CN112458087B - 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用 - Google Patents

基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用 Download PDF

Info

Publication number
CN112458087B
CN112458087B CN202011228116.2A CN202011228116A CN112458087B CN 112458087 B CN112458087 B CN 112458087B CN 202011228116 A CN202011228116 A CN 202011228116A CN 112458087 B CN112458087 B CN 112458087B
Authority
CN
China
Prior art keywords
periplaneta americana
gene
dsrna
hdac1
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011228116.2A
Other languages
English (en)
Other versions
CN112458087A (zh
Inventor
任充华
李胜
李靓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Zhongkang Biotechnology Co ltd
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202011228116.2A priority Critical patent/CN112458087B/zh
Publication of CN112458087A publication Critical patent/CN112458087A/zh
Application granted granted Critical
Publication of CN112458087B publication Critical patent/CN112458087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0337Genetically modified Arthropods
    • A01K67/0339Genetically modified insects, e.g. Drosophila melanogaster, medfly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01098Histone deacetylase (3.5.1.98), i.e. sirtuin deacetylase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/05Animals modified by non-integrating nucleic acids, e.g. antisense, RNAi, morpholino, episomal vector, for non-therapeutic purpose
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/054Animals comprising random inserted nucleic acids (transgenic) inducing loss of function
    • A01K2217/058Animals comprising random inserted nucleic acids (transgenic) inducing loss of function due to expression of inhibitory nucleic acid, e.g. siRNA, antisense
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/70Invertebrates
    • A01K2227/706Insects, e.g. Drosophila melanogaster, medfly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用,所述dsRNA为由SEQ ID NO.2所示的核苷酸序列和与反向互补的核苷酸组成的双链RNA。通过设计靶向沉默组蛋白去乙酰化酶基因HDAC1的dsRNA,从而阻断美洲大蠊的伤口修复和肢体再生,达到防治美洲大蠊的目的。

Description

基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因 及其应用
技术领域
本发明属于基因工程领域,具体涉及基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用。
背景技术
组织器官的再生一直是生物学研究中最令人着迷的现象之一,也被国际顶级期刊Science列入全世界最前沿的125个科学问题。强大的组织再生能力是生物在长期进化历程中获得的一种生存技能,在种群环境适应性方面具有重要的生物学和生态学意义。肢体再生现象在昆虫中较为常见,但不同昆虫的再生能力差异较大,昆虫再生研究领域的发展可为高等脊椎动物再生生物学的发展提供借鉴与参考。随着现代生物科学与技术的蓬勃发展,脊椎动物再生生物学研究取得了显著进步,然而再生能力更强的昆虫附肢再生机理研究远远滞后。
组蛋白翻译后修饰是指在组蛋白H2A、H2B、H3和H4的多个氨基酸上发生的包括甲基化/去甲基化、乙酰化/去乙酰化、磷酸化/去磷酸化和泛素化/去泛素化等修饰类型,在真核生物中非常保守。组蛋白修饰在多个昆虫类群中证明都发挥基因调控功能,但是组蛋白乙酰化、去乙酰化在昆虫再生中的研究还未见报道。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种基于美洲大蠊组蛋白乙酰化修饰酶HDAC1基因设计的dsRNA。
本发明还提出上述dsRNA的制备方法。
本发明还提出提供编码上述dsRNA的基因及含有该编码基因的表达载体、转基因细胞系或宿主菌。
本发明还提出上述dsRNA的应用。
根据本发明的第一方面实施方式的基于美洲大蠊组蛋白乙酰化修饰酶HDAC1基因设计的dsRNA,所述dsRNA为由SEQ ID NO.2所示的核苷酸序列和与反向互补的核苷酸组成的双链RNA。
根据本发明的第二方面实施方式的上述dsRNA的制备方法,包括以下步骤:
S1、将dsRNA靶向的序列SEQ ID No.3通过PCR扩增然后克隆到质粒载体中;
S2、基于重组质粒载体设计两端含有T7启动子的引物SEQ ID No.6和SEQ IDNo.7,进行PCR扩增;
S3、将步骤S2得到的PCR产物转录合成得到dsRNA。
根据本发明的一些实施方式,所述载体选自pTOPO。
根据本发明的一些实施方式,所述转录合成采用T7RiboMAX Express RNAiSystem。
根据本发明的第三方面实施方式的上述dsRNA的基因。
根据本发明的一些实施方式,所述基因的制备方法包括以下步骤:基于上述基因设计启动子引物对,进行PCR扩增即得。
根据本发明的一些实施方式,所述dsRNA的基因还包括含有上述基因的表达载体、表达盒、转基因细胞系或宿主菌。
根据本发明第四方面实施方式的上述dsRNA的应用,所述dsRNA在制备影响动物伤口修复和肢体再生药物中的应用。
根据本发明的一些实施方式,所述动物为昆虫。
根据本发明的一些实施方式,所述动物为蟑螂。
根据本发明的一些实施方式,所述动物为美洲大蠊。
根据本发明的一些实施方式,所述dsRNA在制备美洲大蠊防治药物中的应用。
一种防治美洲大蠊的方法,包括以下步骤:将上述dsRNA导入到美洲大蠊体内。
根据本发明的一些实施方式,所述导入操作通过显微注射的方式。
根据本发明的一些实施方式,所述导入操作在操作前对美洲大蠊进行低温麻醉,优选地,所述低温为4~10℃。
根据本发明的一些实施方式,所述导入操作是在蜕皮后的第二天注射一次。
根据本发明的一些实施方式,所述导入操作还可以通过饲喂的方式。
本发明的有益效果在于:本发明方案通过设计靶向沉默组蛋白去乙酰化酶基因HDAC1的dsRNA,从而阻断美洲大蠊的伤口修复和肢体再生,达到美洲大蠊防治的目的;本发明方案dsRNA特异性高,靶向于特定昆虫的特异基因,不会产生污染环境的有害物质,也为美洲大蠊的绿色防治提供了新的方法。同时,本发明方案也可用于其他动物中的伤口修复和肢体再生。
附图说明
图1为本发明实施例2的HDAC1基因RNAi效率检测图;
图2为本发明实施例3的HDAC1基因干扰导致美洲大蠊肢体再生异常表型图;
图3为本发明实施例3的HDAC1基因干扰后肢体再生能力统计结果图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,均可从商业途径得到的试剂和材料。
本发明实施例1为:一种基于美洲大蠊组蛋白乙酰化修饰酶HDAC1基因设计的dsRNA,该dsRNA为由SEQ ID NO.2所示的核苷酸序列和与反向互补的核苷酸组成的双链RNA。
其制备过程包括以下步骤:
(1)引物设计
根据已有的美洲大蠊基因组信息,通过与其他物种进行比对找到美洲大蠊HDAC1基因的完整序列(如SEQ ID No.1所示),利用dsRNA设计网站E-RNAi(https://www.dkfz.de/signaling/e-rnai3/),将整个靶向的美洲大蠊HDAC1基因开放阅读框序列复制粘贴到网站中,通过设计参数筛选得到最佳的dsRNA靶向序列,得到靶向沉默美洲大蠊HDAC1基因的dsRNA序列(由SEQ ID No.2所示)。根据序列SEQ ID No.3所示的核苷酸序列设计引物,正向引物HDAC1-FP:GTGCTATCCGCTTGTCCAAAGCTGCCTGTG(如SEQ ID No.4所示)和反向引物HDAC1-RP:ACTGTGCGAGGTCATGGAAAGTGCGTGGAG(如SEQ ID No.5所示)。
美洲大蠊HDAC1基因序列(SEQ ID No.1)具体如下:
ATGTCAACACAACCTCATAGTAAAAAGCGCGTGTGTTACTACTACGATAGTGACATTGGCAACTATTACTATGGACAGGGCCATCCTATGAAACCACACCGAATAAGAATGACCCACAATTTACTGCTTAACTATGGGCTTTACAGAAAAATGGAAATCTATCGTCCACACAAAGCCACAGCAGATGAGATGACGAAGTTCCACAGTGATGATTATGTTCGTTTCTTACGAAGTATCAGACCTGACAACATGTCAGAATACAACAAGCAGATGCAGAGGTTTAATGTGGGTGAAGATTGTCCAGTGTTCGATGGACTGTACGAGTTCTGCCAGCTGTCATCAGGAGGTTCAGTTGCTGCTGCTGTCAAGCTAAACAAGCAGGCATCTGAAATCTGCATCAATTGGGGTGGTGGCCTGCATCATGCCAAAAAGTCTGAAGCATCAGGTTTCTGCTATGTCAATGACATTGTACTTGGCATTTTGGAGCTCCTCAAGTACCATCAAAGAGTGCTGTACATCGACATTGATGTGCATCACGGAGATGGTGTCGAAGAAGCATTCTACACCACAGATAGAGTCATGACAGTTTCATTCCACAAGTATGGCGAATACTTCCCTGGAACTGGAGACCTCAGAGACATTGGAGCAGGCAAGGGAAAGTATTATGCAGTGAATATTCCCTTACGTGATGGAATGGATGATGAAAGCTATGAGTCCATCTTTGTTCCTATCATATCGAAAGTGATGGAAACATTCCAGCCAAGTGCTGTTGTGCTGCAGTGTGGTGCAGACTCCCTCACAGGAGATAGACTTGGTTGCTTCAATTTGACTGTGCGAGGTCATGGAAAGTGCGTGGAGTTTGTAAAGAAGTATGGCCTTCCATTCTTGATGGTCGGAGGTGGAGGTTACACAATTAGAAATGTATCCCGCTGCTGGACATACGAGACGTCTGTTGCACTTGGGACAGAAATAGCAAATGAGCTGCCATACAATGATTACTTCGAGTACTTTGGTCCAGATTTTAAACTGCACATTAGTCCTTCAAATATGGCAAACCAGAATACACCAGAGTACCTGGAAAAGATCAAAACAAGACTATTCGAGAACCTTCGTATGCTCCCACATGCACCAGGTGTACAGGTTCAAGCAATTCCTGAAGATGCAGTTAATGATTCAGACGATGATGAAGATAAAGCAAACCCTGATGAACGGTTAACACAGGCAGCTTTGGACAAGCGGATAGCACCTGATAATGAATATAGTGACTCAGAAGATGAGGGAGAACAGGGTCGCCGAGATCAGAGGTCATTCAAGGGTAGGAAACGGCCCAGACTGGACAAACTAGATACAAAACAAGAGAAGCAAGATGGAGATGAGAAAGTTAAGCTGGAGGACGTTTCCAAGCTGGACAGCAAAGGTAATGGAAGCTGTGAACAGCTTGATGCATGA
靶向沉默美洲大蠊HDAC1基因的dsRNA序列(由SEQ ID No.2所示),具体如下:
GUGCUAUCCGCUUGUCCAAAGCUGCCUGUGUUAACCGUUCAUCAGGGUUUGCUUUAUCUUCAUCAUCGUCUGAAUCAUUAACUGCAUCUUCAGGAAUUGCUUGAACCUGUACACCUGGUGCAUGUGGGAGCAUACGAAGGUUCUCGAAUAGUCUUGUUUUGAUCUUUUCCAGGUACUCUGGUGUAUUCUGGUUUGCCAUAUUUGAAGGACUAAUGUGCAGUUUAAAAUCUGGACCAAAGUACUCGAAGUAAUCAUUGUAUGGCAGCUCAUUUGCUAUUUCUGUCCCAAGUGCAACAGACGUCUCGUAUGUCCAGCAGCGGGAUACAUUUCUAAUUGUGUAACCUCCACCUCCGACCAUCAAGAAUGGAAGGCCAUACUUCUUUACAAACUCCACGCACUUUCCAUGACCUCGCACAGU
美洲大蠊HDAC1基因dsRNA靶向的序列(SEQ ID No.3)具体如下:
GTGCTATCCGCTTGTCCAAAGCTGCCTGTGTTAACCGTTCATCAGGGTTTGCTTTATCTTCATCATCGTCTGAATCATTAACTGCATCTTCAGGAATTGCTTGAACCTGTACACCTGGTGCATGTGGGAGCATACGAAGGTTCTCGAATAGTCTTGTTTTGATCTTTTCCAGGTACTCTGGTGTATTCTGGTTTGCCATATTTGAAGGACTAATGTGCAGTTTAAAATCTGGACCAAAGTACTCGAAGTAATCATTGTATGGCAGCTCATTTGCTATTTCTGTCCCAAGTGCAACAGACGTCTCGTATGTCCAGCAGCGGGATACATTTCTAATTGTGTAACCTCCACCTCCGACCATCAAGAATGGAAGGCCATACTTCTTTACAAACTCCACGCACTTTCCATGACCTCGCACAGT
(2)目的片段的克隆与载体的构建
使用TRIzol(LifeTechnologies)方法提取美洲大蠊的总RNA,然后使用oligodT引物对RNA进行反转录(PrimeScript II reverse transcriptase(Takara Bio,Shiga,Japan))合成第一条cDNA链。以cDNA为模板扩增得到含有靶向序列的DNA片段,并将其转入pTOPO载体中,测序验证序列是否存在碱基突变,挑选测序正确的重组质粒用于后续实验,载体命名pTOPO-HDAC1。
(3)重组载体的转化
将构建好的载体连接转化感受态细菌(DH5α),制作成重组菌株。筛选出阳性克隆,扩大培养后提取重组质粒。
(4)合成HDAC1 dsRNA(Promega T7RiboMAXTM Express RNAi System)
dsRNA模板的合成:在正反向引物的5’端加上T7RNA聚合酶启动子序列,分别为正向引物HDAC1-FP:GGATCCTAATACGACTCACTATAGGGTGCTATCCGCTTGTCCAAAG(如SEQ ID No.6所示),反向引物HDAC1-RP:GGATCCTAATACGACTCACTATAGGACTGTGCGAGGTCATGGAAAG(如SEQ IDNo.7所示)。将质粒稀释至10ng左右以其作为模板,进行PCR扩增。胶回收PCR产物,作为dsRNA合成的模板,按T7RiboMAX Express RNAi System试剂盒说明书操作。
反应体系(20μl)具体组成如下:
(a)轻轻混匀,37℃保温30min;
(b)70℃保温10分钟,缓慢冷却到室温;
(c)1:200稀释RNase溶液(1μl RNase溶液加入到199μl nucleasefree water);
(d)加1μl稀释后的RNase溶液和1μl RQ1RNase free DNase到20μl的反应体系内,37℃保温30分钟;
(e)加入0.1倍体积3M NaAc(醋酸钠),3倍体积异丙醇,混匀后冰上放置5分钟,4℃13000rpm/min离心10min,弃上清;
(f)除去上层液体,用500μl 75%乙醇(DEPC水配置)洗涤dsRNA沉淀,4℃13000rpm/min离心10min,弃上清;
(g)室温放置(约5-10min)晾干,根据产量,加入适量Nuclease-Free ddH2O溶解dsRNA;
(h)NanoDrop测定dsRNA浓度,电泳检测dsRNA质量;
(i)分装,稀释为相应浓度,放于-20℃保存,备用。
注意:如果有多管相同反应体系,在第(e)步后可以合并到一个1.5ml的离心管里,便于操作。
实施例2 dsRNA干扰效率的检测
挑选刚蜕皮的美洲大蠊进行饲养,分为实验组和对照组(注射无法靶向美洲大蠊任何内源基因的dsCK),在其蜕皮后的第二天将其低温麻醉后放在显微镜解剖台上,然后使用显微注射方法将靶向HDAC1基因的dsRNA按照一定的剂量注射到美洲大蠊的腹部,总共注射一次,在注射dsRNA后的48h将美洲大蠊麻醉并进行解剖,将其腿部组织解剖出来并提取RNA,使用RN28-EASYspin Plus组织/细胞RNA快速提取试剂盒对脂肪体进行处理,按照试剂盒说明书进行操作。利用Nanodrop One对RNA浓度进行测定,取2ug RNA进行反转录得到cDNA。
利用primer premier5引物设计软件设计qPCR引物。荧光定量PCR检测所用到引物HDAC1-qFP:CGAAGTAATCATTGTATGGCA(如SEQ ID No.8所示),HDAC1-qRP:ATGGTCGGAGGTGGAGG(如SEQ ID No.9所示),使用SYBR Green qPCR mix进行基因表达定量检测,通过对定量结果进行分析,检测靶基因干扰效果,结果如图1所示(图中“**”代表处理组和对照组之间相对表达量有显著差异(P<0.01,Student’s t-test))。从图中可以看出,dsRNA处理可以显著干扰靶基因HDAC1的表达。
实施例3 美洲大蠊断肢再生情况观察与统计
挑选刚蜕皮的美洲大蠊进行饲养,分为实验组和对照组(注射无法靶向美洲大蠊任何内源基因的dsCK),美洲大蠊导入dsRNA的方法同实施例2相同,对不同处理下的美洲大蠊断肢再生情况进行比较,注射后持续观察dsRNA处理对美洲大蠊肢体再生的影响(即在使基因表达量降低的情况下研究HDAC1基因对美洲大蠊伤口修复和肢体再生的影响)。观察不同处理组美洲大蠊的肢体再生异同,并进行统计。实验结果如图2所示,从图中可以看出注射对照组的美洲大蠊可以正常再生;采用HDAC1基因干扰的实验组美洲大蠊出现再生障碍,只能长出很小比例的肢体组织。图3为实验组和对照组再生能力(图中“****”代表处理组和对照组之间相对表达量有显著差异(P<0.0001,Student’s t-test)),从图中可以看出,实验组和对照组之间的统计结果间存在显著差异,说明组蛋白去乙酰转移酶HDAC1蛋白可以在美洲大蠊伤口修复和肢体再生中发挥重要作用。
综上所述,通过靶向沉默HDAC1基因,即可阻断美洲大蠊等动物的伤口修复和肢体再生,达到防治美洲大蠊等动物的目的。
上述低温是在4~10℃。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
序列表
<110> 华南师范大学
<120> 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1449
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtcaacac aacctcatag taaaaagcgc gtgtgttact actacgatag tgacattggc 60
aactattact atggacaggg ccatcctatg aaaccacacc gaataagaat gacccacaat 120
ttactgctta actatgggct ttacagaaaa atggaaatct atcgtccaca caaagccaca 180
gcagatgaga tgacgaagtt ccacagtgat gattatgttc gtttcttacg aagtatcaga 240
cctgacaaca tgtcagaata caacaagcag atgcagaggt ttaatgtggg tgaagattgt 300
ccagtgttcg atggactgta cgagttctgc cagctgtcat caggaggttc agttgctgct 360
gctgtcaagc taaacaagca ggcatctgaa atctgcatca attggggtgg tggcctgcat 420
catgccaaaa agtctgaagc atcaggtttc tgctatgtca atgacattgt acttggcatt 480
ttggagctcc tcaagtacca tcaaagagtg ctgtacatcg acattgatgt gcatcacgga 540
gatggtgtcg aagaagcatt ctacaccaca gatagagtca tgacagtttc attccacaag 600
tatggcgaat acttccctgg aactggagac ctcagagaca ttggagcagg caagggaaag 660
tattatgcag tgaatattcc cttacgtgat ggaatggatg atgaaagcta tgagtccatc 720
tttgttccta tcatatcgaa agtgatggaa acattccagc caagtgctgt tgtgctgcag 780
tgtggtgcag actccctcac aggagataga cttggttgct tcaatttgac tgtgcgaggt 840
catggaaagt gcgtggagtt tgtaaagaag tatggccttc cattcttgat ggtcggaggt 900
ggaggttaca caattagaaa tgtatcccgc tgctggacat acgagacgtc tgttgcactt 960
gggacagaaa tagcaaatga gctgccatac aatgattact tcgagtactt tggtccagat 1020
tttaaactgc acattagtcc ttcaaatatg gcaaaccaga atacaccaga gtacctggaa 1080
aagatcaaaa caagactatt cgagaacctt cgtatgctcc cacatgcacc aggtgtacag 1140
gttcaagcaa ttcctgaaga tgcagttaat gattcagacg atgatgaaga taaagcaaac 1200
cctgatgaac ggttaacaca ggcagctttg gacaagcgga tagcacctga taatgaatat 1260
agtgactcag aagatgaggg agaacagggt cgccgagatc agaggtcatt caagggtagg 1320
aaacggccca gactggacaa actagataca aaacaagaga agcaagatgg agatgagaaa 1380
gttaagctgg aggacgtttc caagctggac agcaaaggta atggaagctg tgaacagctt 1440
gatgcatga 1449
<210> 2
<211> 418
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
gugcuauccg cuuguccaaa gcugccugug uuaaccguuc aucaggguuu gcuuuaucuu 60
caucaucguc ugaaucauua acugcaucuu caggaauugc uugaaccugu acaccuggug 120
caugugggag cauacgaagg uucucgaaua gucuuguuuu gaucuuuucc agguacucug 180
guguauucug guuugccaua uuugaaggac uaaugugcag uuuaaaaucu ggaccaaagu 240
acucgaagua aucauuguau ggcagcucau uugcuauuuc ugucccaagu gcaacagacg 300
ucucguaugu ccagcagcgg gauacauuuc uaauugugua accuccaccu ccgaccauca 360
agaauggaag gccauacuuc uuuacaaacu ccacgcacuu uccaugaccu cgcacagu 418
<210> 3
<211> 418
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
gtgctatccg cttgtccaaa gctgcctgtg ttaaccgttc atcagggttt gctttatctt 60
catcatcgtc tgaatcatta actgcatctt caggaattgc ttgaacctgt acacctggtg 120
catgtgggag catacgaagg ttctcgaata gtcttgtttt gatcttttcc aggtactctg 180
gtgtattctg gtttgccata tttgaaggac taatgtgcag tttaaaatct ggaccaaagt 240
actcgaagta atcattgtat ggcagctcat ttgctatttc tgtcccaagt gcaacagacg 300
tctcgtatgt ccagcagcgg gatacatttc taattgtgta acctccacct ccgaccatca 360
agaatggaag gccatacttc tttacaaact ccacgcactt tccatgacct cgcacagt 418
<210> 6
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gtgctatccg cttgtccaaa gctgcctgtg 30
<210> 7
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
actgtgcgag gtcatggaaa gtgcgtggag 30
<210> 4
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ggatcctaat acgactcact atagggtgct atccgcttgt ccaaag 46
<210> 5
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ggatcctaat acgactcact ataggactgt gcgaggtcat ggaaag 46
<210> 8
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
cgaagtaatc attgtatggc a 21
<210> 9
<211> 17
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atggtcggag gtggagg 17

Claims (3)

1.一种防治美洲大蠊的方法,其特征在于,包括以下步骤:将dsRNA导入到美洲大蠊体内,所述dsRNA为由SEQ ID NO.2所示的核苷酸序列和与其反向互补的核苷酸组成的双链RNA。
2.根据权利要求1所述的防控美洲大蠊的方法,其特征在于:所述导入操作通过注射的方式。
3.根据权利要求1所述的防控美洲大蠊的方法,其特征在于:所述导入操作是在蜕皮后的第二天注射一次。
CN202011228116.2A 2020-11-06 2020-11-06 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用 Active CN112458087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011228116.2A CN112458087B (zh) 2020-11-06 2020-11-06 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011228116.2A CN112458087B (zh) 2020-11-06 2020-11-06 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用

Publications (2)

Publication Number Publication Date
CN112458087A CN112458087A (zh) 2021-03-09
CN112458087B true CN112458087B (zh) 2021-06-08

Family

ID=74825873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011228116.2A Active CN112458087B (zh) 2020-11-06 2020-11-06 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用

Country Status (1)

Country Link
CN (1) CN112458087B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117143870B (zh) * 2023-06-25 2024-03-12 华南师范大学 bowl基因在肢体再生及害虫防治中的应用
CN116904461B (zh) * 2023-06-25 2024-01-23 华南师范大学 zfh-2基因在肢体再生及害虫防治中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879975B (zh) * 2016-09-30 2022-07-26 中国科学院上海药物研究所 组蛋白去乙酰化酶抑制剂及其应用
EP3550960A4 (en) * 2016-12-06 2020-08-12 Pebble Labs USA Inc. SYSTEM AND METHODS FOR BIOLOGICAL CONTROL OF PLANT PATHOGENS
CN108893472B (zh) * 2018-07-16 2019-07-12 华南师范大学 一种dsRNA及其在防治德国小蠊上的应用
CN110468131B (zh) * 2019-08-13 2020-10-16 华南师范大学 基于美洲大蠊Orco基因设计的dsRNA、编码基因及其制备方法与应用
CN110551720B (zh) * 2019-08-13 2020-11-10 梅州市华师昆虫发育生物学与应用技术重点实验室广梅园研发中心 基于美洲大蠊Dsx基因设计的dsRNA、其制备方法、编码基因及应用

Also Published As

Publication number Publication date
CN112458087A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN106701830B (zh) 一种敲除猪胚胎p66shc基因的方法
CN112458087B (zh) 基于美洲大蠊HDAC1基因设计的dsRNA、其制备方法、编码基因及其应用
Nosaka et al. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice
US9932563B2 (en) Compositions and methods for inhibiting gene expressions
He et al. Identification of microRNAs involved in cold adaptation of Litopenaeus vannamei by high-throughput sequencing
CN112662690B (zh) 飞蝗Rab5基因及其dsRNA在飞蝗防治中的应用
BR102015010313A2 (pt) Moleculas de ácido nucleico dre4 que conferem resistência a pragas coleópteras
CN110862990B (zh) 与德国小蠊表皮发育相关的Cad96ca基因、该基因的dsRNA及其制备方法与应用
CN114921467A (zh) 基于桃蚜效应因子MpC002基因的dsRNA及其在防治桃蚜中的应用
CN110484535B (zh) 对蚜虫高效致死的RNAi靶标基因及其应用
Guo et al. Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control
CN111944824A (zh) 美国白蛾速激肽受体基因及dsRNA和防治美国白蛾中应用
Wang et al. Chitin deacetylase 1 and 2 are indispensable for larval–pupal and pupal–adult molts in Heortia vitessoides (Lepidoptera: Crambidae)
Zhang et al. Identification and expression of HDAC4 targeted by miR-1 and miR-133a during early development in Paralichthys olivaceus
CN109402133B (zh) 舞毒蛾FTZ-F1基因、其编码蛋白及其dsRNA在害虫防治中的应用
CN112574989A (zh) 一种抑制大口黑鲈弹状病毒复制的shRNA及其应用
Deng et al. A Dicer2 from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus
CN112662689B (zh) 飞蝗Rab11A基因及其dsRNA在飞蝗防治中的应用
Liang et al. Silencing of the immune gene BmPGRP‐L4 in the midgut affects the growth of silkworm (Bombyx mori) larvae
CN114591964A (zh) 茄二十八星瓢虫致死基因HvSrp54k及其应用
CN111394371B (zh) 飞蝗V-ATPase-V1结构域基因及其dsRNA在害虫防治中的应用
CN111440810B (zh) 飞蝗V-ATPase-V0结构域基因及其dsRNA在害虫防治中的应用
CN108925783B (zh) 烟粉虱manf基因或其表达的蛋白作为靶点在制备防治烟粉虱的药物中的应用
JP2022522823A (ja) 天然miRNAのゲノム編集による標的遺伝子発現の抑制
CN116904461B (zh) zfh-2基因在肢体再生及害虫防治中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230117

Address after: 528137 Fanhu Lehu Roadside (formerly Hongxing Brick Factory), Leping Town, Sanshui District, Foshan City, Guangdong Province

Patentee after: FOSHAN GUANGMUXING FEED CO.,LTD.

Address before: Institute of Insect Science and technology, School of life sciences, South China Normal University, 55 Zhongshan Avenue West, Guangzhou, Guangdong, 510631

Patentee before: SOUTH CHINA NORMAL University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230506

Address after: 523121 Shop 3, Former Red Star Brick Factory, Leping Town, Sanshui District, Foshan City, Guangdong Province (Residence Application)

Patentee after: Guangdong Zhongkang Biotechnology Co.,Ltd.

Address before: 528137 Fanhu Lehu Roadside (formerly Hongxing Brick Factory), Leping Town, Sanshui District, Foshan City, Guangdong Province

Patentee before: FOSHAN GUANGMUXING FEED CO.,LTD.

TR01 Transfer of patent right