CN112430261B - Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用 - Google Patents

Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用 Download PDF

Info

Publication number
CN112430261B
CN112430261B CN202011327826.0A CN202011327826A CN112430261B CN 112430261 B CN112430261 B CN 112430261B CN 202011327826 A CN202011327826 A CN 202011327826A CN 112430261 B CN112430261 B CN 112430261B
Authority
CN
China
Prior art keywords
wrky32
yft1
tomato
expression
transcription factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011327826.0A
Other languages
English (en)
Other versions
CN112430261A (zh
Inventor
赵凌侠
黎宇航
赵伟华
李文贞
温腾健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202011327826.0A priority Critical patent/CN112430261B/zh
Publication of CN112430261A publication Critical patent/CN112430261A/zh
Application granted granted Critical
Publication of CN112430261B publication Critical patent/CN112430261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8249Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving ethylene biosynthesis, senescence or fruit development, e.g. modified tomato ripening, cut flower shelf-life
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了WRKY32调控YFT1表达影响番茄果色及其在番茄品质改良中应用;具体涉及WRKY32通过结合于YFT1启动子区域W‑box(TTGAC,‑784bp~‑780bp)和W‑box Like(GTCTA,‑1306bp~‑1302bp)基序(定义YFT1起始密码子ATG上游第一个核苷酸为‑1bp),调控YFT1转录表达。通过RNAi技术创制WRKY32下调表达番茄(WRKY32‑RNAi),分析WRKY32‑RNAi番茄果实形态和化学表型,为果实乙烯释放和信号转导受抑、类胡萝卜素含量下降、有色体发育和果实软化速度延迟提供了坚实的遗传学证据。

Description

WRKY32调控YFT1表达影响番茄果色及其在番茄品质改良中 应用
技术领域
本发明属于分子生物学和遗传学领域,涉及一种WRKY32调控YFT1表达影响番茄果色及其在番茄品质改良中应用;特别涉及一种番茄转录因子WRKY32通过调控乙烯信号核心组分基因YFT1/EIN2(YELLOW FRUITED TOMATO 1/ETHYLENE INSENSITIVE 2)表达而控制番茄果色及其在番茄品质改良中应用。
背景技术
番茄(Solanum lycopersicum,2n=24)属于茄科(Solanaceae)番茄属(Lycopersicon)植物,是世界上第二大蔬菜作物。番茄以其基因组小、生长周期短、易于遗传转化等优点,还是浆果研究的重要模式植物。果色不仅关系到番茄的商品外观,还与营养品质密切相关,因此果色是番茄品质性状的重要方面。市面上常见的番茄以红果和黄果为主,它们的果色形成与类胡萝卜素积累有关。而番茄类胡萝卜素生物合成途径中的每一步骤从分子水平(基因)和蛋白水平(催化酶)均已明确,对类胡萝卜素合成调控的分子机制揭示还鲜见报道。
番茄是一种典型的呼吸跃变型浆果,是具有呼吸高峰型的果实,乙烯在番茄果实成熟过程起关键作用。乙烯合成关键基因ACS(ACC SYNTHASE)和ACO(ACC OXIDASE)表达下调,番茄果实类胡萝卜素累积减少,番茄呈现橙色表型。乙烯信号转导被阻断,番茄果实成熟也将受到影响。乙烯受体基因LeETR4(ETHYLENE RESPONSE 4)、LeETR6(ETHYLENERESPONSE 6)和LeCTR1(CONSTITUTIVE TRIPLE RESPONSE 1)表达下调,可延长番茄果实成熟时间。乙烯不敏感番茄突变体Nr(Never ripe)表现难以成熟表型,番茄红素累积下降。乙烯信号途径核心转录因子LeEIL(ETHYLENE INSENSITIVE 3-like)表达下调,果实成熟延迟,呈现黄果表型。
EIN2(ETHYLENE INSENSITIVE 2)是乙烯信号途径核心组分,与乙烯受体和CTR1(CONSTITUTIVE TRIPLE RESPONSE1)互作,其羧基端(CEND)在乙烯存在情况下,可从EIN2上解离,在胞质中调控EIN3-BINDING F-BOX 1/2(EBF1/2)表达,决定后者的入核量,或入核后与EIN3/EIL1形成复合体,调控乙烯应答反应。
若EIN2丧失功能,植物则丧失对乙烯应答。拟南芥ein2突变体对乙烯不敏感,苗期“三重”反应消失。EIN2是多种植物激素信号途径的交叉点;EIN2在盐胁迫、氧化应激及其他生物或非生物胁迫中还扮演着重要角色。NAC转录因子家族的ORE1(oresara 1),具有促进拟南芥叶片细胞衰老和死亡的作用,EIN2正调控ORE1表达促进细胞衰老。拟南芥ein2突变体的细菌性青枯病发病速度显著下降。EIN2还具有限制植物细胞扩增的作用,拟南芥ein2突变体的株高、叶面积、果荚长度显著增大。特别是,EIN2可以调控具有呼吸跃变高峰的果实成熟,已有研究证明番茄中EIN2的同源基因YFT1通过调控乙烯合成、乙烯信号转导和类胡萝卜素合成、有色体发育,调控番茄果色形成(Zhao,W.H.,et al.Yellow-fruitedphenotype is caused by 573bp insertion at 5'UTR of YFT1 allele in yft1 mutanttomato.Plant Science,2020,300:110637.)。而鉴于EIN2的重要地位,对其上游调控的研究却鲜见报道,因此,筛选调控YFT1表达的上游基因,分析其通过YFT1介导调控番茄果实成熟发育和果色形成机制,对于构建番茄果色形成调控网络以及对番茄果色形成的精准调控和遗传改良都将具有重要意义。
发明内容
本发明的目的在于提供一种WRKY32调控YFT1表达影响番茄果色及其在番茄品质改良中应用。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种WRKY家族转录因子WRKY32,其特异地结合于YFT1上游启动子的W-box(TTGAC,-784bp~-780bp)和W-box Like(GTCTA,-1306bp~-1302bp)基序,调控YFT1表达,所述的W-box和W-box Like基序及其侧翼序列分别如SEQ ID NO:1和SEQ ID NO:2所示。
本发明提供了一种WRKY家族转录因子WRKY32,其可正调控YFT1的转录表达,所述WRKY32的氨基酸序列如SEQ ID NO:3所示。
本发明提供了一种WRKY家族转录因子WRKY32,其可正调控YFT1的转录表达,所述WRKY32的cDNA序列如SEQ ID NO:4所示。
本发明提供了一种下调转录因子WRKY32表达的RNA干扰序列,其可以下调WRKY32的转录表达,所述干扰序列如SEQ ID NO:5所示。所述RNA干扰序列用于构建WRKY32的RNAi载体。
本发明提供了一种WRKY家族的转录因子WRKY32在作为YFT1表达的调控剂中的用途。
本发明提供了一种转录因子WRKY32在调控番茄果色中的应用。其降低番茄果实中类胡萝素含量,改变该途径相关基因表达方式,而改变果实颜色。
本发明提供了一种转录因子WRKY32在调控番茄果实成熟发育中的应用。其反馈调控番茄果实乙烯合成及乙烯合成途径关键基因表达,从而影响番茄果实成熟期的乙烯释放。
本发明提供了一种转录因子WRKY32,其打乱了番茄乙烯信号转导,并通过调控该途径相关表达基因实现,从而可以调控番茄果实成熟进程。
本发明提供了一种转录因子WRKY32在番茄遗传改良和育种中的应用。包括:果实乙烯释放和信号转导受抑、类胡萝卜素含量下降、有色体发育、果实软化速度延迟等。
本发明还提供了一种转录因子WRKY32在调控乙烯信号核心组分YFT1/EIN2(YELLOW FRUITED TOMATO 1/ETHYLENE INSENSITIVE 2)表达而控制番茄果色形成的分子机制研究体系中的应用。
本发明涉及黄果晚熟突变体yft1(yellow fruited tomato 1)和野生型红果cv.M82番茄,均由以色列希伯来大学Dani Zamir教授提供(http://zamir.sgn.cornell.edu/mutateds)。yft1番茄突变体(n3122)系利用快中子(60Coγ-射线)轰击番茄cv.M82种子而获得。WRKY32-RNAi为由RNAi技术下调cv.M82中WRKY32表达水平获得的转基因番茄。本发明基于TEA数据库(http://tea.solgenomics.net/),将相似系数阈值设定为0.7,共有2386个基因与YFT1(Solyc09g007870)表达模式相似;其中包含85个转录了因子。提交YFT1启动子上游3000bp序列(pYFT1)给PLACE(https://www.dna.affrc.go.jp/PLACE/?action=newplace),预测pYFT1顺式调控元件,共检测到23个转录因子预测在pYFT1有可能的靶向结合位点。
利用双分子荧光素酶活实验(dual luciferase assay)筛选23个候选转录因子,基于与pYFT1结合对其活性的影响,发现:Solyc07g005650编码的转录因子WRKY32可以提高pYFT1强度5.42倍(图1)。为确定WRKY32在YFT1启动子(pYFT1)结合位点,将pYFT1进行三轮分割,第一轮将pYFT1分为12段,每段长约300bp,每段重叠50bp;通过酵母单杂交验证与WRKY32互作的ΔpYFT1片段。根据第一轮实验结果,继续对目的ΔpYFT1片段进行第二、三轮分割,并通过酵母单杂交实验验证,将WRKY32与pYFT1的结合位点缩小至p7-3-2(-1319bp~-1270bp)和p9-3-3(-808bp~-767bp)(以YFT1起始密码子ATG上游第一个核苷酸为-1bp)。2个片段分别含有W-box like(GTCTA,-1306bp~-1302bp)和W-box(TTGAC,-784bp~-780bp)功能区域,可能与WRKY32结合。突变p7(-1549bp~-1250bp)和p9(-1068bp~-767bp)区域的W-box like和W-box基序,即突变成Δp7(GTCTA→cTCTA)和Δp9(TTGAC→TTtAa);通过酵母单杂交和EMSA(electrophoretic mobility shift assay)实验验证了WRKY32通过与pYFT1的W-box like(GTCTA,-1306bp~-1302bp)和W-box(TTGAC,-784bp~-780bp)结合(图2和图3)。构建WRKY32的RNAi载体,转化cv.M82获得WRKY32-RNAi转基因番茄。RT-qPCR分析WRKY32和YFT1表达水平发现,WRKY32在cv.M82和yft1突变体果实中表达水平无差异;而WRKY32-RNAi转基因株系中YFT1表达水平显著下调。即WRKY32位于YFT1上游调控其表达(图4)。WRKY32-RNAi转基因番茄果实的成熟延迟,开花后54天(54days past anthesis,54dpa),果实呈现黄色(图5)。观察有色体超微结构,发现WRKY32-RNAi有色体发育相比cv.M82延迟,质体小球数量也显著下降(图7)。类胡萝卜素途径关键基因PSY1(PHYTOENESYNTHASE 1)、CRTISO(CAROTENOID ISOMERASE)和CYCB(CHROMOPLAST-SPECIFIC LYCOPENEΒ-CYCLASE)在WRKY32-RNAi中表达水平相比cv.M82的下调(图6)。54dpa,WRKY32-RNAi中番茄红素和β-类胡萝卜素积累量也显著低于cv.M82(表5)。分析WRKY32对乙烯生物学行为的影响发现,乙烯合成关键基因ACS2/4(ACC SYNTHESIS 2/4)和ACO1(ACC OXIDASE)和乙烯信号途径基因NR(NEVER RIPE)、ETR4(ETHYLENE RECEPTOR 4)、CTR1(CONSTITUTIVE TRIPLERESPONSE 1)、EIL3/EIL4(ETHYLENE INSENSITIVE 3-LIKE 3/4)、AP2a(APETALA 2a)、ERF4/6(ETHYLENE RESPONSIVE FACTOR 4/6)在WRKY32-RNAi中表达水平相比cv.M82呈现下降趋势(图9和图10),且果实乙烯释放高峰也相对延迟(图8)。由此可以得出结论,WRKY32可通过调控YFT1表达,影响果实成熟发育和果色形成。在生产实践中,可以根据此研究结果调控番茄果色形成和进行品质改良。
与现有技术相比,本发明具有如下有益效果:
1.首次揭示了调控番茄YFT1基因表达的转录因子WRKY32;
2.基于研究成果,可能更加精准地对番茄果实成熟调控和对番茄品质特别是果色形成的改良。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1双分子荧光素酶实验筛选YFT1候选转录因子;
图2 WRKY32在YFT1启动子上结合区段分析;
图3 WRKY32在YFT1启动子p7和p9区域结合位点的确认;
图4不同遗传背景番茄材料WRKY32和YFT1表达;
图5 cv.M82、yft1、WRKY32-RNAi番茄在果实不同发育时期的果色变化(标尺:1cm);
图6 PSY1、CRTISO、CYCB和LCYE在cv.M82、yft1和WRKY32-RNAi中的表达;
图7有色体超微结构观察;
图8 cv.M82、yft1、WRKY32-RNAi在不同发育时期果实乙烯释放差异;
图9基因ACO1、ACS2/4在cv.M82、yft1和WRKY32-RNAi果实不同发育时期的表达;
图10乙烯信号途径关键基因在cv.M82、yft1和WRKY32-RNAi中的表达分析。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1:YFT1高效转录因子筛选
为了筛选调控YFT1表达的转录因子,本发明基于Tomato Expression Atlas(http://tea.solgenomics.net/)分析,选取与YFT1(Solyc09g007870)表达模式相似的转录因子。同时,提交YFT1 ATG上游3000bp序列(pYFT1,SEQ ID NO:6)到PLACE网站(https://www.dna.affrc.go.jp/PLACE/?action=newplace),预测pYFT1顺式调控元件(表1),选取以上转录因子中在pYFT1中有结合位点的,作为候选转录因子。并利用双分子荧光素酶(dual luciferase assay)实验筛选,从中选取YFT1的高效转录因子。具体步骤如下:
1.载体构建
基于YFT1基因上游序列,设计并合成引物[pYFT1-F:5'-tccatcgatatattgatacgatatc-3'(SEQ ID NO:7),pYFT1-R:5'-tatttgatttaaatggttagcaagc-3'(SEQ ID NO:8)],PCR扩增pYFT1,并将其构建于pGreen II0800-LUC载体(上海交通大学杨洪全教授实验室惠赠)Sal I和Nco I两个酶切位点之间,Firefly Luciferase(LUC)上游,形成pYFT1::LUC。
参考TEA(http://tea.solgenomics.net/)数据库,选取番茄果实中与YFT1(Solyc09g007870)表达模式相似系数高于0.70的转录因子(TFs)。在PLACE网站(https://www.dna.affrc.go.jp/PLACE/?action=newplace)预测、选择pYFT1中有结合基序的TFs,共获得23个候选转录因子(表2)。克隆候选转录因子至pHB载体(上海交通大学杨洪全教授实验室惠赠)酶切位点BamH I和Xba I之间,形成转录因子过表达载体(pHB-TF)。
表1 YFT1启动子序列中的主要顺式作用元件*
Figure BDA0002794852100000061
*YFT1 ATG上游第一个核苷酸为-1bp。
表2 YFT1启动子序列中有结合位点的23个候选转录因子
Figure BDA0002794852100000062
Figure BDA0002794852100000071
2.瞬时转化烟草叶片
pHB-TF和pYFT1::LUC转化农杆菌GV3101感受态,用于瞬时转化烟草叶片。1/2MS0稀释所有菌液OD600至0.6,按体积比1:1混合pHB-TF和pYFT1::LUC农杆菌GV3101,pHB和pYFT1::LUC混合菌为对照。用1mL去掉针头注射器吸取混合菌液,并缓慢注射烟草叶片;完成后,暗处培养24h,然后再置于光下培养24h;
3.Luciferase酶活测定
打孔器取样,在液氮的作用下研磨成粉,测定样品Luciferase酶活。测定选用Dual-Luciferase Reporter Assay System(Promega生物技术有限公司,威斯康辛州,美国)测定。转移100mg样品粉末至1.5mL预冷离心管中,400μL 1×PLB(passive lysisbuffer)裂解样品,充分震荡后,9600g离心30sec;取8μL上层清液至1.5mL离心管,迅速加入40μL LAR II(luciferase assay reagent II),混匀,测定数值1;再加入40μL Stop﹠Globuffer,轻轻混匀,测定数值2,数值为前后两次测定值的比值。
结果显示,Solyc07g005650(WRKY32)编码的转录因子WRKY32可以提高pYFT1强度5.42倍(图1)。
实施例2:WRKY32在pYFT1结合位点确定
为了确定WRKY32在pYFT1的结合位点,将pYFT1(YFT1 ATG上游3000bp序列,其上游第一个核苷酸定义为-1bp)进行三轮分割,并通过酵母单杂交和EMSA(electrophoreticmobility shift assay)实验验证。具体实验步骤如下:
1.酵母单杂载体构建
设计特异引物,克隆WRKY32的CDS序列(WRKY32-EcoRI-F:5′-gattatgcctctcccgaattcatggatgacgaaaacgagagc-3′,SEQ ID NO:21;WRKY32-XhoI-R:5′-agaagtccaaagcttctcgagttagcaaggcttaatttcaaatc-3′,SEQ ID NO:22)至载体pB42AD载体(本实验室保存)EcoRI和XhoI两个酶切位点之间,形成pB42AD-WRKY32。pYFT1通过PCR的方法先后进行三轮分割,其中第一轮,将pYFT1(SEQ ID NO:5)分割为约300bp的12段序列(表3),分别克隆至pLacZi载体(本实验室保存)EcoR I和Xho I酶切位点之间,形成pLacZi-ΔpYFT1。第二轮和第三轮依据第一轮结果,将目的DNA片段继续分割至120bp和50bp,同样克隆至pLacZi载体(表2)。
2.酵母单杂交
将构建的pB42AD-TF和pLacZi-ΔpYFT1重组质粒共转酵母感受态EGY48a(本实验室制备和保存),无菌玻璃涂布棒涂抹菌液至SD(-Leu/-Ura)培养基,28℃倒置培养48h;选择生长状态良好且大小一致的菌斑,60μL无菌ddH2O重悬,滴加6μL菌液至SD(-Leu/-Ura)+X-gal(20mg/mL)定性培养基,28℃倒置培养72h,观察菌斑颜色变化(图2)。
表3 YFT1启动子序列三轮分段*
Figure BDA0002794852100000081
Figure BDA0002794852100000091
*定义YFT1 ATG上游第一个核苷酸为-1bp。
结果显示,WRKY32与p7-3-2(-1319bp~-1270bp)和p9-3-3(-808bp~767bp)互作。
因p7-3-2和p9-3-3区域内分布包含有W-box like(GTCTA,-1306bp~-1302bp)和W-box(TTGAC,-784bp~-780bp),预测可与WRKY转录因子结合。为了证实这一推测,将将p7(-1549bp~-1250bp)和p9(-1068bp~-767bp)中的W-box like和W-box基序,突变成Δp7(GTCTA→cTCTA,SEQ ID NO:47)和Δp9(TTGAC→TttAa,SEQ ID NO:48)。并利用酵母单杂交验证(图3)。EMSA实验检测探针p7(5′-gaaggtataaaaaagaaatggaaaaccctaatgGTCTAcacacccacttgggta-3′,SEQ ID NO:49)和p9探针(5′-gtgttttaattatttttttttgggcaagTTGACtaattttgaaatatatgaataatgctg-3′,SEQ ID NO:50)结合,而不能与含突变W-box like(GTCTA→cTCTA)和W-box(TTGAC→TTtAa)探针结合(图3)。
实施例3:WRKY32调控番茄果实成熟发育和果色形成
为了分析WRKY32对番茄果色形成影响,构建WRKY32的RNAi载体(WRKY32-RNAi),转化农杆菌EHA105感受态(本实验室制备和保存),用于遗传转化番茄cv.M82。提取开花后35天(35days past anthesis,35dpa)、47dpa和54dpa番茄果实,提取总RNA,反转录为cDNA,RT-qPCR分析WRKY32和YFT1表达在cv.M82、yft1突变体和WRKY32-RNAi变化;并观察WRKY32-RNAi在35dpa、47dpa和54dpa果色变化。具体步骤如下:
设计特异引物(WRKY32-RNAi-F:5′-gattcagagttttctccctcttat-3′,SEQ ID NO:51;WRKY32-RNAi-R:5′-gcgagttggtctctttagaactg-3′,SEQ ID NO:52)扩增WRKY32特异性片段345bp,克隆至RNAi载体pHELLSGATE 12(本实验室保存),形成WRKY32-RNAi。WRKY32-RNAi转入农杆菌EHA105,用于转化cv.M82番茄。提取WRKY32-RNAi在35dpa、47dpa和54dpa果实总RNA,反转录为cDNA,RT-qPCR分析WRKY32(WRKY32-qPCR-F:5′-cctccgtacacaacgacgaa-3′,SEQ ID NO:53;WRKY32-qPCR-R:5′-tccgagaaaccaaacgaggg-3′,SEQ ID NO:54)和YFT1(YFT1-F:5′-actgcggagaaggttgtg-3′,SEQ ID NO:55;YFT1-R:5′-atggctcgtcggagaatg-3′,SEQ ID NO:56)表达水平,以cv.M82和yft1为对照。结果发现,WRKY32在cv.M82和yft1突变体中的表达水平无显著差异;而YFT1在WRKY32-RNAi表达却显著下调(图4)。这暗示WRKY32位于YFT1上游,调控YFT1表达;而YFT1不影响WRKY32表达。
观察番茄果色变化,发现WRKY32-RNAi转基因番茄成熟延迟,果色形成受到影响。cv.M82在54dpa,果实达到完熟期;而WRKY32-RNAi果色却与cv.M82在47dpa表型类似(图5)。这说明WRKY32通过调控YFT1表达,影响番茄果实发育和果色形成。
实施例4:WRKY32对类胡萝卜素合成和有色体发育影响
为了分析WRKY32对番茄类胡萝卜素累积的影响,提取cv.M82、yft1和WRKY32-RNAi番茄果实在35dpa、47dpa和54dpa的类胡萝卜素,测定番茄红素、β-胡萝卜素、α-胡萝卜素和叶黄素含量;并观察果实有色体超微结构和质体小球数量差异。具体实验操作如下:
1.类胡萝卜素途径关键基因表达
提取cv.M82、yft1和WRKY32-RNAi在35dpa、47dpa和54dpa果实RNA,反转录为cDNA,作为定量模板,设计特异性引物(表4),利用Light Cycle 96型实时荧光定量PCR仪(Roche有限公司,瑞士)分析乙烯合成关键基因水平,结果发现,PSY1(PHYTOENE SYNTHASE 1)、CRTISO(CAROTENOID ISOMERASE)和CYCB(CHROMOPLAST-SPECIFIC LYCOPENEΒ-CYCLASE)除35dpa外,在cv.M82果实中表达水平均高于yft1和WRKY32-RNAi。而LCYE在WRKY32-RNAi的表达水平显著高于cv.M82,而显著低于yft1(图6)。这些结果证明WRKY32下调表达后,类胡萝卜素合成受影响。
表4类胡萝卜素关键基因引物
Figure BDA0002794852100000111
2.类胡萝卜素含量测定
1)类胡萝卜素提取
(1)选取cv.M82、yft1和WRKY32-RNAi在35dpa、47dpa、54dpa的果实外果皮,避光,在液氮作用下,研钵迅速研磨成粉末状;
(2)称取约500mg粉末至15mL离心管,记录粉末加入质量;加1.5mL甲醇,加一定体积60%KOH(W/V),使其终浓度变为6%(W/V),颠倒混匀,60℃水浴加热30min;
(3)稍冷,加入1.5mL Tris缓冲液,颠倒混匀,4℃冰箱静置10min;
(4)加入4mL氯仿,颠倒混匀,冰上静置10min,4℃4000rpm离心10min;
(5)干净5mL注射器,吸取下层有机相至新15mL离心管;剩余水相用4mL氯仿,重复抽提,继续加入对应15mL离心管,提取液用氯仿补足至10mL;
(6)转移1.5mL提取液至2mL离心管,SPD2010型离心浓缩仪(Thermo Fisher科技有限公司,马萨诸塞州,美国)浓缩干燥。
2)类胡萝卜素测定
(1)50μL甲基叔丁基醚(MTBE)复溶样品,充分震荡,12000rpm离心10min;
(2)转移上层液体至上样瓶,进样体积为1μL,利用高效合相色谱仪UPC2(Waters科技有限公司,马萨诸塞州,美国)测定类胡萝卜素,具体为:进样室温度保持在10℃,柱子选用ACQUITY UPC2 HSS C18 SB(100mm×3.0mm,1.8μm),双相流动相由(A)CO2和(B)甲醇:乙醇(V:V)=1:2组成,线性洗脱梯度为:0.5min,95%A+5%B;2min,70%A+30%B;5min,70%A+30%B;5.5min,95%A+5%B;7min,95%A+5%B。系统流量设置为1.5mL/min,柱温设置为45℃,背压为22.9MPa;二极管阵列检测器探测波长在210nm到500nm之间,补偿波长在210nm到280nm之间。
3)标准曲线制作
(1)MTBE溶解番茄红素、β-胡萝卜素、α-胡萝卜素、叶黄素标品,并稀释为一系列浓度梯度(5μg/mL,10μg/mL,50μg/mL,250μg/mL,500μg/mL);
(2)将各标品按照浓度从低到高顺序进样,建立浓度与峰面积相关的标准曲线,用于估测各成分浓度。
结果显示,yft1和WRKY32-RNAi的类胡萝卜素含量显著低于cv.M82,这说明WRKY32通过YFT1介导影响番茄类胡萝卜素累积(表5)。
表5不同发育时期cv.M82、yft1、WRKY32-RNAi番茄果实类胡萝卜素含量(μg·g- 1FW)*
番茄红素 β-胡萝卜素 α-胡萝卜素 叶黄素 总类胡萝卜素
35dpa
cv.M82 - 0.92±0.05<sup>B</sup> - 4.99±0.14<sup>AB</sup> 5.91±0.19
yft1 - 1.32±0.06<sup>A</sup> - 5.30±0.16<sup>A</sup> 6.62±0.22
WRKY32-RNAi - 0.68±0.20<sup>B</sup> - 4.68±0.14<sup>B</sup> 5.36±0.34
47dpa
cv.M82 10.33±0.31<sup>A</sup> 3.56±0.18<sup>A</sup> 0.77±0.08<sup>A</sup> 6.58±0.29<sup>A</sup> 21.24±0.86
yft1 - 1.63±0.08<sup>B</sup> - 3.74±0.21<sup>B</sup> 5.37±0.29
WRKY32-RNAi - 2.29±0.61<sup>B</sup> - 3.94±0.20<sup>B</sup> 6.23±0.81
54dpa
cv.M82 99.09±1.57<sup>A</sup> 6.63±0.15<sup>A</sup> 1.77±0.13<sup>A</sup> 5.00±0.23<sup>A</sup> 112.49±2.08
yft1 - 1.56±0.08<sup>C</sup> - 4.78±0.23<sup>A</sup> 6.34±0.31
WRKY32-RNAi 9.43±0.42<sup>B</sup> 5.88±0.15<sup>B</sup> 1.26±0.08<sup>B</sup> 5.47±0.48<sup>A</sup> 22.04±1.13
FW(fresh weight):鲜重。
3.有色体超微结构观察
1)制片与超微观察
(1)取样和固定:用手术刀片切取果实赤道面约1mm3果皮组织,放入2.5%戊二醛固定液固定,利用连接有真空泵(Millipore有限公司,马萨诸塞州,美国)的真空干燥箱抽真空处理30min,至组织块完全浸入固定液,4℃继续固定24h;
(2)漂洗与脱水:吸出固定液,0.1M PB(phosphate buffer)漂洗样品,4℃放置15min,重复操作3次;弃漂洗液,加入适量锇酸(中镜科仪技术有限公司,北京,中国),4℃静置2h;弃锇酸至专用垃圾瓶;继续用0.1M PB漂洗样品,4℃放置15min,重复3次;4℃条件下梯度脱水,50%乙醇、70%乙醇、90%乙醇分别脱水15min,90%乙醇:90%丙酮体积比为1:1的混合溶液置换20min,90%丙酮置换20min;
(3)包埋与固化:操作在室温进行,每次置换完成,置于100rpm水平摇床;100%丙酮置换20min,置换3次,丙酮:环氧树脂(Ted Pella股份有限公司,加利福尼亚州,美国)体积比为1:1混合溶液置换1h,丙酮:环氧树脂体积比为1:2混合溶液置换过夜;纯树脂置换7h,取出包埋板,加入适量树脂,用牙签小心地将样品摆到包埋板,记录样品位置,放入60℃电热鼓风干燥箱中聚合48h;
(4)样品切片、染色,电镜观察:固化包埋块,先修块,将样品面暴露,切片采用UC6-FC6型冷冻超薄切片机(Leica仪器有限公司,德国),用2%的枸橼酸铅(中镜科仪技术有限公司,北京,中国)染色,120kV生物型透射电镜(FEI公司,俄勒冈州,美国)观察有色体超微结构。
结果发现,yft1和WRKY32-RNAi有色体发育相对cv.M82延迟,说明WRKY32可通过YFT1介导调控番茄果实有色体发育(图7)。
2)脂质小球数量统计
选取3个不同视野统计脂质小球数目,统计三个生物学重复。结果发现,47dpa和54dpa时期,yft1和WRKY32-RNAi脂质小球数量显著小于cv.M82,说明WRKY32可通过调控YFT1表达,影响脂质小球数量(图7)。
实施例5:WRKY32对乙烯生物学行为调控
为分析WRKY32通过YFT1介导对番茄果实乙烯生物学行为的影响,分析cv.M82、yft1突变体和WRKY32-RNAi在果实乙烯合成、果实乙烯释放和乙烯信号转导关键基因表达差异,具体步骤如下:
1.番茄果实乙烯释放量测定
选取cv.M82、yft1和WRKY32-RNAi在35dpa、47dpa和54dpa果实,三个生物学重复,记录果实重量;25℃恒温放置2h,以消除采摘生理胁迫可能引起的果实乙烯释放水平变化。然后将果实小心放入500mL气体收集瓶,密封,25℃恒温放置4h,收集气体;用1mL注射器缓慢吸取气体,迅速地注入GC-2010气相色谱仪(岛津仪器有限公司,日本),测定乙烯含量;样品乙烯的浓度通过标准乙烯气体(10ppm)标定,分别注入0.1mL、0.3mL、0.5mL、0.6mL、0.9mL标准乙烯气体(10ppm),然后以浓度为纵坐标,峰面积为横坐标建立标准曲线;根据乙烯标准曲线,计算样品乙烯浓度,通过以下公式计算番茄乙烯释放量。
Figure BDA0002794852100000141
结果显示,WRKY32-RNAi果实乙烯释放高峰延迟(图8)。
2.乙烯合成关键基因表达
提取cv.M82、yft1和WRKY32-RNAi在35dpa、47dpa、54dpa果实RNA,反转录为cDNA,作为定量模板,设计定量引物(表5),Light Cycle 96型实时荧光定量PCR仪(Roche有限公司,瑞士)分析乙烯合成关键基因ACS2/4(ACC SYNTHASE 2/4)和ACO1(ACC OXIDASE 1)的表达量变化,结果分析认为,WRKY32-RNAi中,ACS2/4和ACO1表达水平显著下降,即WRKY32可通过调控YFT1表达,影响番茄果实乙烯合成关键基因表达(图9)。
3.乙烯信号途径关键基因表达分析
设计定量引物(表6),分析乙烯信号途径关键基因NR(NEVER RIPE)、ETR4(ETHYLENE RECEPTOR 4)、CTR1(CONSTITUTIVE TRIPLE RESPONSE 1)、EIL3/4(ETHYLENEINSENSITIVE 3-LIKE 3/4)、AP2a(APETALA 2a)、ERF4/6(ETHYLENE-RESPONSIVETRANSCRIPTION FACTOR 4/6)在cv.M82、yft1和WRKY32-RNAi四种番茄材料中表达差异,结果显示NR、ETR4、CTR1、EIL3/4、AP2a、ERF4/6在yft1和WRKY32-RNAi表达显著低于cv.M82,暗示WRKY32可通过调控YFT1表达,影响番茄果实乙烯信号传导(图10)。
表6乙烯合成和信号转导关键基因引物
Figure BDA0002794852100000142
Figure BDA0002794852100000151
Figure BDA0002794852100000161
综上所述,本发明基于一种转录因子WRKY32,可调控结合在pYFT1的W-box(TTGAC,-784bp~-780bp)和W-box like(GTCTA,-1306bp~-1302bp)功能区域,调控YFT1表达,从而影响番茄果实乙烯生物学行为、类胡萝卜素合成和有色体发育,影响番茄果实发育和果色形成。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
序列表
<110> 上海交通大学
<120> WRKY32调控YFT1表达影响番茄果色及其在番茄品质改良中应用
<130> KAG45682
<141> 2020-11-17
<160> 86
<170> SIPOSequenceListing 1.0
<210> 1
<211> 25
<212> DNA
<213> Arabidopsis thaliana
<400> 1
tttgggcaag ttgactaatt ttgaa 25
<210> 2
<211> 25
<212> DNA
<213> Arabidopsis thaliana
<400> 2
aaccctaatg gtctacacac ccact 25
<210> 3
<211> 513
<212> PRT
<213> Solanum lycopersicum
<400> 3
Met Asp Asp Glu Asn Glu Ser Ser Lys Ser Ala Gly Leu Lys Asn Ser
1 5 10 15
Asn Leu Glu Glu Glu Glu Glu Asp Lys Ile Ser Asn Lys Ile Glu Asn
20 25 30
Ser Ser Val His Asn Asp Glu Asn Gly Asp Asp Asp Arg Val Ile Asp
35 40 45
Gly Ser Ser Gly Ala Glu Ser Leu Arg Glu Ser Lys Thr Gly Ala Leu
50 55 60
Ile Ser Glu Thr Leu Ala His Pro Asn Ala Glu Ser Ser Val Gln Ile
65 70 75 80
Glu Ile Asp Gly Gln Ser Glu Phe Asp Ser Glu Phe Ser Pro Ser Tyr
85 90 95
Gln Leu Ser Glu Val Pro Val Glu Tyr Glu Leu Pro Ser Phe Gly Phe
100 105 110
Ser Glu Lys Ile Lys Asp Arg Ile Ser Val Thr Lys Pro Gly Thr Leu
115 120 125
Asn Ala Gln Ala Arg Thr Glu His Gln Arg Arg Val Pro Asp Ala Ala
130 135 140
Ser Ser Leu Glu Leu Ser Ser Leu Ser Val Ala Gln Ser Ile Ser Ser
145 150 155 160
Val Pro Ser Ala Thr Leu Ala Glu Arg Arg Ser Ala Ala Ala Val Asn
165 170 175
Cys Ser Thr Gly Glu Val Val Lys Gln Ser Ser Asp Ala Gln Val Leu
180 185 190
Ala Leu Val Pro Val Leu Lys Arg Pro Thr Arg Asp Gly Tyr Asn Trp
195 200 205
Arg Lys Tyr Gly Gln Lys Gln Val Lys Ser Pro Gln Gly Ser Arg Ser
210 215 220
Tyr Tyr Arg Cys Thr His Ser Glu Cys Cys Ala Lys Lys Ile Glu Cys
225 230 235 240
Ser Asp His Thr Asn Arg Val Met Glu Ile Ile Tyr Arg Thr Gln His
245 250 255
Asn His Asp Pro Pro Pro Arg Val Asn Cys Pro Arg Glu Ser Lys Ser
260 265 270
Ala Leu Leu Ser Ser Pro Thr Asn Gly Lys Ser Ile Ile Ala His Pro
275 280 285
Arg Arg Asn Ser Ile Glu Thr Val Val Ser Pro Leu Asn Glu Asn Leu
290 295 300
Gln Glu Ser Leu Pro Ile Ala Glu Thr Ala Asn Gln Asp Ser Gly Gly
305 310 315 320
Ser Asp Thr Asp Thr Glu Ile Thr Ile Arg Glu Glu His Arg Asp Glu
325 330 335
Ala Gly Gln Lys Lys Arg Ser Arg Lys Ser Asp Thr Ser Cys Leu Glu
340 345 350
Ser Val Ser Lys Pro Gly Lys Lys Pro Lys Leu Val Val His Ala Ala
355 360 365
Cys Asp Val Gly Ile Ser Ser Asp Gly Tyr Arg Trp Arg Lys Tyr Gly
370 375 380
Gln Lys Ile Val Lys Gly Asn Pro His Pro Arg Asn Tyr Tyr Arg Cys
385 390 395 400
Thr Ser Ala Gly Cys Pro Val Arg Lys His Ile Glu Arg Val Leu Asp
405 410 415
Thr Thr Ser Ala Leu Thr Ile Thr Tyr Lys Gly Val His Asp His Asp
420 425 430
Met Pro Val Pro Lys Lys Arg His Gly Pro Pro Ser Ala Pro Leu Ile
435 440 445
Ala Ala Thr Ala Pro Ala Ser Val Thr Thr Met His Ala Asn Lys Pro
450 455 460
Glu Pro Leu Gln His Gln Lys Ser Thr Thr Gln Trp Ser Val Asp Lys
465 470 475 480
Glu Gly Glu Leu Thr Gly Glu Lys Leu Asp Val Gly Gly Glu Lys Ala
485 490 495
Met Glu Ser Ala Arg Thr Leu Leu Ser Ile Gly Phe Glu Ile Lys Pro
500 505 510
Cys
<210> 4
<211> 1804
<212> DNA
<213> Solanum lycopersicum
<400> 4
catttttttc acaaaaacac tcactgtgtg ttcatcggaa tccgccatgg atgacgaaaa 60
cgagagctcc aaatcagccg gactcaaaaa ttcaaatcta gaagaagaag aagaagataa 120
aatcagcaac aaaatcgaaa attcctccgt acacaacgac gaaaacggtg acgacgatag 180
agtaattgac ggtagcagtg gagctgagag tttacgagaa tcaaagacgg gagctttaat 240
ttcagaaacc ctagctcatc ctaatgcaga atcatccgta caaattgaaa ttgatggcca 300
atccgaattc gattcagagt tttctccctc ttatcaactt tctgaagtac cagtggaata 360
tgaactgccc tcgtttggtt tctcggaaaa aatcaaggat agaattagtg ttaccaaacc 420
tggaactttg aatgctcaag cacgaacaga acatcaacga cgtgttcctg atgcagcatc 480
ctcattggag ctgtcctctt tatctgttgc acagtccatt tcatcagtgc caagtgcaac 540
tctagcagaa agacgatcag cagcagcagt aaattgtagt acaggagaag tggttaagca 600
gagttctgac gcccaggttc tagctcttgt accagttcta aagagaccaa ctcgcgatgg 660
gtacaattgg cggaagtatg gtcaaaagca agttaaaagt cctcaaggtt ctcgaagtta 720
ttaccgatgc actcattctg agtgttgtgc caagaagatt gagtgctctg atcacactaa 780
tcgtgttatg gagattattt atagaactca acacaatcat gatccacccc caagagtaaa 840
ttgcccaagg gaaagcaagt ctgcattatt gtcttcacct accaatggca aaagtataat 900
agctcatcca aggagaaatt ctattgagac cgtagtatcc cccttaaatg aaaatttgca 960
agaaagttta ccaattgctg agacagcaaa tcaggattca ggtgggtctg acactgacac 1020
tgaaatcact attagagagg agcaccgtga cgaggctgga caaaagaaga ggtcaaggaa 1080
aagtgacaca agttgtttgg aatctgtttc taaacctgga aagaaaccca agcttgtggt 1140
gcatgctgct tgtgatgtag gaatctcaag tgatggctac agatggcgaa agtatggaca 1200
aaaaatagtg aagggaaatc cccatccaag gaactactat cgctgtacat cagctggatg 1260
tcccgttcga aagcacattg agagggtttt agataccaca agtgctttaa caataacata 1320
caagggagta cacgatcatg acatgccagt acccaaaaaa cgtcatggtc caccgagtgc 1380
acctcttatt gctgctactg cccctgcttc cgtaaccact atgcatgcta acaaacccga 1440
acccctacaa catcaaaaat cgaccacaca atggtccgtg gacaaagaag gtgagttgac 1500
tggtgagaaa ttggatgttg gaggagaaaa agcaatggaa tcggctcgaa ctctattgag 1560
tattggattt gaaattaagc cttgctaaaa ttgcttagct gctctgattt tatttttttc 1620
tgcatttatt tagttttcct ccatagggct ttcttgtaga agtttagaag agtacacctt 1680
tttttttata gtcctccaat atatagatgg tctatactca gttatgtaca ttattgtgga 1740
tcaaaataag taacatagaa cttagaataa catattgtga tgtttgtcaa tttgcatctg 1800
tttc 1804
<210> 5
<211> 345
<212> DNA
<213> Solanum lycopersicum
<400> 5
gattcagagt tttctccctc ttatcaactt tctgaagtac cagtggaata tgaactgccc 60
tcgtttggtt tctcggaaaa aatcaaggat agaattagtg ttaccaaacc tggaactttg 120
aatgctcaag cacgaacaga acatcaacga cgtgttcctg atgcagcatc ctcattggag 180
ctgtcctctt tatctgttgc acagtccatt tcatcagtgc caagtgcaac tctagcagaa 240
agacgatcag cagcagcagt aaattgtagt acaggagaag tggttaagca gagttctgac 300
gcccaggttc tagctcttgt accagttcta aagagaccaa ctcgc 345
<210> 6
<211> 3000
<212> DNA
<213> Solanum lycopersicum
<400> 6
tccatcgata tattgatacg atatctgtaa catatatgat tgaatgtaat cctctatcga 60
tatatttata ttgatacccc tattggtatt ataaggtatt ggactctttt ttttaataaa 120
taaataagaa atagttaaag agagatttat taaagtcaca atcttatata ttaaactcta 180
tgtcattaga aaaatatatt tttataattt ttaaattaaa aattttaaga attgaaacat 240
acattaatga taccacgaca ttatgtagat gtaccgtaat ggtatcatga atgattcagt 300
aacctcatca aaggactaaa gcaaacctca atgaaaaaca ctgttcaatt acttattaat 360
accacctaag tgtatcatac tttgatgtta tcggggagga agaaacaatt ttttaattaa 420
aatactattc agttactctt tgataccatc agagtgtatt ttatataata taatatgttg 480
tattaatcaa tactaaacct caccaaaata ataatctcaa agtactaaac actctttaaa 540
ttaataaata ttaattatca attaaataat acatctacaa aataatatcc tatctatatt 600
aatttagtga ggttttacca tagttgcttg attataaaat aatatatact ttaatatttt 660
acaattaaca ttaataattt gctctccaag aaagtatttt tcaaaaccta aaaataaata 720
tcaatcaata tggatgttat aataactatt tacattaatt attatttttt agtgaataca 780
caaaatctta aacttaacaa ataaaagtaa atgaaaaagg ttaaaaacca gagatagata 840
ataaaacaaa aaaacccaac taactaacgc gcgaaattct aaacttgaca gttaaaactg 900
aacgaaaaag atacaaacga gaaatatagc aataaaacga gagataccac aataaaacaa 960
aaaacccaac taactagcac gcgaaattct gaacttgaca ggtaaaactg aacgaaaagg 1020
atacaaacga gaaatatagt aataaaacga gagatacgac aataaaacca aaaacccaac 1080
taactagcgc gcgaaattct gaacttggca ggtaaaactg aacgaaaaaa tacaaatgaa 1140
aaatatagta ataaaacaac ttttatcgaa tttcttcgac ataattctct caaaacacct 1200
taatatactg tattttattt acgtatgtat ctatgctgaa tataatggag aaaaaaaccg 1260
attaaaaaac tatcttttta gttcactttt ctccttcata gcttttggac tcacattagt 1320
gaagtgaaac tctcaacttt ttctctctct ctccaagata gctttaagac cctacccacc 1380
cccttacatg accccctttt ccccataata tatatataaa tacagtaata tatatgtata 1440
tatatatagt ttctctctct acagtagtca cagctcacac accataactc tccatctctc 1500
taggatatgt attatgtaca ggttcctctc tttatctctt agtagtatat atagatatta 1560
gagcttcctt aaaagcttct gatctgaact ctgagcactg aaatttatag agaagaagac 1620
tgaagaaaac ccatccagaa aaggaaggaa aactatttga agaaggtata aaaaagaaat 1680
ggaaaaccct aatggtctac acacccactt gggtaaattt tatcattttt ttttaaattt 1740
tactgttatg ggtatgttta gatataggta taaggattat atgttttgga atcttggaat 1800
aaaaatttgg tctttatagg atatgtttgt atcagatccg atgaagtggg tattgagttt 1860
tttgctgatt gttttgattt gttgtattgg gttgtgttaa aaaggttgga taagtgttat 1920
ttatggggtt ttggtttttg ggttggaaaa agatttgatc ttcttttata taaatttgat 1980
ggggttttgt agttttgtgt aataaagatc tggatggttg aggaggagaa ggtgtttcat 2040
ttgcagttct cttcttttct ttttgaaaag tggtattgct tttgaagtca agttgatgtt 2100
tttttttttt gtttcaaaat gcaggagatt tttgttaaag caatcatgtt tagttttaga 2160
tgccaggctg taacatggag tttactgagt gttttaatta tttttttttg ggcaagttga 2220
ctaattttga aatatatgaa taatgctgga ttggtttgtg aattgtgatc tcagtgaagg 2280
tttgccaaat ttttgtgttc catgtttctc gcgctacagg acactgtgat gtatgttagg 2340
tcgtgaaaga tccaattttt ttctgttggg tagtttatca acttcagcat ttttgtcttt 2400
taactggaat taacatgtat atagttttag tttggatata atgctttctc cagctgtttt 2460
aagtgtttga tagtcatggt tacctagttt tttctgtaac tacaatttga atacttgact 2520
gaagttttgg tatttaactc aattcagaaa tcagaatcgg caatcggatt attgacggat 2580
gcaaaggtgt taatgcggtg tatttggttg gagttggtgg atttagcaac tcgaaaagac 2640
ttccatcttt ataaggcgca cttctcaaag ttattgttcg aagttggttg attttagcag 2700
cttgaaaaga ctcttaataa attgcttttg tcaagttctt catgtccatt gcttttgggt 2760
gcaaacttgc tcaaaattct ccagagataa cgaggggttt tggtatcctg ttctaaccgt 2820
gctacattga gctacagtct acagttggag ctgcagctgc tacatagaaa agctgtgtgg 2880
tcggaacttg gaacttcact ggttggattg tgagcttgtt catgtcaaat gggttgctaa 2940
gtgatgctgt agtgctagtt tactgcgatc tctgggcttg ctaaccattt aaatcaaata 3000
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 7
tccatcgata tattgatacg atatc 25
<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 8
tatttgattt aaatggttag caagc 25
<210> 9
<211> 5
<212> DNA
<213> Arabidopsis thaliana
<400> 9
ngatt 5
<210> 10
<211> 10
<212> DNA
<213> Arabidopsis thaliana
<400> 10
cwwwwwwwwg 10
<210> 11
<211> 4
<212> DNA
<213> Petunia hybrida
<400> 11
gata 4
<210> 12
<211> 9
<212> DNA
<213> Arabidopsis thaliana
<400> 12
taatmatta 9
<210> 13
<211> 5
<212> DNA
<213> Arabidopsis thaliana
<400> 13
gataa 5
<210> 14
<211> 6
<212> DNA
<213> Arabidopsis thaliana
<400> 14
cngttr 6
<210> 15
<211> 7
<212> DNA
<213> Oryza sativa
<400> 15
taacaaa 7
<210> 16
<211> 6
<212> DNA
<213> Arabidopsis thaliana
<400> 16
waacca 6
<210> 17
<211> 6
<212> DNA
<213> Arabidopsis thaliana
<400> 17
canntg 6
<210> 18
<211> 4
<212> DNA
<213> Arabidopsis thaliana
<400> 18
tata 4
<210> 19
<211> 6
<212> DNA
<213> Arabidopsis thaliana
<400> 19
actttg 6
<210> 20
<211> 4
<212> DNA
<213> Oryza sativa
<400> 20
tgac 4
<210> 21
<211> 42
<212> DNA
<213> Artificial Sequence
<400> 21
gattatgcct ctcccgaatt catggatgac gaaaacgaga gc 42
<210> 22
<211> 44
<212> DNA
<213> Artificial Sequence
<400> 22
agaagtccaa agcttctcga gttagcaagg cttaatttca aatc 44
<210> 23
<211> 253
<212> DNA
<213> Solanum lycopersicum
<400> 23
tccatcgata tattgatacg atatctgtaa catatatgat tgaatgtaat cctctatcga 60
tatatttata ttgatacccc tattggtatt ataaggtatt ggactctttt ttttaataaa 120
taaataagaa atagttaaag agagatttat taaagtcaca atcttatata ttaaactcta 180
tgtcattaga aaaatatatt tttataattt ttaaattaaa aattttaaga attgaaacat 240
acattaatga tac 253
<210> 24
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 24
ataattttta aattaaaaat tttaagaatt gaaacataca ttaatgatac cacgacatta 60
tgtagatgta ccgtaatggt atcatgaatg attcagtaac ctcatcaaag gactaaagca 120
aacctcaatg aaaaacactg ttcaattact tattaatacc acctaagtgt atcatacttt 180
gatgttatcg gggaggaaga aacaattttt taattaaaat actattcagt tactctttga 240
taccatcaga gtgtatttta tataatataa tatgttgtat taatcaatac taaacctcac 300
<210> 25
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 25
gtgtatttta tataatataa tatgttgtat taatcaatac taaacctcac caaaataata 60
atctcaaagt actaaacact ctttaaatta ataaatatta attatcaatt aaataataca 120
tctacaaaat aatatcctat ctatattaat ttagtgaggt tttaccatag ttgcttgatt 180
ataaaataat atatacttta atattttaca attaacatta ataatttgct ctccaagaaa 240
gtatttttca aaacctaaaa ataaatatca atcaatatgg atgttataat aactatttac 300
<210> 26
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 26
caaaacctaa aaataaatat caatcaatat ggatgttata ataactattt acattaatta 60
ttatttttta gtgaatacac aaaatcttaa acttaacaaa taaaagtaaa tgaaaaaggt 120
taaaaaccag agatagataa taaaacaaaa aaacccaact aactaacgcg cgaaattcta 180
aacttgacag ttaaaactga acgaaaaaga tacaaacgag aaatatagca ataaaacgag 240
agataccaca ataaaacaaa aaacccaact aactagcacg cgaaattctg aacttgacag 300
<210> 27
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 27
ataaaacaaa aaacccaact aactagcacg cgaaattctg aacttgacag gtaaaactga 60
acgaaaagga tacaaacgag aaatatagta ataaaacgag agatacgaca ataaaaccaa 120
aaacccaact aactagcgcg cgaaattctg aacttggcag gtaaaactga acgaaaaaat 180
acaaatgaaa aatatagtaa taaaacaact tttatcgaat ttcttcgaca taattctctc 240
aaaacacctt aatatactgt attttattta cgtatgtatc tatgctgaat ataatggaga 300
<210> 28
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 28
aatatactgt attttattta cgtatgtatc tatgctgaat ataatggaga aaaaaaccga 60
ttaaaaaact atctttttag ttcacttttc tccttcatag cttttggact cacattagtg 120
aagtgaaact ctcaactttt tctctctctc tccaagatag ctttaagacc ctacccaccc 180
ccttacatga cccccttttc cccataatat atatataaat acagtaatat atatgtatat 240
atatatagtt tctctctcta cagtagtcac agctcacaca ccataactct ccatctctct 300
<210> 29
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 29
tctctctcta cagtagtcac agctcacaca ccataactct ccatctctct aggatatgta 60
ttatgtacag gttcctctct ttatctctta gtagtatata tagatattag agcttcctta 120
aaagcttctg atctgaactc tgagcactga aatttataga gaagaagact gaagaaaacc 180
catccagaaa aggaaggaaa actatttgaa gaaggtataa aaaagaaatg gaaaacccta 240
atggtctaca cacccacttg ggtaaatttt atcatttttt tttaaatttt actgttatgg 300
<210> 30
<211> 302
<212> DNA
<213> Solanum lycopersicum
<400> 30
ggaaaaccct aatggtctac acacccactt gggtaaattt tatcattttt ttttaaattt 60
tactgttatg ggtatgttta gatataggta taaggattat atgttttgga atcttggaat 120
aaaaatttgg tctttatagg atatgtttgt atcagatccg atgaagtggg tattgagttt 180
tttgctgatt gttttgattt gttgtattgg gttgtgttaa aaaggttgga taagtgttat 240
ttatggggtt ttggtttttg ggttggaaaa agatttgatc ttcttttata taaatttgat 300
gg 302
<210> 31
<211> 302
<212> DNA
<213> Solanum lycopersicum
<400> 31
ggtttttggg ttggaaaaag atttgatctt cttttatata aatttgatgg ggttttgtag 60
ttttgtgtaa taaagatctg gatggttgag gaggagaagg tgtttcattt gcagttctct 120
tcttttcttt ttgaaaagtg gtattgcttt tgaagtcaag ttgatgtttt ttttttttgt 180
ttcaaaatgc aggagatttt tgttaaagca atcatgttta gttttagatg ccaggctgta 240
acatggagtt tactgagtgt tttaattatt tttttttggg caagttgact aattttgaaa 300
ta 302
<210> 32
<211> 316
<212> DNA
<213> Solanum lycopersicum
<400> 32
ctgagtgttt taattatttt tttttgggca agttgactaa ttttgaaata tatgaataat 60
gctggattgg tttgtgaatt gtgatctcag tgaaggtttg ccaaattttt gtgttccatg 120
tttctcgcgc tacaggacac tgtgatgtat gttaggtcgt gaaagatcca atttttttct 180
gttgggtagt ttatcaactt cagcattttt gtcttttaac tggaattaac atgtatatag 240
ttttagtttg gatataatgc tttctccagc tgttttaagt gtttgatagt catggttacc 300
tagttttttc tgtaac 316
<210> 33
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 33
cagctgtttt aagtgtttga tagtcatggt tacctagttt tttctgtaac tacaatttga 60
atacttgact gaagttttgg tatttaactc aattcagaaa tcagaatcgg caatcggatt 120
attgacggat gcaaaggtgt taatgcggtg tatttggttg gagttggtgg atttagcaac 180
tcgaaaagac ttccatcttt ataaggcgca cttctcaaag ttattgttcg aagttggttg 240
attttagcag cttgaaaaga ctcttaataa attgcttttg tcaagttctt catgtccatt 300
<210> 34
<211> 300
<212> DNA
<213> Solanum lycopersicum
<400> 34
cttgaaaaga ctcttaataa attgcttttg tcaagttctt catgtccatt gcttttgggt 60
gcaaacttgc tcaaaattct ccagagataa cgaggggttt tggtatcctg ttctaaccgt 120
gctacattga gctacagtct acagttggag ctgcagctgc tacatagaaa agctgtgtgg 180
tcggaacttg gaacttcact ggttggattg tgagcttgtt catgtcaaat gggttgctaa 240
gtgatgctgt agtgctagtt tactgcgatc tctgggcttg ctaaccattt aaatcaaata 300
<210> 35
<211> 120
<212> DNA
<213> Solanum lycopersicum
<400> 35
tctctctcta cagtagtcac agctcacaca ccataactct ccatctctct aggatatgta 60
ttatgtacag gttcctctct ttatctctta gtagtatata tagatattag agcttcctta 120
<210> 36
<211> 120
<212> DNA
<213> Solanum lycopersicum
<400> 36
tagatattag agcttcctta aaagcttctg atctgaactc tgagcactga aatttataga 60
gaagaagact gaagaaaacc catccagaaa aggaaggaaa actatttgaa gaaggtataa 120
<210> 37
<211> 100
<212> DNA
<213> Solanum lycopersicum
<400> 37
actatttgaa gaaggtataa aaaagaaatg gaaaacccta atggtctaca cacccacttg 60
ggtaaatttt atcatttttt tttaaatttt actgttatgg 100
<210> 38
<211> 120
<212> DNA
<213> Solanum lycopersicum
<400> 38
ggtttttggg ttggaaaaag atttgatctt cttttatata aatttgatgg ggttttgtag 60
ttttgtgtaa taaagatctg gatggttgag gaggagaagg tgtttcattt gcagttctct 120
<210> 39
<211> 120
<212> DNA
<213> Solanum lycopersicum
<400> 39
tgtttcattt gcagttctct tcttttcttt ttgaaaagtg gtattgcttt tgaagtcaag 60
ttgatgtttt ttttttttgt ttcaaaatgc aggagatttt tgttaaagca atcatgttta 120
<210> 40
<211> 102
<212> DNA
<213> Solanum lycopersicum
<400> 40
tgttaaagca atcatgttta gttttagatg ccaggctgta acatggagtt tactgagtgt 60
tttaattatt tttttttggg caagttgact aattttgaaa ta 102
<210> 41
<211> 50
<212> DNA
<213> Solanum lycopersicum
<400> 41
actatttgaa gaaggtataa aaaagaaatg gaaaacccta atggtctaca 50
<210> 42
<211> 50
<212> DNA
<213> Solanum lycopersicum
<400> 42
gaaaacccta atggtctaca cacccacttg ggtaaatttt atcatttttt 50
<210> 43
<211> 40
<212> DNA
<213> Solanum lycopersicum
<400> 43
ggtaaatttt atcatttttt tttaaatttt actgttatgg 40
<210> 44
<211> 50
<212> DNA
<213> Solanum lycopersicum
<400> 44
tgttaaagca atcatgttta gttttagatg ccaggctgta acatggagtt 50
<210> 45
<211> 50
<212> DNA
<213> Solanum lycopersicum
<400> 45
ccaggctgta acatggagtt tactgagtgt tttaattatt tttttttggg 50
<210> 46
<211> 42
<212> DNA
<213> Solanum lycopersicum
<400> 46
tttaattatt tttttttggg caagttgact aattttgaaa ta 42
<210> 47
<211> 300
<212> DNA
<213> Artificial Sequence
<400> 47
tctctctcta cagtagtcac agctcacaca ccataactct ccatctctct aggatatgta 60
ttatgtacag gttcctctct ttatctctta gtagtatata tagatattag agcttcctta 120
aaagcttctg atctgaactc tgagcactga aatttataga gaagaagact gaagaaaacc 180
catccagaaa aggaaggaaa actatttgaa gaaggtataa aaaagaaatg gaaaacccta 240
atgctctaca cacccacttg ggtaaatttt atcatttttt tttaaatttt actgttatgg 300
<210> 48
<211> 302
<212> DNA
<213> Artificial Sequence
<400> 48
ggtttttggg ttggaaaaag atttgatctt cttttatata aatttgatgg ggttttgtag 60
ttttgtgtaa taaagatctg gatggttgag gaggagaagg tgtttcattt gcagttctct 120
tcttttcttt ttgaaaagtg gtattgcttt tgaagtcaag ttgatgtttt ttttttttgt 180
ttcaaaatgc aggagatttt tgttaaagca atcatgttta gttttagatg ccaggctgta 240
acatggagtt tactgagtgt tttaattatt tttttttggg caagtttaat aattttgaaa 300
ta 302
<210> 49
<211> 54
<212> DNA
<213> Artificial Sequence
<400> 49
gaaggtataa aaaagaaatg gaaaacccta atggtctaca cacccacttg ggta 54
<210> 50
<211> 60
<212> DNA
<213> Artificial Sequence
<400> 50
gtgttttaat tatttttttt tgggcaagtt gactaatttt gaaatatatg aataatgctg 60
<210> 51
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 51
gattcagagt tttctccctc ttat 24
<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 52
gcgagttggt ctctttagaa ctg 23
<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 53
cctccgtaca caacgacgaa 20
<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 54
tccgagaaac caaacgaggg 20
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 55
actgcggaga aggttgtg 18
<210> 56
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 56
atggctcgtc ggagaatg 18
<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 57
tggcccaaac gcatcatata 20
<210> 58
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 58
caccatcgag catgtcaaat g 21
<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 59
ttttggcgga atcaactacc 20
<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 60
gaaagcttca ctcccacagc 20
<210> 61
<211> 27
<212> DNA
<213> Artificial Sequence
<400> 61
tgttattgag gaagagaaat gtgtgat 27
<210> 62
<211> 24
<212> DNA
<213> Artificial Sequence
<400> 62
tcccaccaat agccataaca tttt 24
<210> 63
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 63
actggattta gtggtaatcg gctgt 25
<210> 64
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 64
agttgtttgt gaaaggaaga tcagg 25
<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 65
tggtgaccaa cttgaggtga 20
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 66
caattggatc actttccatt gcc 23
<210> 67
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 67
gtggtgccac tggagctaat 20
<210> 68
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 68
gtccaaagtg gtgcccaatg 20
<210> 69
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 69
atgggtctcg cggaaaatca 20
<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 70
aagcatcacc aggatcagcc 20
<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 71
gcagcggaac aatccctttg 20
<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 72
acaacgttca tcggtcacct 20
<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 73
tgctgttgcg agtagtggag 20
<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 74
tgatcagcca caaccctgac 20
<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 75
ttgatcgaaa tggccctgct 20
<210> 76
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 76
gggtggagat acccccttct 20
<210> 77
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 77
tctatgcagc cacaaggcaa 20
<210> 78
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 78
atcttgcttc ggtgtggtgt 20
<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 79
gcagcagacg gaagagagtt 20
<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 80
ctgagcagag agcccaaaca 20
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 81
gctgctttag gcttattctt ccg 23
<210> 82
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 82
actccattgt ctgatcaggg g 21
<210> 83
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 83
tccgatgaca tctcccctgt 20
<210> 84
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 84
atggccttct ccttacccct 20
<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 85
tcgtctcttt caattacttt cactc 25
<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 86
cgacagagcg gaatcaggtt 20

Claims (7)

1.一种WRKY家族的转录因子WRKY32在调控番茄果色中的应用,所述转录因子WRKY32的氨基酸序列如SEQ ID NO:3所示,其特征在于,所述转录因子WRKY32通过RNAi载体干扰后,番茄果色形成受到影响,所述RNAi载体通过SEQ ID NO:5所示的RNA干扰序列构建。
2.根据权利要求1所述的应用,其特征在于,所述转录因子WRKY32通过所述RNAi载体干扰后降低番茄果实中类胡萝素含量,改变该途径相关基因表达方式,而改变果实颜色。
3.根据权利要求1所述的应用,其特征在于,所述转录因子WRKY32正向调控YFT1基因的转录表达,所述转录因子WRKY32 cDNA序列如SEQ ID NO:4所示,所述YFT1基因在TEA数据库中基因ID为Solyc09g007870。
4.一种WRKY家族的转录因子WRKY32在调控番茄果实成熟发育中的应用,所述转录因子WRKY32的氨基酸序列如SEQ ID NO:3所示,其特征在于,所述转录因子WRKY32通过RNAi载体干扰后,番茄成熟延迟,所述RNAi载体通过SEQ ID NO:5所示的RNA干扰序列构建。
5.根据权利要求4所述的应用,其特征在于,所述转录因子WRKY32反馈调控番茄果实乙烯合成及乙烯合成途径关键基因表达,从而影响番茄果实成熟期的乙烯释放。
6.根据权利要求4所述的应用,其特征在于,所述转录因子WRKY32通过所述RNAi载体干扰后打乱了番茄乙烯信号转导途径,并通过调控该途径相关表达基因表达,从而调控番茄果实成熟进程。
7.根据权利要求4所述的应用,其特征在于,所述转录因子WRKY32正向调控YFT1基因的转录表达,所述转录因子WRKY32 cDNA序列如SEQ ID NO:4所示,所述YFT1基因在TEA数据库中基因ID为Solyc09g007870。
CN202011327826.0A 2020-11-24 2020-11-24 Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用 Active CN112430261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011327826.0A CN112430261B (zh) 2020-11-24 2020-11-24 Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011327826.0A CN112430261B (zh) 2020-11-24 2020-11-24 Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用

Publications (2)

Publication Number Publication Date
CN112430261A CN112430261A (zh) 2021-03-02
CN112430261B true CN112430261B (zh) 2022-06-28

Family

ID=74694106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011327826.0A Active CN112430261B (zh) 2020-11-24 2020-11-24 Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用

Country Status (1)

Country Link
CN (1) CN112430261B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518185B (zh) * 2020-05-18 2022-02-08 山东农业大学 调控番茄果实品质的转录因子及其应用
CN113061614B (zh) * 2021-03-30 2023-04-28 四川大学 番茄SlWRKY35基因在提高番茄类胡萝卜素类化合物或/和叶绿素含量中的应用
CN113430221B (zh) * 2021-07-19 2022-07-05 中国农业大学 番茄wrky37蛋白在调控番茄抗叶片衰老能力、提高番茄产量中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064426A (ko) * 2009-12-08 2011-06-15 한국생명공학연구원 토마토 유래의 뿌리 조직 특이적 프로모터 SlWRKY 및 이의 용도
CN102787124A (zh) * 2012-08-21 2012-11-21 昆明理工大学 一个番茄果实成熟基因SlNAC3及其应用
CN107012147A (zh) * 2017-04-27 2017-08-04 西南科技大学 一种来源于番茄的干旱和/或高盐诱导启动子SlWRKY8P及其应用
CN107699572A (zh) * 2016-08-03 2018-02-16 南京农业大学 一种番茄SolyWRKY54转录因子调控番茄黄化曲叶病毒的鉴定及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110064426A (ko) * 2009-12-08 2011-06-15 한국생명공학연구원 토마토 유래의 뿌리 조직 특이적 프로모터 SlWRKY 및 이의 용도
CN102787124A (zh) * 2012-08-21 2012-11-21 昆明理工大学 一个番茄果实成熟基因SlNAC3及其应用
CN107699572A (zh) * 2016-08-03 2018-02-16 南京农业大学 一种番茄SolyWRKY54转录因子调控番茄黄化曲叶病毒的鉴定及应用
CN107012147A (zh) * 2017-04-27 2017-08-04 西南科技大学 一种来源于番茄的干旱和/或高盐诱导启动子SlWRKY8P及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PREDICTED: Solanum lycopersicum probable WRKY transcription factor 32 (LOC101243902),mRNA;GenBank;《GenBank》;20180808;XM_004242548.4 *
Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening;Ling Wang;《Scientific Reports》;20171130;第7卷(第1期);第1-17页 *
The tomato WRKY32 transcription factor affects ripe fruit color by regulating YFT1, a core component of ethylene signal transduction;Weihua Zhao;《Journal of Experimental Botany》;20210331;第72卷(第12期);第4269–4282页 *
番茄后熟相关WRKY基因的表达调控;贾宁;《中国优秀博硕士学位论文全文数据库(硕士) 农业科技辑》;20200815;D048-77 *

Also Published As

Publication number Publication date
CN112430261A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
CN112430261B (zh) Wrky32调控yft1表达影响番茄果色及其在番茄品质改良中应用
Gou et al. The MYB107 transcription factor positively regulates suberin biosynthesis
CN102124111B (zh) 参与生物合成的新基因
CN109161550B (zh) 一种调控番茄果实抗坏血酸含量的SlbHLH59基因及应用方法
CA2615949C (en) Modification of flavonoid biosynthesis in plants
CN105441461B (zh) 一种三七转录因子基因PnWRKY1的应用
CN101258245A (zh) 调控植物中色素生产的组合物和方法
CN110305884B (zh) 一种提高烟草叶片茉莉酸含量的基因NtAOS1及其克隆方法与应用
Meng et al. Characterization of transcriptional expression and regulation of carotenoid cleavage dioxygenase 4b in grapes
Liu et al. Tc-MYBPA is an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao
CN116004656B (zh) 香蕉成熟相关基因MabHLH130及其应用
CN105441463B (zh) 一种三七转录因子基因PnbHLH1及其应用
CN113957086A (zh) SlBIN2基因在调控番茄果实成熟和类胡萝卜素合成中的应用
WO2009061214A1 (en) Compositions and methods for modulating pigment production in plants
CN116555284B (zh) GmBBX4基因在调控大豆异黄酮合成中的应用
CN115851765B (zh) 粉蕉成熟相关基因MaMYC2-10及其应用
CN112029794B (zh) G蛋白α亚基在提高黄瓜内源激素水杨酸含量上的应用
Chang et al. The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors
JP4998809B2 (ja) 植物の鉄欠乏耐性を向上させるポリペプチドおよびその利用
CN116675754A (zh) EMB1444-like在调控番茄成熟发育及育种中应用
CN111593059A (zh) 一种调控番茄果实颜色的基因、snp、分子标记及应用
CN114395566B (zh) 甘薯ERF转录因子IbERF4在促进植物绿原酸类物质合成中的用途
CN111139244A (zh) 毛白杨modd1基因及其应用
KR102603683B1 (ko) 종자 식물 특이 익스텐신 모티브를 포함하는 단백질을 코딩하는 식물 생장조절 유전자 및 이의 용도
CN117511970B (zh) 一种受冠菌素诱导的人参PgJOX2基因及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant