CN112409617B - 一种高分子膜及其制备方法 - Google Patents

一种高分子膜及其制备方法 Download PDF

Info

Publication number
CN112409617B
CN112409617B CN202011236863.0A CN202011236863A CN112409617B CN 112409617 B CN112409617 B CN 112409617B CN 202011236863 A CN202011236863 A CN 202011236863A CN 112409617 B CN112409617 B CN 112409617B
Authority
CN
China
Prior art keywords
parts
polymer film
stirring
urea
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011236863.0A
Other languages
English (en)
Other versions
CN112409617A (zh
Inventor
毛泽龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGYUAN RUIFENG NEW MATERIALS Co.,Ltd.
Original Assignee
Guangyuan Ruifeng New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangyuan Ruifeng New Materials Co ltd filed Critical Guangyuan Ruifeng New Materials Co ltd
Priority to CN202011236863.0A priority Critical patent/CN112409617B/zh
Publication of CN112409617A publication Critical patent/CN112409617A/zh
Application granted granted Critical
Publication of CN112409617B publication Critical patent/CN112409617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2461/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08J2461/24Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种高分子膜及其制备方法,所述高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂92‑135份、脲醛树脂20‑40份、壳聚糖12‑23份、微晶纤维素6‑10份、石墨烯微片1‑2份、纳米碳化硅8‑13份、堇青石粉6‑15份、纳米陶瓷粉8‑12份、氯化石蜡5‑9份、硬脂酸7‑16份、脂肪醇聚氧乙烯醚硫酸钠0.7‑1.3份、三甲基硅醇钾4‑6份、乙醇锌1.6‑3.5份,所述高分子膜经过制备基料、制备表面改性填料、高温剪切、塑化、热定型等步骤制得的。本发明的高分子膜的纵向拉伸强度较大,达到了127.3MPa以上,膜性能优异,可满足实际使用时的需可满足应用需求,可大力推广应用。

Description

一种高分子膜及其制备方法
技术领域
本发明属于膜制备技术领域,具体涉及一种高分子膜及其制备方法。
背景技术
锂电池近年来飞速发展,但锂电池的安全性及高性能一直是制约其发展的关键问题,隔膜是具有多孔结构的电绝缘性薄膜,主要作用是隔离正、负极并使电池内的电子不能自已穿过,同时能够让电解质液中离子在正负极间自由通过,其性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能等特性。
中国专利申请文献“复合稳定型锂电池隔膜(申请公布号:CN105006591A)”公开了一种复合稳定型锂电池隔膜,包括聚合物基膜及分散在所述聚合物基膜中的质子传导材料,所述质子传导材料是由石墨烯微片、纳米碳化硅、全氟磺酸树脂、堇青石粉和纳米陶瓷粉构成,其中石墨烯微片、纳米碳化硅、全氟磺酸树脂、堇青石粉和纳米陶瓷粉的质量比为2:3:20:0.5:1.5。该发明改变传统质子传导材料,通过加入石墨烯微片等高性能材料,使所制备电解质膜不仅能在使用时保证良好的传导性,而且还能在废弃后被微生物降解,减少电解质膜对环境的危害。但是其纵向拉伸强度较差,无法满足实际使用时的需求。
发明内容
本发明提供一种高分子膜及其制备方法,以解决现有技术制得的高分子膜存在纵向拉伸强度较差的问题。
为了解决以上技术问题,本发明采用以下技术方案:
一种高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂92-135份、脲醛树脂20-40份、壳聚糖12-23份、微晶纤维素6-10份、石墨烯微片1-2份、纳米碳化硅8-13份、堇青石粉6-15份、纳米陶瓷粉8-12份、氯化石蜡5-9份、硬脂酸7-16份、脂肪醇聚氧乙烯醚硫酸钠0.7-1.3份、三甲基硅醇钾4-6份、乙醇锌1.6-3.5份;
所述高分子膜的制备方法,包括如下步骤:
S1:将全氟磺酸树脂、脲醛树脂升温后熔融后得到液体胶料,然后将氯化石蜡和硬脂酸加入到液体胶料中,继续升温搅拌,冷却至室温得到基料;
S2:将微晶纤维素、石墨烯微片、纳米碳化硅、堇青石粉、纳米陶瓷粉混合均匀,升温后搅拌,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温后搅拌,冷却至室温得到表面改性填料;
S3:将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温后搅拌,接着于挤出机中,高温剪切,塑化,搅拌,共混,得到混合熔体,然后将熔体输送至模头中,在急速冷辊上冷却固化,得到片材,然后进行双向拉伸,萃取,热定型后得到高分子膜。
进一步地,所述的高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂115份、脲醛树脂32份、壳聚糖18份、微晶纤维素9份、石墨烯微片1.6份、纳米碳化硅10份、堇青石粉9份、纳米陶瓷粉10份、氯化石蜡8份、硬脂酸12份、脂肪醇聚氧乙烯醚硫酸钠1份、三甲基硅醇钾5份、乙醇锌3份。
进一步地,步骤S1中,将全氟磺酸树脂、脲醛树脂升温至135-152℃后熔融后得到液体胶料。
进一步地,步骤S1中,将氯化石蜡和硬脂酸加入到液体胶料中,继续升温至172-185℃搅拌,冷却至室温得到基料。
进一步地,搅拌的转速为1200-1400r/min。
进一步地,在搅拌的转速为1200-1400r/min下搅拌0.7-1.5h。
进一步地,步骤S2中,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温至140-156℃后于1100-1300r/min转速搅拌1.5-2.5h,冷却至室温得到表面改性填料。
进一步地,步骤S3中,将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温至132-145℃后于1000-1200r/min转速搅拌1-1.5h。
进一步地,步骤S3中,所述挤出机为双螺杆挤出机。
进一步地,步骤S3中,于136-154℃塑化8-25min。
本发明具有以下有益效果:
(1)本发明的高分子膜的纵向拉伸强度较大,达到了127.3MPa以上,膜性能优异,可满足实际使用时的需求,可大力推广应用。
(2)脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌同时添加在制备用于高分子膜中起到了协同作用,协同提高了纵向拉伸强度,这是因为:脂肪醇聚氧乙烯醚硫酸钠具有良好的活化和分散作用,能够增大全氟磺酸树脂、脲醛树脂表面的孔隙,使三甲基硅醇钾能够渗透全氟磺酸树脂、脲醛树脂内部而形成稳固的连接结构,使得脂肪醇聚氧乙烯醚硫酸钠能够促进乙醇锌与全氟磺酸树脂、脲醛树脂中的作用;三甲基硅醇钾具有极强的渗透能力,能够提高全氟磺酸树脂、脲醛树脂与乙醇锌间的粘附力,使其在全氟磺酸树脂、脲醛树脂中均匀分散,为全氟磺酸树脂、脲醛树脂的表面改性提供着力点,有利于提高高分子膜的纵向拉伸强度。
(3)本发明制得的高分子膜的纵向拉伸强度明显优于现有技术制得的高分子膜的纵向拉伸强,至少高于84.8%,解决了现有技术制得的高分子膜存在着纵向拉伸强度较差的技术问题。
具体实施方式
为便于更好地理解本发明,通过以下实例加以说明,这些实例属于本发明的保护范围,但不限制本发明的保护范围。
在实施例中,一种高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂92-135份、脲醛树脂20-40份、壳聚糖12-23份、微晶纤维素6-10份、石墨烯微片1-2份、纳米碳化硅8-13份、堇青石粉6-15份、纳米陶瓷粉8-12份、氯化石蜡5-9份、硬脂酸7-16份、脂肪醇聚氧乙烯醚硫酸钠0.7-1.3份、三甲基硅醇钾4-6份、乙醇锌1.6-3.5份;
所述高分子膜的制备方法,包括如下步骤:
S1:将全氟磺酸树脂、脲醛树脂升温至135-152℃后熔融后得到液体胶料,然后将氯化石蜡和硬脂酸加入到液体胶料中,继续升温至172-185℃,于1200-1400r/min转速搅拌0.7-1.5h,冷却至室温得到基料;
S2:将微晶纤维素、石墨烯微片、纳米碳化硅、堇青石粉、纳米陶瓷粉混合均匀,升温后搅拌,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温至140-156℃后于1100-1300r/min转速搅拌1.5-2.5h,冷却至室温得到表面改性填料;
S3:将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温至132-145℃后于1000-1200r/min转速搅拌1-1.5h,接着于双螺杆挤出机中,高温剪切,于136-154℃塑化8-25min,搅拌,共混,得到混合熔体,然后将熔体输送至模头中,在急速冷辊上冷却固化,得到片材,然后进行双向拉伸,萃取,热定型后得到高分子膜。
下面通过更具体实施例对本发明进行说明。
实施例1
一种高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂95份、脲醛树脂22份、壳聚糖14份、微晶纤维素6份、石墨烯微片1份、纳米碳化硅8份、堇青石粉7份、纳米陶瓷粉8份、氯化石蜡5份、硬脂酸7份、脂肪醇聚氧乙烯醚硫酸钠0.8份、三甲基硅醇钾4.2份、乙醇锌2份;
所述高分子膜的制备方法,包括如下步骤:
S1:将全氟磺酸树脂、脲醛树脂升温至138℃后熔融后得到液体胶料,然后将氯化石蜡和硬脂酸加入到液体胶料中,继续升温至175℃,于1200r/min转速搅拌1.5h,冷却至室温得到基料;
S2:将微晶纤维素、石墨烯微片、纳米碳化硅、堇青石粉、纳米陶瓷粉混合均匀,升温后搅拌,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温至142℃后于1100r/min转速搅拌2.5h,冷却至室温得到表面改性填料;
S3:将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温至134℃后于1000r/min转速搅拌1.5h,接着于双螺杆挤出机中,高温剪切,于138℃塑化23min,搅拌,共混,得到混合熔体,然后将熔体输送至模头中,在急速冷辊上冷却固化,得到片材,然后进行双向拉伸,萃取,热定型后得到高分子膜。
实施例2
一种高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂115份、脲醛树脂32份、壳聚糖18份、微晶纤维素9份、石墨烯微片1.6份、纳米碳化硅10份、堇青石粉9份、纳米陶瓷粉10份、氯化石蜡8份、硬脂酸12份、脂肪醇聚氧乙烯醚硫酸钠1份、三甲基硅醇钾5份、乙醇锌3份;
所述高分子膜的制备方法,包括如下步骤:
S1:将全氟磺酸树脂、脲醛树脂升温至145℃后熔融后得到液体胶料,然后将氯化石蜡和硬脂酸加入到液体胶料中,继续升温至180℃,于1300r/min转速搅拌1h,冷却至室温得到基料;
S2:将微晶纤维素、石墨烯微片、纳米碳化硅、堇青石粉、纳米陶瓷粉混合均匀,升温后搅拌,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温至150℃后于1200r/min转速搅拌2h,冷却至室温得到表面改性填料;
S3:将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温至140℃后于1100r/min转速搅拌1.3h,接着于双螺杆挤出机中,高温剪切,于145℃塑化18min,搅拌,共混,得到混合熔体,然后将熔体输送至模头中,在急速冷辊上冷却固化,得到片材,然后进行双向拉伸,萃取,热定型后得到高分子膜。
实施例3
一种高分子膜,以重量份为单位,包括以下原料:全氟磺酸树脂130份、脲醛树脂38份、壳聚糖21份、微晶纤维素10份、石墨烯微片2份、纳米碳化硅12份、堇青石粉14份、纳米陶瓷粉12份、氯化石蜡9份、硬脂酸15份、脂肪醇聚氧乙烯醚硫酸钠1.2份、三甲基硅醇钾6份、乙醇锌3.2份;
所述高分子膜的制备方法,包括如下步骤:
S1:将全氟磺酸树脂、脲醛树脂升温至150℃后熔融后得到液体胶料,然后将氯化石蜡和硬脂酸加入到液体胶料中,继续升温至182℃,于1400r/min转速搅拌0.8h,冷却至室温得到基料;
S2:将微晶纤维素、石墨烯微片、纳米碳化硅、堇青石粉、纳米陶瓷粉混合均匀,升温后搅拌,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温至152℃后于1300r/min转速搅拌1.7h,冷却至室温得到表面改性填料;
S3:将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温至143℃后于1200r/min转速搅拌1h,接着于双螺杆挤出机中,高温剪切,于150℃塑化10min,搅拌,共混,得到混合熔体,然后将熔体输送至模头中,在急速冷辊上冷却固化,得到片材,然后进行双向拉伸,萃取,热定型后得到高分子膜。
对比例1
与实施例2的制备工艺基本相同,唯有不同的是制备高分子膜的原料中缺少脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌。
对比例2
与实施例2的制备工艺基本相同,唯有不同的是制备高分子膜的原料中缺少脂肪醇聚氧乙烯醚硫酸钠。
对比例3
与实施例2的制备工艺基本相同,唯有不同的是制备高分子膜的原料中缺少三甲基硅醇钾。
对比例4
与实施例2的制备工艺基本相同,唯有不同的是制备高分子膜的原料中缺少乙醇锌。
对比例5
采用中国专利申请文献“复合稳定型锂电池隔膜”(申请公布号:CN105006591A)实施例1的工艺制备高分子膜。
参照GB/T1040.3-2006《塑料拉伸性能的检测》的标准对实施例1-3和对比例1-5的高分子膜进行纵向拉伸强度的检测,结果见下表:
实验项目 纵向拉伸强度(MPa)
实施例1 127.3
实施例2 138.2
实施例3 132.8
对比例1 84.6
对比例2 119.1
对比例3 122.4
对比例4 125.8
对比例5 68.9
(1)由实施例1-3的数据可知,本发明的高分子膜的纵向拉伸强度较大,达到了127.3MPa以上,可见高分子膜性能优异。
(2)由实施例2和对比例1-4的数据可见,脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌同时添加在制备用于高分子膜中起到了协同作用,协同提高了纵向拉伸强度,这是因为:
脂肪醇聚氧乙烯醚硫酸钠具有良好的活化和分散作用,能够增大全氟磺酸树脂、脲醛树脂表面的孔隙,使三甲基硅醇钾能够渗透全氟磺酸树脂、脲醛树脂内部而形成稳固的连接结构,使得脂肪醇聚氧乙烯醚硫酸钠能够促进乙醇锌与全氟磺酸树脂、脲醛树脂中的作用;三甲基硅醇钾具有极强的渗透能力,能够提高全氟磺酸树脂、脲醛树脂与乙醇锌间的粘附力,使其在全氟磺酸树脂、脲醛树脂中均匀分散,为全氟磺酸树脂、脲醛树脂的表面改性提供着力点,有利于提高高分子膜的纵向拉伸强度。
(3)由实施例1-3和对比例5的数据可见,本发明制得的高分子膜的纵向拉伸强度明显优于现有技术制得的高分子膜的纵向拉伸强,至少高于84.8%,解决了现有技术制得的高分子膜存在着纵向拉伸强度较差的技术问题。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高分子膜,其特征在于,以重量份为单位,包括以下原料:全氟磺酸树脂92-135份、脲醛树脂20-40份、壳聚糖12-23份、微晶纤维素6-10份、石墨烯微片1-2份、纳米碳化硅8-13份、堇青石粉6-15份、纳米陶瓷粉8-12份、氯化石蜡5-9份、硬脂酸7-16份、脂肪醇聚氧乙烯醚硫酸钠0.7-1.3份、三甲基硅醇钾4-6份、乙醇锌1.6-3.5份;
所述高分子膜的制备方法,包括如下步骤:
S1:将全氟磺酸树脂、脲醛树脂升温后熔融后得到液体胶料,然后将氯化石蜡和硬脂酸加入到液体胶料中,继续升温搅拌,冷却至室温得到基料;
S2:将微晶纤维素、石墨烯微片、纳米碳化硅、堇青石粉、纳米陶瓷粉混合均匀,升温后搅拌,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温后搅拌,冷却至室温得到表面改性填料;
S3:将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温后搅拌,接着于挤出机中,高温剪切,塑化,搅拌,共混,得到混合熔体,然后将熔体输送至模头中,在急速冷辊上冷却固化,得到片材,然后进行双向拉伸,萃取,热定型后得到高分子膜。
2.根据权利要求1所述的高分子膜,其特征在于,以重量份为单位,包括以下原料:全氟磺酸树脂115份、脲醛树脂32份、壳聚糖18份、微晶纤维素9份、石墨烯微片1.6份、纳米碳化硅10份、堇青石粉9份、纳米陶瓷粉10份、氯化石蜡8份、硬脂酸12份、脂肪醇聚氧乙烯醚硫酸钠1份、三甲基硅醇钾5份、乙醇锌3份。
3.根据权利要求1所述的高分子膜的制备方法,其特征在于,步骤S1中,将全氟磺酸树脂、脲醛树脂升温至135-152℃后熔融后得到液体胶料。
4.根据权利要求1所述的高分子膜的制备方法,其特征在于,步骤S1中,将氯化石蜡和硬脂酸加入到液体胶料中,继续升温至172-185℃搅拌,冷却至室温得到基料。
5.根据权利要求4所述的高分子膜的制备方法,其特征在于,搅拌的转速为1200-1400r/min。
6.根据权利要求5所述的高分子膜的制备方法,其特征在于,在搅拌的转速为1200-1400r/min下搅拌0.7-1.5h。
7.根据权利要求1所述的高分子膜的制备方法,其特征在于,步骤S2中,加入脂肪醇聚氧乙烯醚硫酸钠、三甲基硅醇钾、乙醇锌混合均匀,升温至140-156℃后于1100-1300r/min转速搅拌1.5-2.5h,冷却至室温得到表面改性填料。
8.根据权利要求1所述的高分子膜的制备方法,其特征在于,步骤S3中,将步骤S1制得的基料、步骤S2制得的表面改性填料和壳聚糖升温至132-145℃后于1000-1200r/min转速搅拌1-1.5h。
9.根据权利要求1所述的高分子膜的制备方法,其特征在于,步骤S3中,所述挤出机为双螺杆挤出机。
10.根据权利要求1所述的高分子膜的制备方法,其特征在于,步骤S3中,于136-154℃塑化8-25min。
CN202011236863.0A 2020-11-09 2020-11-09 一种高分子膜及其制备方法 Active CN112409617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011236863.0A CN112409617B (zh) 2020-11-09 2020-11-09 一种高分子膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011236863.0A CN112409617B (zh) 2020-11-09 2020-11-09 一种高分子膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112409617A CN112409617A (zh) 2021-02-26
CN112409617B true CN112409617B (zh) 2021-07-30

Family

ID=74780720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011236863.0A Active CN112409617B (zh) 2020-11-09 2020-11-09 一种高分子膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112409617B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471464B (zh) * 2021-05-19 2022-07-08 深圳先进技术研究院 一种电池隔膜用材料、材料制备方法及电池隔膜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006591A (zh) * 2015-07-20 2015-10-28 孙晨 复合稳定型锂电池隔膜
CN108565383A (zh) * 2018-05-03 2018-09-21 东莞理工学院 一种高韧性锂电池隔膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668900B (zh) * 2018-01-18 2019-08-11 行政院原子能委員會核能研究所 具有低阻抗低滲透雙功能液流電池隔離膜製法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006591A (zh) * 2015-07-20 2015-10-28 孙晨 复合稳定型锂电池隔膜
CN108565383A (zh) * 2018-05-03 2018-09-21 东莞理工学院 一种高韧性锂电池隔膜及其制备方法

Also Published As

Publication number Publication date
CN112409617A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN111086181A (zh) 一种锂电池隔膜的制备方法
CN101826606A (zh) 聚四氟乙烯锂离子电池隔膜及制备方法
WO2013078890A1 (zh) 一种动力锂电池隔膜的制备方法
CN112409617B (zh) 一种高分子膜及其制备方法
CN103730619A (zh) 一种高强度的锂离子电池用隔膜的制备方法
CN110289383B (zh) 一种锂电池动力电池耐高温微孔薄膜材料及其制备方法
WO2022179064A1 (zh) 一种固态电解质及其应用
CN112670665A (zh) 一种高性能锂电池隔膜及其制备方法
CN112952295B (zh) 一种聚烯烃-纤维素复合隔膜及其制备方法
WO2020019203A1 (zh) 锂电池隔膜及其制备方法
CN110181837B (zh) 锂离子二次电池隔膜控制孔径的生产方法
CN113937354A (zh) 一种制备固态电解质膜工艺改进方法
CN110635092A (zh) 极性聚烯烃隔膜及其制备方法
CN107538875B (zh) 一种适用于锂离子电池外包装的尼龙薄膜
CN112993294A (zh) 一种燃料电池用碳塑复合双极板及其制备与应用
CN112831130B (zh) 一种聚4-甲基-1-戊烯微孔膜及其制备方法
CN111909408B (zh) 一种用于高分子隔膜的无极复合微孔膜
CN111933881B (zh) 一种微孔性聚合物膜
CN112952296A (zh) 一种离子膜及其制备方法以及半固态电解质电池
CN111933871B (zh) 一种多孔膜及其应用
CN113146911A (zh) 一种耐高温隔膜、其干法制备方法和用途
CN117254053B (zh) 一种高导电双极板及其制备方法与应用
CN113659285A (zh) 一种锂离子电池用聚丙烯隔膜及其制备方法
CN117613516B (zh) 一种隔膜及其制备方法与应用
CN115764159B (zh) 三层锂电池隔膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210712

Address after: 628000 Yuanjiaba Industrial Park, Guangyuan economic and Technological Development Zone, Guangyuan City, Sichuan Province

Applicant after: GUANGYUAN RUIFENG NEW MATERIALS Co.,Ltd.

Address before: 650500 Kunming University of Technology, 727 Jingming South Road, Chenggong District, Kunming City, Yunnan Province

Applicant before: Mao Zelong

GR01 Patent grant
GR01 Patent grant