CN112420859A - 850nm波段吸收区部分耗尽光电探测器及其制备方法 - Google Patents

850nm波段吸收区部分耗尽光电探测器及其制备方法 Download PDF

Info

Publication number
CN112420859A
CN112420859A CN202011291398.0A CN202011291398A CN112420859A CN 112420859 A CN112420859 A CN 112420859A CN 202011291398 A CN202011291398 A CN 202011291398A CN 112420859 A CN112420859 A CN 112420859A
Authority
CN
China
Prior art keywords
layer
gaas
anode
absorption
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011291398.0A
Other languages
English (en)
Other versions
CN112420859B (zh
Inventor
陈佰乐
谢治阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN202011291398.0A priority Critical patent/CN112420859B/zh
Publication of CN112420859A publication Critical patent/CN112420859A/zh
Application granted granted Critical
Publication of CN112420859B publication Critical patent/CN112420859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种850nm波段吸收区部分耗尽光电探测器及其制备方法。所述光电探测器包括半导体主体、阴极、阳极、钝化薄膜、且该两个金属电极的表面与共面波导电极连接;半导体主体的结构包括依次复合的半绝缘GaAs衬底、缓冲层、阴极接触层、过渡层、耗尽GaAs吸收层、非耗尽GaAs吸收层、覆盖层、阳极接触层。制备方法为:在半绝缘GaAs衬底上依次生长出阴极接触层缓冲层、阴极接触层、过渡层等制得半导体主体;制备环形阳极、第一层台阶、阴极、第二台阶、钝化薄膜、共面波导电极。本发明可以工作于850nm波段,具有低暗电流、高响应度、高响应带宽的特点,能够满足850nm波段短距离光互联系统的需求。

Description

850nm波段吸收区部分耗尽光电探测器及其制备方法
技术领域
本发明涉及一种半导体光电探测器,具体涉及一种工作于850nm波段的基于GaAs/AlGaAs的吸收区部分耗尽光电探测器,属于光电探测器技术领域。
背景技术
在一些例如药物研发、环境气候变化模拟等领域的高性能计算系统中,对系统的数据传输速度具有很高的带宽需求。在这种短距离数据传输系统中,相较于传统的电互联,使用光互连的方式在能耗比、成本以及可靠性中更能体现出优势。现今的短距离光互联系统主要由工作在850nm波段的垂直腔面发射激光器(Vertical Cavity Surface EmittingLaser,VCSEL),多模光纤(Multi-Mode Fiber,MMF)和光电探测器构成,对光电探测器的性能要求主要包括高响应度,低噪声,以及高频率响应带宽等。目前的850nm PIN探测器通常需要高响应度和高带宽之间做取舍,无法两者兼顾。
发明内容
本发明所要解决的技术问题是:现有光电探测器无法同时满足短距离光互联系统对光电探测器的性能主要要求,主要包括高响应度,低噪声,以及高频率响应带宽。
为了解决上述技术问题,本发明提供了一种850nm波段吸收区部分耗尽光电探测器,其特征在于,包括半导体主体,半导体主体包括半绝缘GaAs衬底,半绝缘GaAs衬底上依次设有缓冲层、阴极接触层、过渡层、耗尽GaAs吸收层、非耗尽GaAs吸收层、覆盖层、阳极接触层,阴极接触层和过渡层构成第二台阶,过渡层、耗尽GaAs吸收层、非耗尽GaAs吸收层、覆盖层和阳极接触层构成第一台阶,第一台阶上设有阳极上设有阴极,第二台阶上设有阴极,阳极、阴极向同一侧的半绝缘GaAs衬底延伸,阳极的延伸部分及其两侧的阴极的延伸部分与半绝缘GaAs衬底上的镀金层构成共面波导电极;第一台阶、第二台阶、半绝缘GaAs衬底的表面设有两层钝化薄膜。
优选地,所述的耗尽GaAs吸收层、非耗尽GaAs吸收层用于吸收波长在850nm波段的光子;所述的阴极接触层、过渡层和覆盖层对波长在850nm波段的光子透明,阴极接触层用于使半导体主体与阴极之间形成欧姆接触,阳极接触层用于使半导体主体与阳极之间形成欧姆接触,钝化薄膜用于减少表面漏电流,并增加光电探测器对波长在850nm波段的光子的透射率。
优选地,所述阴极接触层采用n型重掺杂的AlGaAs材料;阳极接触层采用p型重掺杂的GaAs材料。
优选地,所述阴极过渡层、覆盖层分别采用本征和p型重掺杂的AlGaAs材料。
优选地,所述非耗尽GaAs吸收层由多个成阶梯状掺杂浓度的p型掺杂的GaAs层构成;所述耗尽GaAs吸收层采用的本征的GaAs材料。
优选地,所述缓冲层采用本征的GaAs材料。
本发明还提供了上述850nm波段吸收区部分耗尽光电探测器的制备方法,其特征在于,包括以下步骤:
步骤1):利用金属有机化学气相沉积方法在半绝缘GaAs衬底上依次生长出缓冲层、阴极接触层、过渡层、耗尽GaAs吸收层、非耗尽GaAs吸收层、覆盖层、阳极接触层;
步骤2):利用电子束蒸发技术在阳极接触层表面依次蒸镀钛、铂、金,构成环形阳极,并用快速退火炉进行退火;
步骤3):利用电感耦合等离子体增强反应离子刻蚀技术刻蚀第一层台阶,刻蚀面停止在阴极接触层内;
步骤4):利用电子束蒸发技术在阴极接触层表面依次蒸镀锗金、镍、金,构成阴极,并用快速退火炉进行退火;
步骤5):利用湿法刻蚀形成包围第一层台阶和阴极的第二层台阶,刻蚀面停止在半绝缘GaAs衬底内;
步骤6):利用硫化铵溶液和等离子体增强化学气相淀积工艺,在半绝缘GaAs衬底上、第一层台阶侧壁、第二台阶侧壁以及阳极接触层表面形成两层钝化薄膜;
步骤7):利用电镀技术在半绝缘GaAs衬底上电镀一层金,作为共面波导电极,与阴极、阳极相连。
优选地,所述步骤1)中缓冲层采用掺杂浓度为1×1015cm-3以下的本征GaAs层;阴极接触层由一层掺杂浓度为3×1018cm-3的n型AlGaAs层和一层掺杂浓度为1×1018cm-3的n型AlxGa1-xAs层组成,其中组分x为0.15;过渡层由两层掺杂浓度为1×1015cm-3以下的本征AlxGa1-xAs层组成,其中组分x分别为0.10、0.05;耗尽GaAs吸收层采用掺杂浓度为1×1015cm-3以下的本征GaAs层;非耗尽GaAs吸收层由四层掺杂浓度不同的p型GaAs层构成,其中,掺杂浓度依次为2×1017cm-3、5×1017cm-3、1×1018cm-3、2×1018cm-3;覆盖层采用一层掺杂浓度为2×1018cm-3的p型AlxGa1-xAs层,其中组分x为0.15;阳极接触层采用GaAs层,掺杂类型为p型掺杂,掺杂浓度为1×1019cm-3
更优选地,所述缓冲层的厚度为200nm,阴极接触层的厚度为1100nm,过渡层厚度为20nm,耗尽GaAs吸收层的厚度为1200nm,非耗尽GaAs吸收层中四层GaAs层厚度均为100nm,覆盖层的厚度为400nm,阳极接触层的厚度为50nm。
优选地,所述步骤2)中蒸镀的钛、铂、金的厚度分别为20nm、30nm、250nm,退火温度为440℃,时间60秒;所述步骤3)中第一层台阶为直径20μm至56μm的圆柱形;所述步骤4)中蒸镀的锗金、镍、金的厚度分别为40nm、20nm、80nm,退火温度为360℃,时间60秒;所述步骤6)中钝化薄膜的材料为氮化硅,厚度为110nm;所述步骤7)中共面波导电极的厚度为2μm。
本发明提供了一种基于GaAs/AlGaAs吸收区部分耗尽光电探测器,该探测器基于生长技术成熟的GaAs衬底,可以工作于850nm波段,具有低暗电流、高响应度、高响应带宽的特点,能够满足850nm波段短距离光互联系统的需求。
与现有850m波段的光电探测器相比,本发明的有益效果如下:
1、该光电探测器基于生长技术成熟的GaAs衬底,成本相对较低,同时材料品质能够得到保证,从而器件性能较稳定;
2、该光电探测器使用的化合物半导体材料与GaAs衬底晶格匹配,从而有较低的暗电流;
3、该光电探测器采用本征GaAs层和p型掺杂GaAs层作为吸收区,其吸收谱能够覆盖850nm波段,吸收区上下的覆盖层、过渡层和阴极接触层均采用AlGaAs材料,拥有较大的带隙,在不减少响应度的同时保证光生载流子拥有较小的渡越时间,即拥有较大的响应带宽。
4、该光电探测器采用p型掺杂GaAs材料作为非耗尽吸收层,梯度状的渐变掺杂结构会产生内建电场,加速载流子在非耗尽GaAs吸收层的扩散作用。
附图说明
图1-7为实施例提供的基于GaAs/AlGaAs 850nm波段吸收区部分耗尽光电探测器不同步骤时的示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例
一种基于GaAs/AlGaAs的850nm波段吸收区部分耗尽光电探测器的制备方法,包括以下步骤:
步骤1:利用金属有机化学气相沉积方法在半绝缘GaAs衬底a上依次生长出缓冲层b、阴极接触层c、过渡层d、耗尽GaAs吸收层e、非耗尽GaAs吸收层f、覆盖层g和阳极接触层h如图1所示;各层的参数如表1所示:
表1
材料 厚度(nm) 掺杂浓度(cm<sup>-3</sup>) 掺杂类型
GaAs阳极接触层 50 1×10<sup>19</sup> p
Al<sub>0.15</sub>Ga<sub>0.85</sub>As覆盖层 400 2×10<sup>18</sup> p
非耗尽GaAs吸收层 100 2×10<sup>18</sup> p
非耗尽GaAs吸收层 100 1×10<sup>18</sup> p
非耗尽GaAs吸收层 100 5×10<sup>17</sup> p
非耗尽GaAs吸收层 100 2×10<sup>17</sup> p
耗尽GaAs吸收层 1200 &lt;1×10<sup>15</sup> i
Al<sub>0.05</sub>Ga<sub>0.95</sub>As过渡层 10 &lt;1×10<sup>15</sup> i
Al<sub>0.10</sub>Ga<sub>0.90</sub>As过渡层 10 &lt;1×10<sup>15</sup> i
Al<sub>0.15</sub>Ga<sub>0.85</sub>As阴极接触层 100 1×10<sup>18</sup> n
Al<sub>0.15</sub>Ga<sub>0.85</sub>As阴极接触层 1000 3×10<sup>18</sup> n
GaAs缓冲层 200 i
半绝缘GaAs衬底
由表1可见,缓冲层b厚度为200nm,采用掺杂浓度为1×1015cm-3以下的本征GaAs层。
阴极接触层c的厚度为1100nm,由一层掺杂浓度为3×1018cm-3的n型AlxGa1-xAs层和一层掺杂浓度为1×1018cm-3的n型AlxGa1-xAs层组成,其中组分为x=0.15,后者用于减少杂质离子向GaAs吸收层扩散;
过渡层d厚度由两层厚度均为10nm、掺杂浓度为1×1015cm-3以下的本征AlxGa1-xAs层组成,其中组分x依次为x=0.10和x=0.05;
耗尽GaAs吸收层e的厚度为1200nm,采用掺杂浓度为1×1015cm-3以下的本征GaAs层;
非耗尽GaAs吸收层f的结构为:4层厚度均为100nm的GaAs层,掺杂类型均为p型掺杂,其中掺杂浓度依次为2×1017cm-3,5×1017cm-3,1×1018cm-3,2×1018cm-3
覆盖层g的厚度为400nm,其材料为AlxGa1-xAs,掺杂类型为p型掺杂,掺杂浓度为1×1019cm-3,其中组分为x=0.15;
阳极接触层h的厚度为50nm,采用掺杂浓度为2×1019cm-3的p型掺杂的GaAs层。
步骤2:利用电子束蒸发技术在阳极接触层表面依次蒸镀钛、铂、金,构成环形阳极2,并用快速退火炉进行快速退火,如图2所示;
步骤3:利用电感耦合等离子体增强反应离子刻蚀技术刻蚀第一层台阶1,刻蚀面停止在阴极接触层c内,如图3所示;
步骤4:利用电子束蒸发技术在阴极接触层表面依次蒸镀锗金、镍、金,构成阴极3,并用快速退火炉进行快速退火,如图4所示;
步骤5:利用湿法刻蚀形成包围第一层台阶1和阴极3的第二台阶4,刻蚀面停止在半绝缘GaAs衬底a内,如图5所示;
步骤6:利用等离子体增强化学气相淀积在半绝缘GaAs衬底上a、第一台阶1侧壁、第二台阶4侧壁以及阳极接触层h表面形成钝化薄膜5,如图6所示。
步骤7:利用电镀技术在半绝缘GaAs衬底上电镀一层金,作为共面波导电极6,与阴极、阳极相连,如图7所示。
对上述步骤制得的第一台阶直径为34μm的光电探测器进行直流伏安特性测试,用半导体器件参数分析仪(Keysight B1500A Semiconductor Device Analyzer)给予光电探测器直流偏置并测得暗电流。测试得到在-5V偏压下暗电流能够达到约500fA。
对上述步骤制得的第一台阶直径为34μm的光电探测器进行频率响应测试和响应度测试。测试得到的3dB带宽值在-0.5V偏压下能够达到17.4GHz,在850nm波长的响应度为0.5A/W。

Claims (5)

1.一种850nm波段吸收区部分耗尽光电探测器,其特征在于,包括半导体主体,半导体主体包括半绝缘GaAs衬底(a),半绝缘GaAs衬底(a)上依次设有缓冲层(b)、阴极接触层(c)、过渡层(d)、耗尽GaAs吸收层(e)、非耗尽GaAs吸收层(f)、覆盖层(g)、阳极接触层(h),阴极接触层(c)和过渡层(d)构成第二台阶(4),过渡层(d)、耗尽GaAs吸收层(e)、非耗尽GaAs吸收层(f)、覆盖层(g)和阳极接触层(h)构成第一台阶(1),第一台阶(1)上设有阳极(2)上设有阴极(3),第二台阶(4)上设有阴极(3),阳极(2)、阴极(3)向同一侧的半绝缘GaAs衬底(a)延伸,阳极(2)的延伸部分及其两侧的阴极(3)的延伸部分与半绝缘GaAs衬底(a)上的镀金层构成共面波导电极(6);第一台阶(1)、第二台阶(4)、半绝缘GaAs衬底(a)的表面设有两层钝化薄膜(5)。
2.如权利要求1所述的850nm波段吸收区部分耗尽光电探测器,其特征在于,所述的耗尽GaAs吸收层(e)、非耗尽GaAs吸收层(f)用于吸收波长在850nm波段的光子;所述的阴极接触层(c)、过渡层(d)和覆盖层(g)对波长在850nm波段的光子透明,阴极接触层(c)用于使半导体主体与阴极(3)之间形成欧姆接触,阳极接触层(h)用于使半导体主体与阳极(2)之间形成欧姆接触,钝化薄膜(5)用于减少表面漏电流,并增加光电探测器对波长在850nm波段的光子的透射率。
3.如权利要求1所述的850nm波段吸收区部分耗尽光电探测器,其特征在于,所述非耗尽GaAs吸收层(e)由多个成阶梯状掺杂浓度的p型掺杂的GaAs层构成;所述耗尽GaAs吸收层(e)采用的本征的GaAs材料。
4.如权利要求1所述的850nm波段吸收区部分耗尽光电探测器,其特征在于,所述缓冲层(b)采用掺杂浓度为1×1015cm-3以下的本征GaAs层;阴极接触层(c)由一层掺杂浓度为3×1018cm-3的n型AlGaAs层和一层掺杂浓度为1×1018cm-3的n型AlxGa1-xAs层组成,其中组分x为0.15;过渡层(d)由两层掺杂浓度为1×1015cm-3以下的本征AlxGa1-xAs层组成,其中组分x分别为0.10、0.05;耗尽GaAs吸收层(e)采用掺杂浓度为1×1015cm-3以下的本征GaAs层;非耗尽GaAs吸收层(f)由四层掺杂浓度不同的p型GaAs层构成,其中,掺杂浓度依次为2×1017cm-3、5×1017cm-3、1×1018cm-3、2×1018cm-3;覆盖层(g)采用一层掺杂浓度为2×1018cm-3的p型AlxGa1-xAs层,其中组分x为0.15;阳极接触层(h)采用GaAs层,掺杂类型为p型掺杂,掺杂浓度为1×1019cm-3
5.如权利要求4所述的850nm波段吸收区部分耗尽光电探测器,其特征在于,所述缓冲层(b)的厚度为200nm,阴极接触层(c)的厚度为1100nm,过渡层(d)厚度为20nm,耗尽GaAs吸收层(e)的厚度为1200nm,非耗尽GaAs吸收层(f)中四层GaAs层厚度均为100nm,覆盖层(g)的厚度为400nm,阳极接触层(h)的厚度为50nm。
CN202011291398.0A 2020-11-18 2020-11-18 850nm波段吸收区部分耗尽光电探测器及其制备方法 Active CN112420859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011291398.0A CN112420859B (zh) 2020-11-18 2020-11-18 850nm波段吸收区部分耗尽光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011291398.0A CN112420859B (zh) 2020-11-18 2020-11-18 850nm波段吸收区部分耗尽光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112420859A true CN112420859A (zh) 2021-02-26
CN112420859B CN112420859B (zh) 2022-05-13

Family

ID=74831661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011291398.0A Active CN112420859B (zh) 2020-11-18 2020-11-18 850nm波段吸收区部分耗尽光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112420859B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130694A (zh) * 2021-04-02 2021-07-16 上海科技大学 一种850nm波段零偏压工作的光电探测器的外延结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
US20160172523A1 (en) * 2013-05-31 2016-06-16 Tyco Electronics Svenska Holdings Ab High Speed Photodetector
CN110323289A (zh) * 2019-04-28 2019-10-11 上海科技大学 一种单载流子光电探测器
CN110854141A (zh) * 2019-11-21 2020-02-28 中国电子科技集团公司第四十四研究所 一种单片集成型平衡光电探测器芯片及制作方法
CN111430497A (zh) * 2020-03-31 2020-07-17 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160172523A1 (en) * 2013-05-31 2016-06-16 Tyco Electronics Svenska Holdings Ab High Speed Photodetector
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN110323289A (zh) * 2019-04-28 2019-10-11 上海科技大学 一种单载流子光电探测器
CN110854141A (zh) * 2019-11-21 2020-02-28 中国电子科技集团公司第四十四研究所 一种单片集成型平衡光电探测器芯片及制作方法
CN111430497A (zh) * 2020-03-31 2020-07-17 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAZALEVSKY, M 等: "AlGaAs/GaAs photodetectors for detection of luminescent light from scintillators", 《16TH RUSSIAN YOUTH CONFERENCE ON PHYSICS OF SEMICONDUCTORS AND NANOSTRUCTURES, OPTO- AND NANOELECTRONICS》 *
尚竞成 等: "新型台面型GaAs基BIB探测器的背景电流测试与分析", 《太赫兹科学与电子信息学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130694A (zh) * 2021-04-02 2021-07-16 上海科技大学 一种850nm波段零偏压工作的光电探测器的外延结构

Also Published As

Publication number Publication date
CN112420859B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN104465853B (zh) 一种雪崩光电二极管及其制作方法
Kang et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product
CN106098836B (zh) 通讯用雪崩光电二极管及其制备方法
CN110323289B (zh) 一种单载流子光电探测器
CN110212053B (zh) 一种硅基叉指型光电探测器
JPWO2008090733A1 (ja) 半導体受光素子
CN103247708A (zh) 半导体感光元件
US7598582B2 (en) Ultra low dark current pin photodetector
CN111952384B (zh) 光电探测器及其制备方法
CN116053336A (zh) 铟镓砷雪崩探测器表面陷光结构制备方法
CN106384755A (zh) InP基量子阱远红外探测器及其制作方法
CN112420859B (zh) 850nm波段吸收区部分耗尽光电探测器及其制备方法
CN113921646B (zh) 单光子探测器及其制作方法、单光子探测器阵列
Kaneda Silicon and germanium avalanche photodiodes
CN114361285A (zh) 1.55微米波段雪崩光电探测器及其制备方法
CN113707748A (zh) 外延片及光电探测器芯片
CN110808312B (zh) 一种提高光电探测器芯片产出量的制备工艺方法
CN108447940A (zh) 背靠背双吸收硅基光电探测器及制备方法
CN115295683B (zh) 一种单载流子输运的平衡探测器及其制备方法
US4894703A (en) Restricted contact, planar photodiode
Chen et al. Fabrication and characterization of novel high-speed InGaAs/InP uni-traveling-carrier photodetector for high responsivity
US4990989A (en) Restricted contact planar photodiode
CN114122191A (zh) 一种雪崩光电探测器的制备方法
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法
JP2008251881A (ja) 受光素子およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant