaaaggcc ctgcggcgct 120
ttctttcgga aaaactaata cgaaagaagc aacaacaaat ttttacaaca ggctggacga 180
gaaaagtggg gaagagcaag cagaaaaaag aaaagagaat agtcgttctt ggataattta 240
tttattataa cccttttttt tcaccccagt actcattaac gaagacaaag gagagtaaga 300
aagcccggta aagcatttcg aagataagag agccatttat tctagctcgc ttgtaactac 360
acgagagttg agtatagtgg agacgacata ctaccatagc catgcaaagc ccatatccaa 420
tgacacaagt gtctaacgtt gatgatgggt cactattgaa ggagagtaaa agcaagtcca 480
aagtagctgc gaagtcagag gcgccaagac c 511
<210> 7
<211> 4949
<212> DNA
<213> 未知(Unknown)
<400> 7
ccctcactaa agggaacaaa agctggagct catagcttca aaatgtttct actccttttt 60
tactcttcca gattttctcg gactccgcgc atcgccgtac cacttcaaaa cacccaagca 120
cagcatacta aatttcccct ctttcttcct ctagggtgtc gttaattacc cgtactaaag 180
gtttggaaaa gaaaaaagag accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa 240
aatttttatc acgtttcttt ttcttgaaaa tttttttttt gatttttttc tctttcgatg 300
acctcccatt gatatttaag ttaataaacg gtcttcaatt tctcaagttt cagtttcatt 360
tttcttgttc tattacaact ttttttactt cttgctcatt agaaagaaag catagcaatc 420
taatctaagt tttctagaac tagtggatcc cccgggaaaa atggacaaga agtactccat 480
tgggctcgat atcggcacaa acagcgtcgg ttgggccgtc attacggacg agtacaaggt 540
gccgagcaaa aaattcaaag ttctgggcaa taccgatcgc cacagcataa agaagaacct 600
cattggcgcc ctcctgttcg actccgggga gacggccgaa gccacgcggc tcaaaagaac 660
agcacggcgc agatataccc gcagaaagaa tcggatctgc tacctgcagg agatctttag 720
taatgagatg gctaaggtgg atgactcttt cttccatagg ctggaggagt cctttttggt 780
ggaggaggat aaaaagcacg agcgccaccc aatctttggc aatatcgtgg acgaggtggc 840
gtaccatgaa aagtacccaa ccatatatca tctgaggaag aagcttgtag acagtactga 900
taaggctgac ttgcggttga tctatctcgc gctggcgcat atgatcaaat ttcggggaca 960
cttcctcatc gagggggacc tgaacccaga caacagcgat gtcgacaaac tctttatcca 1020
actggttcag acttacaatc agcttttcga agagaacccg atcaacgcat ccggagttga 1080
cgccaaagca atcctgagcg ctaggctgtc caaatcccgg cggctcgaaa acctcatcgc 1140
acagctccct ggggagaaga agaacggcct gtttggtaat cttatcgccc tgtcactcgg 1200
gctgaccccc aactttaaat ctaacttcga cctggccgaa gatgccaagc ttcaactgag 1260
caaagacacc tacgatgatg atctcgacaa tctgctggcc cagatcggcg accagtacgc 1320
agaccttttt ttggcggcaa agaacctgtc agacgccatt ctgctgagtg atattctgcg 1380
agtgaacacg gagatcacca aagctccgct gagcgctagt atgatcaagc gctatgatga 1440
gcaccaccaa gacttgactt tgctgaaggc ccttgtcaga cagcaactgc ctgagaagta 1500
caaggaaatt ttcttcgatc agtctaaaaa tggctacgcc ggatacattg acggcggagc 1560
aagccaggag gaattttaca aatttattaa gcccatcttg gaaaaaatgg acggcaccga 1620
ggagctgctg gtaaagctta acagagaaga tctgttgcgc aaacagcgca ctttcgacaa 1680
tggaagcatc ccccaccaga ttcacctggg cgaactgcac gctatcctca ggcggcaaga 1740
ggatttctac ccctttttga aagataacag ggaaaagatt gagaaaatcc tcacatttcg 1800
gataccctac tatgtaggcc ccctcgcccg gggaaattcc agattcgcgt ggatgactcg 1860
caaatcagaa gagaccatca ctccctggaa cttcgaggaa gtcgtggata agggggcctc 1920
tgcccagtcc ttcatcgaaa ggatgactaa ctttgataaa aatctgccta acgaaaaggt 1980
gcttcctaaa cactctctgc tgtacgagta cttcacagtt tataacgagc tcaccaaggt 2040
caaatacgtc acagaaggga tgagaaagcc agcattcctg tctggagagc agaagaaagc 2100
tatcgtggac ctcctcttca agacgaaccg gaaagttacc gtgaaacagc tcaaagaaga 2160
ctatttcaaa aagattgaat gtttcgactc tgttgaaatc agcggagtgg aggatcgctt 2220
caacgcatcc ctgggaacgt atcacgatct cctgaaaatc attaaagaca aggacttcct 2280
ggacaatgag gagaacgagg acattcttga ggacattgtc ctcaccctta cgttgtttga 2340
agatagggag atgattgaag aacgcttgaa aacttacgct catctcttcg acgacaaagt 2400
catgaaacag ctcaagaggc gccgatatac aggatggggg cggctgtcaa gaaaactgat 2460
caatgggatc cgagacaagc agagtggaaa gacaatcctg gattttctta agtccgatgg 2520
atttgccaac cggaacttca tgcagttgat ccatgatgac tctctcacct ttaaggagga 2580
catccagaaa gcacaagttt ctggccaggg ggacagtctt cacgagcaca tcgctaatct 2640
tgcaggtagc ccagctatca aaaagggaat actgcagacc gttaaggtcg tggatgaact 2700
cgtcaaagta atgggaaggc ataagcccga gaatatcgtt atcgagatgg cccgagagaa 2760
ccaaactacc cagaagggac agaagaacag tagggaaagg atgaagagga ttgaagaggg 2820
tataaaagaa ctggggtccc aaatccttaa ggaacaccca gttgaaaaca cccagcttca 2880
gaatgagaag ctctacctgt actacctgca gaacggcagg gacatgtacg tggatcagga 2940
actggacatc aatcggctct ccgactacga cgtggatcat atcgtgcccc agtcttttct 3000
caaagatgat tctattgata ataaagtgtt gacaagatcc gataaaaata gagggaagag 3060
tgataacgtc ccctcagaag aagttgtcaa gaaaatgaaa aattattggc ggcagctgct 3120
gaacgccaaa ctgatcacac aacggaagtt cgataatctg actaaggctg aacgaggtgg 3180
cctgtctgag ttggataaag ccggcttcat caaaaggcag cttgttgaga cacgccagat 3240
caccaagcac gtggcccaaa ttctcgattc acgcatgaac accaagtacg atgaaaatga 3300
caaactgatt cgagaggtga aagttattac tctgaagtct aagctggtct cagatttcag 3360
aaaggacttt cagttttata aggtgagaga gatcaacaat taccaccatg cgcatgatgc 3420
ctacctgaat gcagtggtag gcactgcact tatcaaaaaa tatcccaagc ttgaatctga 3480
atttgtttac ggagactata aagtgtacga tgttaggaaa atgatcgcaa agtctgagca 3540
ggaaataggc aaggccaccg ctaagtactt cttttacagc aatattatga attttttcaa 3600
gaccgagatt acactggcca atggagagat tcggaagcga ccacttatcg aaacaaacgg 3660
agaaacagga gaaatcgtgt gggacaaggg tagggatttc gcgacagtcc ggaaggtcct 3720
gtccatgccg caggtgaaca tcgttaaaaa gaccgaagta cagaccggag gcttctccaa 3780
ggaaagtatc ctcccgaaaa ggaacagcga caagctgatc gcacgcaaaa aagattggga 3840
ccccaagaaa tacggcggat tcgattctcc tacagtcgct tacagtgtac tggttgtggc 3900
caaagtggag aaagggaagt ctaaaaaact caaaagcgtc aaggaactgc tgggcatcac 3960
aatcatggag cgatcaagct tcgaaaaaaa ccccatcgac tttctcgagg cgaaaggata 4020
taaagaggtc aaaaaagacc tcatcattaa gcttcccaag tactctctct ttgagcttga 4080
aaacggccgg aaacgaatgc tcgctagtgc gggcgagctg cagaaaggta acgagctggc 4140
actgccctct aaatacgtta atttcttgta tctggccagc cactatgaaa agctcaaagg 4200
gtctcccgaa gataatgagc agaagcagct gttcgtggaa caacacaaac actaccttga 4260
tgagatcatc gagcaaataa gcgaattctc caaaagagtg atcctcgccg acgctaacct 4320
cgataaggtg ctttctgctt acaataagca cagggataag cccatcaggg agcaggcaga 4380
aaacattatc cacttgttta ctctgaccaa cttgggcgcg cctgcagcct tcaagtactt 4440
cgacaccacc atagacagaa agcggtacac ctctacaaag gaggtcctgg acgccacact 4500
gattcatcag tcaattacgg ggctctatga aacaagaatc gacctctctc agctcggtgg 4560
agacagcagg gctgacccca agaagaagag gaaggtgtga tctcttctcg agtcatgtaa 4620
ttagttatgt cacgcttaca ttcacgccct ccccccacat ccgctctaac cgaaaaggaa 4680
ggagttagac aacctgaagt ctaggtccct atttattttt ttatagttat gttagtatta 4740
agaacgttat ttatatttca aatttttctt ttttttctgt acagacgcgt gtacgcatgt 4800
aacattatac tgaaaacctt gcttgagaag gttttgggac gctcgaaggc tttaatttgc 4860
ggccggtacc caattcgccc tatagtgagt cgtattacgc gcgctcactg gccgtcgttt 4920
tacaacgtcg tgactgggaa aaccctggc 4949
<210> 8
<211> 2328
<212> DNA
<213> 未知(Unknown)
<400> 8
tttgcgtcat cttctaacac cgtatatgat aatatactag taacgtaaat actagttagt 60
agatgatagt tgatttttat tccaacacta agaaataatt tcgccatttc ttgaatgtat 120
ttaaagatat ttaatgctat aatagacatt taaatccaat tcttccaaca tacaatggga 180
gtttggccga gtggtttaag gcgtcagatt taggtggatt taacctctaa aatctctgat 240
atcttcggat gcaagggttc gaatccctta gctctcatta ttttttgctt tttctcttga 300
ggtcacatga tcgcaaaatg gcaaatggca cgtgaagctg tcgatattgg ggaactgtgg 360
tggttggcaa atgactaatt aagttagtca aggcgccatc ctcatgaaaa ctgtgtaaca 420
taataaccga agtgtcgaaa aggtggcacc ttgtccaatt gaacacgctc gatgaaaaaa 480
ataagatata tataaggtta agtaaagcgt ctgttagaaa ggaagttttt cctttttctt 540
gctctcttgt cttttcatct actatttcct tcgtgtaata cagggtcgtc agatacatag 600
atacaattct attaccccca tccatacaat gccatctcat ttcgatactg ttcaactaca 660
cgccggccaa gagaaccctg gtgacaatgc tcacagatcc agagctgtac caatttacgc 720
caccacttct tatgttttcg aaaactctaa gcatggttcg caattgtttg gtctagaagt 780
tccaggttac gtctattccc gtttccaaaa cccaaccagt aatgttttgg aagaaagaat 840
tgctgcttta gaaggtggtg ctgctgcttt ggctgtttcc tccggtcaag ccgctcaaac 900
ccttgccatc caaggtttgg cacacactgg tgacaacatc gtttccactt cttacttata 960
cggtggtact tataaccagt tcaaaatctc gttcaaaaga tttggtatcg aggctagatt 1020
tgttgaaggt gacaatccag aagaattcga aaaggtcttt gatgaaagaa ccaaggctgt 1080
ttatttggaa accattggta atccaaagta caatgttccg gattttgaaa aaattgttgc 1140
aattgctcac aaacacggta ttccagttgt cgttgacaac acatttggtg ccggtggtta 1200
cttctgtcag ccaattaaat acggtgctga tattgtaaca cattctgcta ccaaatggat 1260
tggtggtcat ggtactacta tcggtggtat tattgttgac tctggtaagt tcccatggaa 1320
ggactaccca gaaaagttcc ctcaattctc tcaacctgcc gaaggatatc acggtactat 1380
ctacaatgaa gcctacggta acttggcata catcgttcat gttagaactg aactattaag 1440
agatttgggt ccattgatga acccatttgc ctctttcttg ctactacaag gtgttgaaac 1500
attatctttg agagctgaaa gacacggtga aaatgcattg aagttagcca aatggttaga 1560
acaatcccca tacgtatctt gggtttcata ccctggttta gcatctcatt ctcatcatga 1620
aaatgctaag aagtatctat ctaacggttt cggtggtgtc ttatctttcg gtgtaaaaga 1680
cttaccaaat gccgacaagg aaactgaccc attcaaactt tctggtgctc aagttgttga 1740
caatttaaag cttgcctcta acttggccaa tgttggtgat gccaagacct tagtcattgc 1800
tccatacttc actacccaca aacaattaaa tgacaaagaa aagttggcat ctggtgttac 1860
caaggactta attcgtgtct ctgttggtat cgaatttatt gatgacatta ttgcagactt 1920
ccagcaatct tttgaaactg ttttcgctgg ccaaaaacca tgagtgtgcg taatgagttg 1980
taaaattatg tataaaccta ctttctctca caagtactat acttttataa aacgaacttt 2040
attgaaatga atatcctttt tttcccttgt tacatgtcgt gactcgtact ttgaacctaa 2100
attgttctaa catcaaagaa cagtgttaat tcgcagtcga gaagaaaaat atggtgaaca 2160
agactcatct acttcatgag actactttac gcctcctata aagctgtcac actggataaa 2220
tttattgtag gaccaagtta caaaagagga tgatggaggt ttctttacaa taaagaagca 2280
catgtgtgtt aacgttttta gtatttgctt gttatgtaaa tcaggaaa 2328
<210> 9
<211> 516
<212> DNA
<213> 未知(Unknown)
<400> 9
ccgttattat tgtcaccaag ggtgaatatg attaatactg ctatatccac ccaacaaacc 60
cccatttctc agtcggattc acaagttcaa gaactggaaa cattaccacc cataagaagt 120
ttaccgttgc ccttcccaca catggactga tacgctgaca agtttttggc ggtgcagata 180
aatcaaaaga caatagacaa gaattaataa tattaacaat taataattaa taaataataa 240
ataataataa taataataat aataataata ataatagtaa taataataat aattaataac 300
gataaaaata tttaattatg atagtaagaa tacatatttt gattgtctta gtcttccgca 360
gagataatta attgttctca ttttcaaagt catctatatg tattgattga gctctactgt 420
tgtttttaac tttattgtgg ccccctaaaa tataattttt accagtatta accattttgc 480
tcttattagt acttttactg atggtggaac ccttga 516
<210> 10
<211> 20
<212> DNA
<213> 未知(Unknown)
<400> 10
accaatcata gatacgtacc 20
<210> 11
<211> 20
<212> DNA
<213> 未知(Unknown)
<400> 11
atggggtacg aatctctagg 20
<210> 12
<211> 20
<212> DNA
<213> 未知(Unknown)
<400> 12
gaaacctacc aaagattcgt 20
<210> 13
<211> 1568
<212> DNA
<213> 未知(Unknown)
<400> 13
atggccaaag agtatttccc ccaaatacaa aagattaaat ttgatggaaa ggacagcaaa 60
aacccgcttg cttttcacta ttatgatgct gagaaagagg ttatgggtaa gaagatgaag 120
gattggctta gatttgcgat ggcttggtgg cacacactat gtgcggaggg tgctgaccag 180
ttcggcgggg gtacaaaatc cttcccttgg aatgagggaa ctgatgcaat tgaaatcgca 240
aaacagaaag ttgatgcagg gtttgaaatt atgcagaagc tggggatacc ctattactgc 300
tttcacgacg tggacttggt ttccgaaggc aacagcattg gtgaatatga aagtaatttg 360
aaggctgtag tcgcttacct gaaagataag cagaaggaaa ctggtatcaa attactatgg 420
tcatcagcaa acgtttttgg acacaagcgt tatatgaatg gcgcatctac gaatccggac 480
tttgacgtcg tcgcgagagc aattgtgcaa atcaaaaatg ctatcgatac cgggattgag 540
ctaggtgccg aaaattacgt cttctggggt gggcgtgaag gctatatgtc tctgctgaat 600
accgatcaga aacgtgaaaa ggaacacatg gccactatgc tgactatggc gcgtgattat 660
gcgcgttcca agggcttcaa gggcactttt ttgatagaac ctaaacccat ggaacctacg 720
aaacatcagt acgacgtaga caccgagact gcgattggct tcttgaaggc acataacctg 780
gacaaggatt ttaaggtgaa tatcgaggta aaccatgcca cacttgcggg gcacacattc 840
gagcacgaac tggcatgcgc ggttgatgca ggtatgcttg gatctataga cgcaaacagg 900
ggcgattacc agaacggatg ggatactgat cagttcccca tcgatcagta cgaactggtg 960
caggcgtgga tggaaattat cagaggaggt ggtttcgtta ccggaggcac taattttgat 1020
gcaaagacgc gtaggaattc cacggattta gaggatataa tcatcgccca cgtatccgga 1080
atggatgcta tggctagagc cttggaaaat gcggccaaac tgcttcaaga gagtccctat 1140
acgaagatga agaaagagag atatgcgtcc ttcgatagtg ggattgggaa ggacttcgaa 1200
gacggcaaat tgaccttgga acaggtttac gagtatggga aaaaaaatgg cgaacccaaa 1260
caaacatctg ggaaacaaga gttgtacgag gccattatcg ccatgtatca ataactcgag 1320
tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 1380
aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 1440
tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 1500
acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 1560
taatttgc 1568
<210> 14
<211> 561
<212> DNA
<213> 未知(Unknown)
<400> 14
aagccacatg cggaagaatt ttatggaaaa aaaaaaaacc tcgaagttac tacttctagg 60
gggcctatca agtaaattac tcctggtaca ctgaagtata taagggatat agaagcaaat 120
agttgtcagt gcaatccttc aagacgattg ggaaaatact gtaatataaa tcgtaaagga 180
aaattggaaa ttttttaaag atgtcttcac tggttactct taataacggt ctgaaaatgc 240
ccctagtcgg cttagggtgc tggaaaattg acaaaaaagt ctgtgcgaat caaatttatg 300
aagctatcaa attaggctac cgtttattcg atggtgcttg cgactacggc aacgaaaagg 360
aagttggtga aggtatcagg aaagccatct ccgaaggtct tgtttctaga aaggatatat 420
ttgttgtttc aaagttatgg aacaattttc accatcctga tcatgtaaaa ttagctttaa 480
agaagacctt aagcgatatg ggacttgatt atttagacct gtattatatt cacttcccaa 540
tcgccttcaa atatgttcca t 561
<210> 15
<211> 2074
<212> DNA
<213> 未知(Unknown)
<400> 15
attctcactg gaaagcgcta atttgatttg tctctctcgt tgctggtcgc tcaccctttc 60
ataaattgtt ttttactctt catttattga ttttactttt tgtcattttc cgaacgggga 120
acaaaatgat gactacttgc tacagtatac gaaacataca agggcattgt catgtgcacg 180
cataataacg gtgatatata tatatgtatg tatattatgt gtctgtgttt gtgtgtactt 240
gtcagggcat gataaattat tcaaacatat tttagatgag agtcttttcc agttcgctta 300
aggggacaat cttggaatta tagcgatccc aattttcatt atccacatcg gatatgcttt 360
ccattacatg ccatggaaaa ttgtcattca gaaatttatc aaaaggaact gcaattttat 420
tagagtcata taacaatgac cacatggcct tataacaacc accaagggca catgagtttg 480
gtgtttctag cctaaaatta ccctttgtag caccaatgac ttgagcaaac ttcttcacaa 540
tagcatcgtt tttagaagcc ccacctacaa aaaaagtcct ttctggcctt ttatttaggt 600
agtcccgcag cggagattca tcgtaatcaa acttcacgat tgtatcttcg ttcagtctct 660
gttgtgagct tgcgtttgaa tccgaaagca ggggagatat tcttaccctg caacttaaag 720
cctgtgattc tacaatattt ttggcatcgt gcctcttgtc tttgaacttg gccacctctc 780
tttcaatcat acccgttttt ggattgaaga taaccctttt gtttatggct tttacgctag 840
gaacgatctc ccccagagga aaatatacac ctaattcatt ttcactactt tctgagtcat 900
ctagcacagc ttgattaaaa agagtccaat cgttagtctt ctcataatta ttttcccgtt 960
ctttgtttaa ctcgtctctt atcctctccc ttgccaaaga accattacaa taacaaatca 1020
tacccatata atggtttggc agagttggat gaatgaaaag atgatagttc ggagaggggt 1080
gatacttatc ggtgaccaga agaactgtag tacttgttcc tagggaaacg agaacgtcat 1140
tcttccgcag gggtaaagaa catatagtgg ctaaattatc cccagtcatg ggagagacct 1200
tgcagtttgt attgaaaccg tacttctcaa taaaatattt acagatggta cccgctatca 1260
aatttttcat gggtgctctc attaattttt gtctgatagt tttatcctta gaagaactat 1320
caattagatg tagtagctca tcactgaatt ttctttcacg tatatcataa aggttcatac 1380
cacaggcatc tgcctcctct aattcaacaa gatggcccac taagatagaa gtcaaaaaat 1440
tagacactaa agaaatggtc tttgtttttt cgtaagcttc tggttctaat tgtgcaattt 1500
tcagaatttg aggaccagta aatctaaaat gggctctgga ccctgttaat tgagccattt 1560
tttcaggccc acctatgcac tcttcaaact cttgacattg ctttgcagta ctgtggtctt 1620
gccaattggg ggcggtttgc cttgcaaatg ctacagagct cacgtagtgc aataaatctt 1680
tttccggttt cttattcaat tgctctaaca gagattcggc ttgggaggac cagtagacag 1740
acccgtgctg ctggcaggac cctgagacgg ccataacttt gttcaatgga aatttagcct 1800
cgcgatattt cgagagaacc agatctagag cctctaacca catggctacg ggacattcga 1860
tagtgtcgcc gtgtatatag acacccttct ttgtgtgata atgcggaaga tccttttcaa 1920
attccactgt ttctgaatgg acaattttta ggtcctggtt aatggcgaga catttcagtt 1980
gttgggtcga aagatcaaac ccaagatagt atgagtctaa agacattgtg ttggaaacct 2040
ctcttgtctg tctctgaatt actgaacaca acat 2074
<210> 16
<211> 668
<212> DNA
<213> 未知(Unknown)
<400> 16
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat ggacgcaaag aagtttaata 60
atcatattac atggcaatac caccatatac atatccatat ctaatcttac ttatatgttg 120
tggaaatgta aagagcccca ttatcttagc ctaaaaaaac cttctctttg gaactttcag 180
taatacgctt aactgctcat tgctatattg aagtacggat tagaagccgc cgagcgggcg 240
acagccctcc gacggaagac tctcctccgt gcgtcctggt cttcaccggt cgcgttcctg 300
aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata aagattctac aatactagct 360
tttatggtta tgaagaggaa aaattggcag taacctggcc ccacaaacct tcaaatcaac 420
gaatcaaatt aacaaccata ggataataat gcgattagtt ttttagcctt atttctgggg 480
taattaatca gcgaagcgat gatttttgat ctattaacag atatataaat gcaaaagctg 540
cataaccact ttaactaata ctttcaacat tttcggtttg tattacttct tattcaaatg 600
tcataaaagt atcaacaaaa aattgttaat atacctctat actttaacgt caaggagaaa 660
aaactata 668
<210> 17
<211> 642
<212> DNA
<213> 未知(Unknown)
<400> 17
cactttaacg gagcaagaat tgaaggatat ttctgcacta aatgccaaca tcagatttaa 60
tgatccatgg acctggttgg atggtaaatt ccccactttt gcctgatcca gccagtaaaa 120
tccatactca acgacgatat gaacaaattt ccctcattcc gatgctgtat atgtgtataa 180
atttttacat gctcttctgt ttagacacag aacagcttta aataaaatgt tggatatact 240
ttttctgcct gtggtgtcat ccacgctttt aattcatctc ttgtatggtt gacaatttgg 300
ctatttttta acagaaccca acggtaattg aaattaaaag ggaaacgagt gggggcgatg 360
agtgagtgat actaaaatag acaccaagag agcaaagcgg tcccaaaatc atttgagtaa 420
ccggatatct atcgggatat taatagcagc ttccatttca actaaaacaa cagcaagata 480
tgagcgacaa gatatccttt ctacctcccg aacccatcca actacttgac gaagactcca 540
cggagcctga actcgacatt gactcacaac aagaaaatga gggacccatc agtgcgtcaa 600
acagcaatga tagcactagc catagtaatg attgcggtgc ca 642
<210> 18
<211> 596
<212> DNA
<213> 未知(Unknown)
<400> 18
ccgttcaaga agtataatgg ggaatggtct catcttccct cacaggatat agttctctga 60
agagatacat acgtttgtgt atactatgct tctttatcaa ctcaagtttt gtagaggaag 120
acgttgaaga tggtgatgtg acatctttac tattctccag cacgttttca gtatttactt 180
aatcgtatat taatgacgtc ccttatctat taactttccg gtttttcttt ttttcggtga 240
atgttctttc cgttttagtg aatttttcaa ttgtaattga cgcaatcggt ttataacaag 300
cagacataaa tatcaagctc gagccaaatc acaaaaaaag ccttatagct tgccctgaca 360
aagaatatac aactcgggaa aatgactgct caacaaggtg taccaataaa gataaccaat 420
aaggagattg ctcaagaatt cttggacaaa tatgacacgt ttctgttcga ttgtgatggt 480
gtattatggt taggttctca agcattacca tacaccctgg aaattctaaa ccttttgaag 540
caattgggca aacaactgat cttcgttacg aataactcta ccaagtcccg tttagc 596
<210> 19
<211> 453
<212> DNA
<213> 未知(Unknown)
<400> 19
cggattagaa gccgccgagc gggcgacagc cctccgacgg aagactctcc tccgtgcgtc 60
ctggtcttca ccggtcgcgt tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa 120
caataaagat tctacaatac tagcttttat ggttatgaag aggaaaaatt ggcagtaacc 180
tggccccaca aaccttcaaa tcaacgaatc aaattaacaa ccataggata ataatgcgat 240
tagtttttta gccttatttc tggggtaatt aatcagcgaa gcgatgattt ttgatctatt 300
aacagatata taaatgcaaa agctgcataa ccactttaac taatactttc aacattttcg 360
gtttgtatta cttcttattc aaatgtcata aaagtatcaa caaaaaattg ttaatatacc 420
tctatacttt aacgtcaagg agaaaaaact ata 453
<210> 20
<211> 1000
<212> DNA
<213> 未知(Unknown)
<400> 20
gatggcggta agaaagtgaa agagaatgaa aagaagagtt ctttgacttt ggttaaggaa 60
gccttatgga gtgtcattga cgatactgca tcccagggat tgatcatcga aaacggacaa 120
ggcaccaccc tgggcggccc atttttccca tgagttaggc acttacgtat cttgtatagt 180
aggaatggct cggtttatgt atattaggag atcaaaacga gaaaaaaata ccatatcgta 240
tagtatagag agtataaata taagaaatgc cgcatatgta caactaatct agcaaatctc 300
tagaacgcaa ttccttcgag acttcttctt tcatgaagga gataacatcg tgcgggtcag 360
ctgcagtgaa aacactggta ccagcgacaa taacgttggc accggctttg gcggctttcg 420
ggatggtctc cttgcccaaa ccaccatcga cttggatatt caaatggggg aacttggctc 480
tcaaagtttc cacttttggc atcatgtctt ccatgaattt ttggcctcca aacccaggtt 540
ccacagtcat aacaagagcc atatccaaat gaggagctag ttcaaataaa acgtcaacag 600
aagtaccagg tttgatggcg catgcagctt tgatgccctt agacttaatc aacttaacta 660
aatgcaaagg gtcttgtgtg gcctcgtagt ggaacgtaaa ttggtcagca ccacatttag 720
caaaatcgtc gacccatttt tcaggatttt caaccatcat gtgacaatcg aagaacgcag 780
tgggcttctt ttctgtgttg ctagcatcgc cagggcgtgg cacagaacga cgtagggagg 840
taacaattgg ttggcccaga gtaatgtttg gaacaaaatg gccgtccatg acatcgatat 900
gtaaccaatc tgcgccggcg ttgatgacct tatgacattc gcaacccaag ttggcgaagt 960
cagaagcaag gatactggga gctataattg gtttgaccat 1000
<210> 21
<211> 775
<212> DNA
<213> 未知(Unknown)
<400> 21
ggaggtgccg attccagatt ggatacgccg ttcgatgcag ctaaatcacc atttttggtg 60
aacggccttg ataaggatgt tagttgtgtt attgctgggt tagacacgaa ggtaaattac 120
caccgtttgg ctgttacact gcagtatttg cagaaggatt ctgttcactt tgttggtaca 180
aatgttgatt ctactttccc gcaaaagggt tatacatttc ccggtgcagg ctccatgatt 240
gaatcattgg cattctcatc taataggagg ccatcgtact gtggtaagcc aaatcaaaat 300
atgctaaaca gcattatatc ggcattcaac ctggatagat caaagtgctg tatggttggt 360
gacagattaa acaccgatat gaaattcggt gttgaaggtg ggttaggtgg cacactactc 420
gttttgagtg gtattgaaac cgaagagaga gccttgaaga tttcgcacga ttatccaaga 480
cctaaatttt acattgataa acttggtgac atctacacct taaccaataa tgagttatag 540
aggagcaatg caaaatctag gggtagaatt actttttgaa aaggaaaaat attcaggttt 600
gttgttttta tgtaagttgt atgatttgat atacatatat atatatatat aatatatatt 660
gtacatgtgt ttttccgggg aagaatggat tatccggagg tgtgaataaa atgatgacga 720
ttataggttt gtgttgtaat atttagataa ctcaattctc gccagtttga actcc 775
<210> 22
<211> 394
<212> DNA
<213> 未知(Unknown)
<400> 22
cgtcttcgtt atcgctccgt tctgaaaatt tcttagcgag gacgtgcttc tccagcgaaa 60
gtctcagaac gtttgttgaa aaaaatttca tccacgcaac ttttttttgg atgtgtaaga 120
ccaatttttt tggcattggg ctattccttt aattgtggat tttctacaac ttgaaaattt 180
tcctatattt aagactgctc ctttggtttt cctaactcgt tctctctctc tttttttttt 240
ccaaaaaatc cttataacac actaaagtaa ataaagtgaa aaatggcatc taacgaagtt 300
ttagttttga gaggtacctt ggaaggtcac aacggttggg tcacatcttt ggctacttct 360
gctggtcaac caaacctatt gttgtccgct tccc 394
<210> 23
<211> 1008
<212> DNA
<213> 未知(Unknown)
<400> 23
atgtctgaac cagctcaaaa gaaacaaaag gttgctaaca actctctaga acaattgaaa 60
gcctccggca ctgtcgttgt tgccgacact ggtgatttcg gctctattgc caagtttcaa 120
cctcaagact ccacaactaa cccatcattg atcttggctg ctgccaagca accaacttac 180
gccaagttga tcgatgttgc cgtggaatac ggtaagaagc atggtaagac caccgaagaa 240
caagtcgaaa atgctgtgga cagattgtta gtcgaattcg gtaaggagat cttaaagatt 300
gttccaggca gagtctccac cgaagttgat gctagattgt cttttgacac tcaagctacc 360
attgaaaagg ctagacatat cattaaattg tttgaacaag aaggtgtctc caaggaaaga 420
gtccttatta aaattgcttc cacttgggaa ggtattcaag ctgccaaaga attggaagaa 480
aaggacggta tccactgtaa tttgactcta ttattctcct tcgttcaagc agttgcctgt 540
gccgaggccc aagttacttt gatttcccca tttgttggta gaattctaga ctggtacaaa 600
tccagcactg gtaaagatta caagggtgaa gccgacccag gtgttatttc cgtcaagaaa 660
atctacaact actacaagaa gtacggttac aagactattg ttatgggtgc ttctttcaga 720
agcactgacg aaatcaaaaa cttggctggt gttgactatc taacaatttc tccagcttta 780
ttggacaagt tgatgaacag tactgaacct ttcccaagag ttttggaccc tgtctccgct 840
aagaaggaag ccggcgacaa gatttcttac atcagcgacg aatctaaatt cagattcgac 900
ttgaatgaag acgctatggc cactgaaaaa ttgtccgaag gtatcagaaa attctctgcc 960
gatattgtta ctctattcga cttgattgaa aagaaagtta ccgcttaa 1008
<210> 24
<211> 503
<212> DNA
<213> 未知(Unknown)
<400> 24
cgctggtaag gacggtgaaa ttatgttgtg gaacttggct gctaagaagg ctatgtacac 60
tttgtctgcc caagatgaag ttttctcttt ggctttctct ccaaacagat actggttggc 120
tgctgccact gctaccggta ttaaggtctt ttctttggac ccacaatact tggtcgatga 180
cttgagacca gaatttgctg gttacagcaa ggccgctgaa ccacatgctg tttctttggc 240
ttggtctgct gacggtcaaa ctttgtttgc cggttacacc gacaacgtca ttagagtttg 300
gcaagttatg actgctaact aagaatatgt ataaagttca tttgttcttt tatgtatctt 360
ctagttattg gtcatgttta aaatggtaaa aataaagaaa ataatttcta tattttagtg 420
tataatataa tcgtcataga tttcgaagta atgaaagaaa ggttatcatt aggtactata 480
aactatgctt tctgtttgct gcg 503

Claims (10)

1.一种基于CRISPR/Cas9的酵母基因组编辑方法,其特征在于所述方法为:根据酿酒酵母基因组上的靶位点设计靶标序列,再将靶标序列构建gRNA表达盒,然后将gRNA表达盒与出发载体、供体DNA片段,共同转化酿酒酵母细胞,实现同时对酿酒酵母多个基因组位点的编辑;所述gRNA表达盒的两侧具有与出发载体相同序列的同源臂;所述供体DNA片段两端具有与酿酒酵母基因组靶位点上下游序列相同的同源臂;所述酿酒酵母细胞表达有Cas9蛋白。
2.如权利要求1所述的方法,其特征在于所述gRNA表达盒依次由上游同源臂、启动子、靶标序列、gRNA Scaffold片段、终止子和下游同源臂组成;所述上游同源臂和下游同源臂分别与出发载体有60bp以上的相同序列;所述靶标序列是根据酿酒酵母基因组上靶位点基因,利用chopchop网站,设计20bp的靶标序列;所述启动子为SNR52p启动子,核苷酸序列为SEQ ID NO:2所示;所述终止子为SUP4t终止子,核苷酸序列为SEQ ID NO:3所示;所述gRNAScaffold片段核苷酸序列如SEQ ID NO:4所示。
3.如权利要求2所述的方法,其特征在于靶位点基因包括醛糖还原酶GRE3基因、4-硝基苯基磷酸酶PHO13基因、鸟嘌呤核苷酸结合蛋白亚基β样蛋白ASC1基因。
4.如权利要求3所述的方法,其特征在于GRE3基因的靶标序列为:ACCAATCATAGATACGTACC;
PHO13基因的靶标序列为:ATGGGGTACGAATCTCTAGG;
ASC1基因的靶标序列为:GAAACCTACCAAAGATTCGT。
5.如权利要求1所述的方法,其特征在于所述出发载体为p426-SNR52p-gRNA.CAN1.Y-SUP4t。
6.如权利要求1所述的方法,其特征在于所述供体DNA片段包括木酮糖激酶基因XKS1、木糖异构酶基因XLYA3、核糖磷酸3-表异构酶基因RPE1、转醛缩酶基因TAL1。
7.如权利要求6所述的方法,其特征在于XKS1基因片段由下列片段依次连接构成:SEQID NO.14所示靶位点GRE3上游同源臂、SEQ ID NO.15所示木酮糖激酶基因XKS1及其终止子、SEQ ID NO.16所示Gal1/10启动子。
8.如权利要求6所述的方法,其特征在于所述XLYA3基因片段由下列片段依次连接构成:SEQ ID NO.16所示GAl1/10启动子、SEQ ID NO.13所示木糖异构酶基因XLYA3及其终止子、SEQ ID NO.17所示靶位点GRE3下游同源臂。
9.如权利要求6所述的方法,其特征在于所述RPE1基因片段由下列片段依次连接构成:SEQ ID NO.18所示靶位点PHO13上游同源臂、SEQ ID NO.19所示GAL1启动子、SEQ ID NO.20所示核糖5-磷酸差向异构酶基因RPE1及其终止子、SEQ ID NO.21所示靶位点PHO13下游同源臂。
10.如权利要求6所述的方法,其特征在于TAL1基因片段由下列片段依次连接构成:SEQID NO.22所示靶位点ASC1上游同源臂、SEQ ID NO.19所示GAL1启动子、SEQ ID NO.23所示反式醛缩酶基因TAL1及其终止子、SEQ ID NO.24所示靶位点ASC1下游同源臂。
CN202011457196.9A 2020-12-11 2020-12-11 一种基于CRISPR/Cas9的酵母基因组编辑方法 Pending CN112458092A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011457196.9A CN112458092A (zh) 2020-12-11 2020-12-11 一种基于CRISPR/Cas9的酵母基因组编辑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011457196.9A CN112458092A (zh) 2020-12-11 2020-12-11 一种基于CRISPR/Cas9的酵母基因组编辑方法

Publications (1)

Publication Number Publication Date
CN112458092A true CN112458092A (zh) 2021-03-09

Family

ID=74801483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011457196.9A Pending CN112458092A (zh) 2020-12-11 2020-12-11 一种基于CRISPR/Cas9的酵母基因组编辑方法

Country Status (1)

Country Link
CN (1) CN112458092A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373172A (zh) * 2021-06-17 2021-09-10 天津科技大学 一种酿酒酵母大片段基因编辑的方法
CN114574516A (zh) * 2022-01-18 2022-06-03 浙江大学杭州国际科创中心 一种基于CRISPR/Cas9的酵母基因组稳定整合方法
CN115717154A (zh) * 2022-11-04 2023-02-28 青岛农业大学 一种在酵母基因中定点敲入外源基因的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384812A (zh) * 2018-01-23 2018-08-10 华南理工大学 一种酵母基因组编辑载体及其构建方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384812A (zh) * 2018-01-23 2018-08-10 华南理工大学 一种酵母基因组编辑载体及其构建方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HORWITZ AA等: "Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas", 《CELL SYST》 *
HORWITZ AA等: "Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas", 《CELL SYST》, vol. 1, no. 1, 29 July 2015 (2015-07-29), pages 88 - 96, XP055230552, DOI: 10.1016/j.cels.2015.02.001 *
TRAN NGUYEN HOANG等: "Genomic and phenotypic characterization of a refactored xylose‑utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production", 《BIOTECHNOL BIOFUELS》 *
TRAN NGUYEN HOANG等: "Genomic and phenotypic characterization of a refactored xylose‑utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production", 《BIOTECHNOL BIOFUELS》, vol. 11, 31 December 2018 (2018-12-31), pages 1 - 13 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373172A (zh) * 2021-06-17 2021-09-10 天津科技大学 一种酿酒酵母大片段基因编辑的方法
CN114574516A (zh) * 2022-01-18 2022-06-03 浙江大学杭州国际科创中心 一种基于CRISPR/Cas9的酵母基因组稳定整合方法
CN114574516B (zh) * 2022-01-18 2023-10-27 浙江大学杭州国际科创中心 一种基于CRISPR/Cas9的酵母基因组稳定整合方法
CN115717154A (zh) * 2022-11-04 2023-02-28 青岛农业大学 一种在酵母基因中定点敲入外源基因的方法

Similar Documents

Publication Publication Date Title
CN112458092A (zh) 一种基于CRISPR/Cas9的酵母基因组编辑方法
Zillig Comparative biochemistry of Archaea and Bacteria
CN110527697B (zh) 基于CRISPR-Cas13a的RNA定点编辑技术
CN110846239B (zh) 具有高同源重组效率的重组解脂耶氏酵母菌及其构建方法和应用
CN111778167B (zh) 高产桦木酸的酿酒酵母工程菌及其构建方法与应用
TW201120213A (en) Polymerization of isoprene from renewable resources
TW201120204A (en) Fuel compositions comprising isoprene derivatives
CN112852650B (zh) 一种高产檀香烯和檀香醇的酿酒酵母工程菌及其构建方法与应用
CN110157654B (zh) 一种纳豆芽孢杆菌重组菌及其构建方法与应用
CN107858340B (zh) 高催化活性的d-果糖-6-磷酸醛缩酶a突变体、重组表达载体、基因工程菌及其应用
CN111321101A (zh) 一种利用CRISPR-Cas9技术敲除大肠杆菌中胞苷脱氨酶基因cdd的方法及应用
WO2021178934A1 (en) Class ii, type v crispr systems
CN113817763A (zh) β-半乳糖苷酶家族基因定向进化方法、突变体及其应用
CN114250240A (zh) 一种调节大肠杆菌菌膜形态和高效合成mk-7的方法
CN108841734B (zh) 一种提高高山被孢霉产不饱和脂肪酸能力的方法
CN112553135B (zh) 一种腺苷工程菌及其构建方法与应用
CN111471693B (zh) 一种产赖氨酸的谷氨酸棒杆菌及其构建方法与应用
CN110408645B (zh) 一种解脂耶氏酵母中目的基因多次无痕整合系统及方法
EP0133321B1 (en) Dna gene, process for production thereof and plasmid containing the same
CN111004813A (zh) 一种超大质粒构建试剂盒、超大质粒构建方法及其应用
EP2548957B1 (en) Method for producing kluyveromyces marxianus transformant
KR102303662B1 (ko) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
CN106119137B (zh) 一种改善丝状真菌蛋白分泌能力的方法
CN110499259B (zh) 一种解酯耶氏酵母yw100-1及其应用
CN114058632A (zh) 基因PnCOX11及其在调控三七皂苷合成中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210309

RJ01 Rejection of invention patent application after publication