CN113707748A - 外延片及光电探测器芯片 - Google Patents

外延片及光电探测器芯片 Download PDF

Info

Publication number
CN113707748A
CN113707748A CN202111000369.9A CN202111000369A CN113707748A CN 113707748 A CN113707748 A CN 113707748A CN 202111000369 A CN202111000369 A CN 202111000369A CN 113707748 A CN113707748 A CN 113707748A
Authority
CN
China
Prior art keywords
layer
type
epitaxial wafer
absorption layer
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111000369.9A
Other languages
English (en)
Other versions
CN113707748B (zh
Inventor
孙博
赵泽平
焦晓飞
韩雪妍
刘建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202111000369.9A priority Critical patent/CN113707748B/zh
Publication of CN113707748A publication Critical patent/CN113707748A/zh
Application granted granted Critical
Publication of CN113707748B publication Critical patent/CN113707748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种外延片,包括:衬底(2)及依次层叠在所述衬底(2)表面的N型欧姆接触层(3)、收集层(5)、崖层(6)、过渡层、本征吸收层(9)、P型吸收层(10)、阻挡层(11)、P型欧姆接触层(12);所述P型吸收层(10)在本征吸收层(9)指向阻挡层(11)的方向上掺杂浓度逐渐增大。本发明通过将吸收层设计为本征吸收层和P型渐变吸收层,在不降低响应度的前提下,提高了探测器的带宽和饱和特性;通过添加崖层,提高了吸收层的电场强度,提高了电子漂移速度,提高了探测器带宽和饱和特性;通过在InP材料和InGaAs材料之间添加InGaAsP过渡层,减小了电子在异质结交界处的堆积,提高了探测器带宽和饱和特性。

Description

外延片及光电探测器芯片
技术领域
本发明涉及半导体器件领域,尤其涉及一种外延片及光电探测器芯片。
背景技术
随着现代社会信息化进程的不断加速,通信容量呈“爆炸式”增长,光电探测器作为光传输系统链路中的核心器件,用于实现信号的光电转换,其性能直接决定了通信系统的性能。大容量超高速的光通信系统对光电探测器提出了“宽带宽、高响应度和高饱和输入”的要求。
传统的单行载流子探测器(UTC-PD),吸收层为P型掺杂,掺杂浓度高,层内电场极低,电子主要以低速的扩散运动为主,而降低吸收层厚度又会导致响应度降低,因此难以同时实现高带宽和高响应度。
发明内容
(一)要解决的技术问题
有鉴于此,本发明针对宽带高饱和输入、高效率的实际需求提出了新的光电探测器芯片中外延片的结构,在P型吸收层下插入一层本征吸收层,提高了吸收层内电场,提高了电子漂移速度,在保持高响应度的同时,提高了器件的带宽和饱和特性。
(二)技术方案
本发明一方面提供了一种外延片,包括:衬底2及依次层叠在所述衬底2表面的N型欧姆接触层3、收集层5、崖层6、过渡层、本征吸收层9、P型吸收层10、阻挡层11、P型欧姆接触层12;所述P型吸收层10在本征吸收层9指向阻挡层11的方向上掺杂浓度逐渐增大。
可选地,所述本征吸收层9为InGaAs,且所述本征吸收层9进行低浓度掺杂,掺杂浓度不大于2.0×1016cm-3
可选地,所述P型吸收层10的材料为InGaAs,所述P型吸收层10的掺杂浓度不小于1.0×1017cm-3,且不高于1.0×1019cm-3
可选地,所述本征吸收层9和所述P型吸收层10的宽度比例为预设比例,在所述预设比例下,可获得最大的宽带。
可选地,所述过渡层包括第一过渡层7和第二过渡层8,所述第一过渡层(7)为禁带宽度1.1μm的InGaAsP,所述第二过渡层(8)禁带宽度1.4μm的InGaAsP,所述第二过渡层8靠近所述本征吸收层9。
可选地,所述过渡层进行低浓度掺杂,掺杂浓度不大于2.0×1016cm-3
可选地,所述崖层6的材料为InP,掺杂浓度大于1.0×1017cm-3,小于1.0×1018cm-3
可选地,所述收集层5和所述阻挡层11的材料为InP,所述收集层5的掺杂方式为N型掺杂,所述阻挡层11的掺杂方式为P型掺杂。
可选地,所述N型欧姆接触层3的材料为InP,掺杂方式为N型掺杂,掺杂浓度不小于1.0×1019cm-3;所述P型欧姆接触层12的材料为InGaAs,掺杂方式为P型掺杂,掺杂浓度不小于1.0×1019cm-3
本发明另一方面提供了一种应用上述所述外延片的光电探测器芯片,所述光电探测器芯片包括:外延片;增透膜1,形成于所述外延片的衬底2表面的对立面;N电极4,形成于所述外延片的N型欧姆接触层3;P电极14,形成于所述外延片的P型欧姆接触层12。
(三)有益效果
本发明具有以下有益效果:
(1)通过将吸收层设计为本征吸收层和P型渐变吸收层,在不降低响应度的前提下,提高了探测器的带宽和饱和特性。
(2)通过添加崖层,提高了吸收层的电场强度,提高了电子漂移速度,提高了探测器带宽和饱和特性。
(3)通过在InP材料和InGaAs材料之间添加InGaAsP过渡层,减小了电子在异质结交界处的堆积,提高了探测器带宽和饱和特性。
(4)通过在InP衬底背面进行抛光减薄处理和涂镀增透膜,提高了光耦合效率,提高了探测器响应度。
附图说明
图1示意性示出了本发明提供的外延片及光电探测器芯片的结构示意图。
图2示意性示出了本发明提供的外延片及光电探测器芯片的工艺流程图。
【附图标记说明】
1-增透膜;
2-衬底;
3-N型欧姆接触层;
4-N电极;
5-收集层;
6-崖层;
7-第一过渡层;
8-第二过渡层;
9-本征吸收层;
10-P型吸收层;
11-阻挡层;
12-P型欧姆接触层;
13-钝化层;
14-P电极。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提供了一种外延片,参见图1,图1示出了本发明提供的外延片的结构,包括:衬底2及依次层叠在所述衬底2表面的N型欧姆接触层3、收集层5、崖层6、过渡层、本征吸收层9、P型吸收层10、阻挡层11、P型欧姆接触层12。其中,P型吸收层10在本征吸收层9指向阻挡层11的方向上掺杂浓度逐渐增大。
在本发明一实施例中,衬底2的厚度不小于200μm,采用InP材料,为增加其导电性,可以对衬底2进行低浓度的N型掺杂,掺杂浓度1.0×1016cm-3
本征吸收层9、P型吸收层10皆为InGaAs,本征吸收层9与P型吸收层10的总厚度为200~1000nm。本征吸收层9进行低浓度掺杂以增加其导电性,掺杂浓度不大于2.0×1016cm-3,掺杂浓度低,仍可近似视为本征吸收层。P型吸收层10掺杂方式为P型渐变掺杂,从本征吸收层9指向阻挡层11的方向,掺杂浓度逐渐增大,掺杂浓度不小于1.0×1017cm-3,且不高于1.0×1019 cm-3。在P型吸收层,有效载流子为电子,电子在P型吸收层中进行扩散运动,在本征吸收层,有效载流子为电子和空穴,在电场作用下做漂移运动。渐变掺杂可以在P型吸收层内部产生内建电场,提高带宽和饱和特性。
本征吸收层9和P型吸收层10的宽度比例为预设比例,在预设比例下,可获得最大的宽带。即在吸收层固定,即响应度固定的情况下,通过调节本征吸收层9和P型吸收层10的比例,可获得最大的带宽。
过渡层为两层,靠近崖层的一层过渡层为第一过渡层7,材料为InGaAsP,Q1.1,靠近本征吸收层的一层过渡层为第二过渡层8,材料为InGaAsP,Q1.4,每层厚度为10~20nm。过渡层进行低浓度的掺杂,掺杂浓度不大于2.0×1016cm-3。通过在InP材料和InGaAs材料之间添加InGaAsP过渡层,减小了电子在异质结交界处的堆积,提高了探测器带宽和饱和特性。其中,InGaAsP Q1.1和InGaAsP Q1.4代表InGaAsP不同的组分,Q1.4和Q1.1分别表示禁带宽度是1.4μm和1.1μm。根据禁带宽度可以计算出InGaAsP四种元素的组分。
崖层6的材料为InP,厚度30~60nm,,掺杂浓度大于1.0×1017cm-3,小于1.0×1018cm-3。崖层6耗尽后的电离施主产生空间正电荷使过渡层和吸收层的电场强度增加,减少电子在耗尽区内的积累,从而提高探测器的带宽和饱和特性。
收集层5和所述阻挡层11的材料为InP,收集层5的掺杂方式为N型掺杂,阻挡层11的掺杂方式为P型掺杂。N型欧姆接触层3的材料为InP,掺杂方式为N型掺杂,掺杂浓度不小于1.0×1019 cm-3;P型欧姆接触层12的材料为InGaAs,掺杂方式为P型掺杂,掺杂浓度不小于1.0×1019cm-3
本发明还提供了一种应用上述外延片的光电探测器芯片,参见图1,光电探测器芯片包括:外延片;增透膜1,形成于所述外延片的衬底2表面的对立面;N电极4,形成于所述外延片的N型欧姆接触层3;P电极14,形成于所述外延片的P型欧姆接触层12。在本发明一实施例中,光电探测器芯片的制备流程如下:
在衬底2上生长出外延片;
从P极欧姆接触层12朝向衬底2的方向蚀刻,蚀刻至N极欧姆接触层3,形成P台台面,如图1所示;
从N极欧姆接触层3朝向衬底2的方向蚀刻至衬底2,形成N台台面,如图1所示;
在N极欧姆接触层3和P极欧姆接触层12以及P台侧壁生长一层二氧化硅钝化层13;
在钝化层13上开电极窗口,制作P电极14和N电极4;
对P电极14和N电极4进行退火合金处理;
对衬底2背面抛光减薄和生长增透膜1。
本发明通过在衬底2背面进行抛光减薄处理和涂镀增透膜2,提高了光耦合效率,提高了探测器响应度。
在本发明的一实施例中,外延片的结构为:
首先在InP衬底2上生长一层N极欧姆接触层3,材料为InP,厚度为100nm,掺杂类型为N型掺杂,杂质为硅,掺杂浓度为1.0×1019cm-3
生长收集层5,材料为InP,厚度为400nm,掺杂类型为N型掺杂,杂质为硅,掺杂浓度为1.0×1016cm-3
生长崖层6,材料为InP,厚度为50nm,掺杂类型为N型掺杂,杂质为硅,掺杂浓度为4.0×1017cm-3
生长两层过渡层,靠近崖层的一层材料为InGaAsP,Q1.1,另一层材料为InGaAsP,Q1.4,两层厚度均为15nm,掺杂类型为N型掺杂,杂质为硅,掺杂浓度为1.0×1016cm-3
生长本征吸收层9,材料为InGaAs,厚度为200nm,掺杂类型为N型掺杂,杂质为硅,掺杂浓度为1.0×1016cm-3
生长P型吸收层10。材料为InGaAs,厚度为400nm,掺杂类型为P型掺杂,杂质为锌,掺杂浓度为5.0×1017cm-3~2.0×1018cm-3,从本征吸收层9指向阻挡层11的方向,掺杂浓度逐渐增大。
生长阻挡层11,材料为InP,厚度为100nm,掺杂类型为P型掺杂,杂质为锌,掺杂浓度为1.5×1018cm-3
生长P极欧姆接触层12,材料为InGaAs,厚度为50nm,掺杂类型为P型掺杂,杂质为锌,掺杂浓度为2.0×1019cm-3
可选地,以上结构可采用MOCVD方式制作。
在本发明的另一实施例中,光电探测器芯片的工艺流程,如图2所示,流程如下:
1.清洗外延片和掩模版
采用“三氯乙烯-丙酮-乙醇”的水浴加热方法,三氯乙烯水浴加热10min,再用丙酮水浴加热5min(2组),乙醇水浴加热5min(2组),最后用去离子水反复冲洗,直至有机物去除干净,并用氮气吹干。若外延片和掩模版表面有难以去除的有机物,可采用氧气等离子体去胶的办法。
2.生长SiO2掩膜
采用PECVD方法沉积SiO2,厚度600nm。
3.光刻出P台形状
对P电极台面形成胶掩蔽,P电极台面区有胶,其余区域无胶,胶厚2um。
4.ICP刻蚀P台
首先采用HF湿法腐蚀将图形转移至SiO2层,再以二氧化硅为掩蔽采用ICP(电感耦合等离子体)法刻蚀,刻蚀至N极欧姆接触层3为止。
5.生长SiO2掩膜
采用PECVD(等离子增强化学气相沉积)方法沉积SiO2,厚度600nm。
6.光刻出N台形状
对N电极台面形成胶掩蔽,N电极台面区有胶,其余区域无胶,胶厚2um。
7.ICP刻蚀N台
采用HF湿法腐蚀将图形转移至SiO2层,再以二氧化硅为掩蔽采用ICP(电感耦合等离子体)法刻蚀,刻蚀至衬底2为止。
8.HF去SiO2
用HF+NH4F+H2O(3∶6∶10)配比液去除SiO2,将片子放入聚四氟乙烯花篮,放入配比液进行腐蚀,时间20-30s,观察表面颜色是否处理干净。腐蚀完成后按步骤1清洗干净。
9.生长SiO2钝化层
用三氯乙烯、丙酮、乙醇按步骤1分别清洗样品表面,氮气干燥后用冰点光栅溴溶液去除干刻带来的损伤层,再用浓度大于8%的硫化铵浸泡20min,去离子水冲洗并用氮气干燥,之后按步骤1清洗去除残留的硫化铵钝化液,吹干后,立即用PECVD生长一层SiO2,厚度350nm。
10.制作电极窗口
接触电极包括P电极14和N电极4。首先采用正胶光刻出电极窗口图形,使电极窗口处无胶,其他区域有胶。采用HF+NH4F+H2O(3∶6∶10)腐蚀液去除电极窗口处的钝化层,露出电极欧姆接触表面。
11.制作金属电极
在上一步后,保留光刻胶,采用磁控溅射的方式生长电极金属Ti/Au合金,泡丙酮剥离制备出金属电极。
12.退火合金
为使半导体和金属之间形成良好的欧姆接触,增加粘附性,需要对合金进行快速退火。温度为390℃,时间40s。
13.背面抛光减薄
将器件背面减薄至200μm后,再用研磨液进行抛光处理。完成上述步骤后,样品抛光面应非常光滑,使用台阶仪测量得到抛光后的表面起伏应小于5μm,方达到预期要求。
14.背面生长增透膜1
采用PECVD设备生长折射率为2,厚度为200nm的SiNx薄膜以降低抛光面的反射率,预计反射率小于1%。采用SiH4和NH3作为反应气体。沉积条件为:衬底温度为250℃,反应腔内气压为102Pa,射频功率为15W。
15.背面制备定位窗口
使用等离子体干法刻蚀去除多余的SiNx形成圆环,标明背面光入射位置。
本发明提供的外延片及光电探测器芯片具有一下有益效果:
(1)通过将吸收层设计为本征吸收层和P型渐变吸收层,在不降低响应度的前提下,提高了探测器的带宽和饱和特性。
(2)通过添加崖层,提高了吸收层的电场强度,提高了电子漂移速度,提高了探测器带宽和饱和特性。
(3)通过在InP材料和InGaAs材料之间添加InGaAsP过渡层,减小了电子在异质结交界处的堆积,提高了探测器带宽和饱和特性。同时,InP材料和InGaAs材料还具有以下优点:在光电效应中,InGaAs可以很好地响应1550nm波长的光,1550nm是通信波长,且InP和InGaAs晶格匹配程度高。
(4)通过在InP衬底背面进行抛光减薄处理和涂镀增透膜,提高了光耦合效率,提高了探测器响应度。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种外延片,其特征在于,包括:
衬底(2)及依次层叠在所述衬底(2)表面的N型欧姆接触层(3)、收集层(5)、崖层(6)、过渡层、本征吸收层(9)、P型吸收层(10)、阻挡层(11)、P型欧姆接触层(12);
所述P型吸收层(10)在本征吸收层(9)指向阻挡层(11)的方向上掺杂浓度逐渐增大。
2.根据权利要求1所述的外延片,其特征在于,所述本征吸收层(9)为InGaAs,且所述本征吸收层(9)进行低浓度掺杂,掺杂浓度不大于2.0×1016cm-3
3.根据权利要求1所述的外延片,其特征在于,所述P型吸收层(10)的材料为InGaAs,所述P型吸收层(10)的掺杂浓度不小于1.0×1017cm-3,且不高于1.0×1019cm-3
4.根据权利要求1所述的外延片,其特征在于,所述本征吸收层(9)和所述P型吸收层(10)的宽度比例为预设比例,在所述预设比例下,可获得最大的宽带。
5.根据权利要求1所述的外延片,其特征在于,所述过渡层包括第一过渡层(7)和第二过渡层(8),所述第一过渡层(7)为禁带宽度1.1μm的InGaAsP,所述第二过渡层(8)禁带宽度1.4μm的InGaAsP,其中,所述第二过渡层(8)靠近所述本征吸收层(9)。
6.根据权利要求1所述的外延片,其特征在于,所述过渡层进行低浓度掺杂,掺杂浓度不大于2.0×1016cm-3
7.根据权利要求1所述的外延片,其特征在于,所述崖层(6)的材料为InP,掺杂浓度大于1.0×1017cm-3,小于1.0×1018cm-3
8.根据权利要求1所述的外延片,其特征在于,所述收集层(5)和所述阻挡层(11)的材料为InP,所述收集层(5)的掺杂方式为N型掺杂,所述阻挡层(11)的掺杂方式为P型掺杂。
9.根据权利要求1所述的外延片,其特征在于,所述N型欧姆接触层(3)的材料为InP,掺杂方式为N型掺杂,掺杂浓度不小于1.0×1019cm-3;所述P型欧姆接触层(12)的材料为InGaAs,掺杂方式为P型掺杂,掺杂浓度不小于1.0×1019cm-3
10.一种应用权利要求1-9任一项所述的外延片的光电探测器芯片,其特征在于,所述光电探测器芯片包括:
外延片;
增透膜(1),形成于所述外延片的衬底(2)表面的对立面;
N电极(4),形成于所述外延片的N型欧姆接触层(3);
P电极(14),形成于所述外延片的P型欧姆接触层(12)。
CN202111000369.9A 2021-08-27 2021-08-27 外延片及光电探测器芯片 Active CN113707748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111000369.9A CN113707748B (zh) 2021-08-27 2021-08-27 外延片及光电探测器芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111000369.9A CN113707748B (zh) 2021-08-27 2021-08-27 外延片及光电探测器芯片

Publications (2)

Publication Number Publication Date
CN113707748A true CN113707748A (zh) 2021-11-26
CN113707748B CN113707748B (zh) 2023-02-17

Family

ID=78656392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111000369.9A Active CN113707748B (zh) 2021-08-27 2021-08-27 外延片及光电探测器芯片

Country Status (1)

Country Link
CN (1) CN113707748B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188854A (zh) * 2022-07-01 2022-10-14 中国科学院半导体研究所 一种光电探测器及其制备方法
CN117374167A (zh) * 2023-12-07 2024-01-09 上海三菲半导体有限公司 一种基于浅刻蚀的高速大功率单行载流子探测器制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017317A1 (en) * 2001-11-27 2005-01-27 Jds Uniphase Corporation Doped absorption for enhanced responsivity for high speed photodiodes
CN105789336A (zh) * 2016-04-01 2016-07-20 西安电子科技大学 基于碳化硅PIN二极管结构的α辐照闪烁体探测器
CN106505116A (zh) * 2016-11-30 2017-03-15 苏州苏纳光电有限公司 单行载流子探测器及其制作方法
CN106784123A (zh) * 2016-11-23 2017-05-31 苏州苏纳光电有限公司 单行载流子光电探测器及其制作方法
WO2019045652A2 (en) * 2017-09-04 2019-03-07 Nanyang Technological University PHOTODETECTOR
CN110444617A (zh) * 2019-08-30 2019-11-12 武汉敏芯半导体股份有限公司 一种基于InGaAs材料的光电探测器及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050017317A1 (en) * 2001-11-27 2005-01-27 Jds Uniphase Corporation Doped absorption for enhanced responsivity for high speed photodiodes
CN105789336A (zh) * 2016-04-01 2016-07-20 西安电子科技大学 基于碳化硅PIN二极管结构的α辐照闪烁体探测器
CN106784123A (zh) * 2016-11-23 2017-05-31 苏州苏纳光电有限公司 单行载流子光电探测器及其制作方法
CN106505116A (zh) * 2016-11-30 2017-03-15 苏州苏纳光电有限公司 单行载流子探测器及其制作方法
WO2019045652A2 (en) * 2017-09-04 2019-03-07 Nanyang Technological University PHOTODETECTOR
CN110444617A (zh) * 2019-08-30 2019-11-12 武汉敏芯半导体股份有限公司 一种基于InGaAs材料的光电探测器及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188854A (zh) * 2022-07-01 2022-10-14 中国科学院半导体研究所 一种光电探测器及其制备方法
CN117374167A (zh) * 2023-12-07 2024-01-09 上海三菲半导体有限公司 一种基于浅刻蚀的高速大功率单行载流子探测器制造方法
CN117374167B (zh) * 2023-12-07 2024-03-12 上海三菲半导体有限公司 一种基于浅刻蚀的高速大功率单行载流子探测器制造方法

Also Published As

Publication number Publication date
CN113707748B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US11605750B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
JP6701295B2 (ja) 太陽電池を製造する方法
US7705235B2 (en) Photovoltaic device
CN113707748B (zh) 外延片及光电探测器芯片
CN110838536A (zh) 具有多种隧道结结构的背接触太阳能电池及其制备方法
KR101948206B1 (ko) 태양 전지와, 이의 제조 방법
CN110707181B (zh) 台面型光电探测器的制作方法
CN111739975A (zh) 一种三台面结构的雪崩光电二极管及其制造方法
US10957808B2 (en) Flexible double-junction solar cell
CA1153814A (en) Control of surface recombination loss in solar cells
CN116053336A (zh) 铟镓砷雪崩探测器表面陷光结构制备方法
CN210778636U (zh) 具有多种隧道结结构的背接触太阳能电池
KR20050087248A (ko) 이층 반사방지막을 사용하는 태양전지 및 그 제조방법
CN113506832A (zh) 钝化接触结构、其制备方法以及其应用的太阳能电池
JP4765211B2 (ja) pin型受光素子
CN104617184B (zh) PIN台面型InGaAs红外探测器及其制备方法
US20160072001A1 (en) Method for fabricating crystalline photovoltaic cells
CN108447940A (zh) 背靠背双吸收硅基光电探测器及制备方法
CN117153948A (zh) 一种钝化接触太阳能电池制备方法
JP2003152205A (ja) 光電変換素子及びその製造方法
JP3207869B2 (ja) 半導体装置の製造およびパッシベーション方法
CN111312835B (zh) 单电子传输雪崩光电二极管结构及制作方法
CN103078009A (zh) 基于免等离子工艺降低暗电流的光电探测器芯片制作方法
CN117374167B (zh) 一种基于浅刻蚀的高速大功率单行载流子探测器制造方法
CN218299812U (zh) 一种雪崩光电探测器结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant