CN112409253A - 一种催化动力学拆分合成手性α-叔胺的方法 - Google Patents

一种催化动力学拆分合成手性α-叔胺的方法 Download PDF

Info

Publication number
CN112409253A
CN112409253A CN202011361366.3A CN202011361366A CN112409253A CN 112409253 A CN112409253 A CN 112409253A CN 202011361366 A CN202011361366 A CN 202011361366A CN 112409253 A CN112409253 A CN 112409253A
Authority
CN
China
Prior art keywords
reaction
compound
formula
alkyl
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011361366.3A
Other languages
English (en)
Other versions
CN112409253B (zh
Inventor
杨晓瑜
陈运荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN202011361366.3A priority Critical patent/CN112409253B/zh
Publication of CN112409253A publication Critical patent/CN112409253A/zh
Application granted granted Critical
Publication of CN112409253B publication Critical patent/CN112409253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/233Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/361,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D267/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D267/02Seven-membered rings
    • C07D267/08Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D267/12Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D267/14Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D267/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D267/02Seven-membered rings
    • C07D267/08Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D267/12Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D267/16Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with two six-membered rings
    • C07D267/20[b, f]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/161,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D281/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D281/02Seven-membered rings
    • C07D281/04Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D281/08Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D281/10Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D281/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D281/02Seven-membered rings
    • C07D281/04Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D281/08Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D281/12Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with two six-membered rings
    • C07D281/16[b, f]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及有机化学领域,特别是涉及一种催化动力学拆分合成手性α‑叔胺的方法。本发明提供一种手性α‑叔胺的拆分合成方法,包括:将消旋的式A化合物在催化剂存在的条件下与偶氮二甲酸酯进行不对称亲电芳香取代反应,以提供(R)或(S)构型的式A化合物和与式A化合物相反构型的式C化合物。本发明所提供的手性α‑叔胺的拆分合成方法,具有动力学拆分效果好、反应的底物适用性广、原料易得、催化活性高、反应便于放大,反应操作简单等优点,具有良好的产业化前景。

Description

一种催化动力学拆分合成手性α-叔胺的方法
技术领域
本发明涉及有机化学领域,特别是涉及一种催化动力学拆分合成手性α-叔胺的方法。
背景技术
手性α-叔胺结构广泛存在于具有生理活性的天然产物和药物分子中,是一类重要的有机化合物。然而相较于手性α-仲胺不对称催化合成的快速发展,高效不对称催化合成手性α-叔胺的方法发展仍较为缓慢,其可能的原因是处于氨基α-位的三个基团中由于缺少小立体位阻的氢导致立体区分比较困难,同时该位点较大的立体位阻作用也限制对其的高效合成。目前合成手性α-叔胺的直接方法是碳亲核试剂对酮亚胺的不对称加成反应,但目前该方法受限于需要使用一些较为特殊的酮亚胺底物,例如在α-位连有吸电子基团的活化酮亚胺或者/以及环内endo-型酮亚胺(Chem.Commun.2018,54,10394)。通过碳亲核试剂和偶氮化合物或亚硝基化合物的不对称亲电胺化反应也可应用于α-叔胺的不对称合成,但该方法受限于:1)碳亲核试剂需是一些活泼的底物,例如醛、酮、氧化吲哚、1,3-二羰基化合物等;2)为得到手性α-叔胺,以上反应的产物往往需要经过一步或者多步的官能团转换(Synthesis 2014,46,2983)。
动力学拆分是合成手性化合物的一种实用方法,然而由于胺基较强的亲核性,相比于醇的动力学拆分,胺类化合物的动力学拆分更为困难(Angew.Chem.Int.Ed.2011,50,6012),特别是对于α-叔胺类底物的动力学拆分,至今仍未有通用的策略被报道。
综上所述,目前发展的不对称合成手性α-叔胺的反应类型较少,底物适用性也存在一些限制。因此,发展一种新颖、高效的不对称催化动力学拆分合成手性α-叔胺的通用方法具有很大的合成意义。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种手性α-叔胺的拆分合成方法,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本发明提供一种手性α-叔胺的拆分合成方法,包括:
将消旋的式A化合物在催化剂存在的条件下与偶氮二甲酸酯进行不对称亲电芳香取代反应,以提供(R)或(S)构型的式A化合物和与式A化合物相反构型的式C化合物,反应方程式如下:
Figure BDA0002804062730000021
其中,R1、R2各自独立地选自H,C1-C8烷基,C1-C8烯基,C1-C8炔基,取代基选自卤素、C1-C6烷基、C1-C6烷氧基的取代或未取代的芳基,芳基烷基,杂芳基,-OC(O)R’,R’选自H、C1-C6烷基;
X选自NR”,O,S,C(O)OR”’,C(O)R”’,或不存在,R”选自H,C1-C6烷基,R”’选自C1-C6烷基;
Y选自C,或不存在;
R3、R6各自独立地选自H,C1-C6烷基,C1-C6烷氧基,或与它们所连接的原子一起形成稠合的取代基选自C1-C6烷氧基的取代或未取代的芳基;
R4选自H、C1-C8烷基、芳基、卤素、C1-C6烷氧基;
R5选自C1-C8烷基、芳基、芳基烷基;
所述催化剂选自手性磷酸催化剂。
具体实施方式
为了使本发明的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本发明进行进一步详细说明,熟悉此技术的人士可由本说明书所揭露的内容容易地了解本申请发明的其他优点及功效。
本发明发明人经过大量实践研究,意外发现一种通过催化动力学拆分合成手性α-叔胺的方法,所述方法具有反应选择性系数高、底物适用性广、催化效率高、操作简单、成本低廉、环境友好、易于放大等优点,在此基础上完成了本发明。
本发明提供一种手性α-叔胺的拆分合成方法,包括:
将消旋的式A化合物在催化剂存在的条件下与偶氮二甲酸酯进行不对称亲电芳香取代反应,以提供(R)或(S)构型的式A化合物和与式A化合物相反构型的式C化合物:
Figure BDA0002804062730000022
其中,R1、R2各自独立地选自H,C1-C8烷基,C1-C8烯基,C1-C8炔基,取代基选自卤素、C1-C6烷基、C1-C6烷氧基的取代或未取代的芳基,芳基烷基,杂芳基,-OC(O)R’,R’选自C1-C6烷基;
X选自NR”,O,S,C(O)OR”’,C(O)R”’,或不存在,R”选自H,C1-C6烷基,R”’选自C1-C6烷基;
Y选自C,或不存在;
R3、R6各自独立地选自H,C1-C6烷基,C1-C6烷氧基,或与它们所连接的原子一起形成稠合的取代基选自C1-C6烷氧基的取代或未取代的芳基;
R4选自H、C1-C8烷基、芳基、卤素、C1-C6烷氧基;
R5选自C1-C8烷基、芳基、芳基烷基;
所述催化剂选自手性磷酸催化剂。
本申请中,“烷基”通常指饱和的脂肪族基团,可以是有直链或支链的。例如,C1-C8烷基通常指1个、2个、3个、4个、5个、6个、7个、8个碳原子的烷基基团。具体的烷基基团可以是例如甲基、乙基、丙基、正丙基、异丙基、丁基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、庚基、辛基等。
本申请中,“烯基”通常指包含在任意位置具有1个以上双键的直链或支链状烃基,可以是有直链或支链的。例如,C1-C8烯基通常指1个、2个、3个、4个、5个、6个、7个、8个碳原子的烯基基团。具体的烯基基团可以是例如乙烯基、烯丙基、丙烯基、异丙烯基、丁烯基、异丁烯基、异戊二烯基(prenyl)、丁二烯基、戊烯基(pentenyl)、异戊烯基、戊二烯基、己烯基、异己烯基、己二烯基、庚烯基、辛烯基等。
本申请中,“炔基”通常指包含在任意位置具有1个以上三键的直链或支链状烃基,可以是有直链或支链的。例如,C1-C8炔基通常指1个、2个、3个、4个、5个、6个、7个、8个碳原子的炔基基团。具体的炔基基团可以是例如乙炔基、丙炔基、丁炔基、戊炔基、己炔基、庚炔基、辛炔基等。
本申请中,“卤素”通常指氟、氯、溴或碘。
本申请中,“烷氧基”表示上述“烷基”键合于氧原子而成的基团。例如,C1-C6烷氧基通常指1个、2个、3个、4个、5个、6个碳原子的烷氧基基团。具体的烷氧基基团可以是例如甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、叔丁氧基、异丁氧基、仲丁氧基、戊氧基、异戊氧基、己氧基等。
本申请中,“芳基”通常指具有至少一个芳香环的环体系(例如,单环或双环以上)、且没有杂原子的基团。具体的芳基基团可以是例如苯基、萘基、蒽基、菲基等。本发明中的芳基是可选的至少单取代的5或6元环体系,取代基可以选自卤素、C1-C6烷基、C1-C6烷氧基等,当为多取代时,至少部分的取代基可以与它们相连的原子一起形成稠合于该芳基基团的环体系,例如,杂环烷基(例如,二氧戊环)等。
本申请中,“芳基烷基”通常包含直链或支链的烷基(如上所定义),该烷基键合于芳基上。具体的芳基烷基基团可以是例如苄基等。
本发明中,“杂芳基”通常指具有至少一个芳族环并且可以任选地含有一个或多个选自N、O的杂原子的杂环体系。具体的杂芳基基团可以是例如呋喃、苯并呋喃、吡咯、吡啶、嘧啶、哒嗪、吡嗪、喹啉、异喹啉、酞嗪、三唑、吡唑、异恶唑、吲哚、苯并三唑、苯并二氧戊环、苯并二恶烷、苯并咪唑、咔唑和喹唑啉等。本发明中的杂芳基是可选的至少单取代的5或6元环体系。
在本发明一具体实施例中,R1选自取代基选自卤素、C1-C6烷基、C1-C6烷氧基的取代或未取代的芳基,杂芳基。
在本发明一具体实施例中,R2选自C1-C8烷基、C1-C8烯基、芳基,芳基烷基。
在本发明一具体实施例中,X选自NR”,O,S,或不存在,R”选自H,C1-C6烷基。
在本发明一具体实施例中,Y选自C,或不存在。
在本发明一具体实施例中,R3、R6各自独立地选自H,C1-C6烷基,C1-C6烷氧基,或与它们所连接的原子一起形成稠合的取代基选自C1-C6烷氧基的取代或未取代的芳基。
在本发明一具体实施例中,R4选自H。
在本发明一具体实施例中,R5选自芳基烷基。
在本发明一更具体的实施例中,所述式A化合物选自化学结构式如下之一所示的化合物:
Figure BDA0002804062730000041
Figure BDA0002804062730000051
上述不对称亲电芳香取代反应中,手性磷酸催化剂通常为
Figure BDA0002804062730000053
酸催化剂,这一类手性磷酸催化剂通常可以具有SPINOL骨架、BINOL骨架、或H8-BINOL骨架等。具体来说,所述手性磷酸催化剂可以选自但不限于化学结构式如下之一所示的化合物,或这些催化剂的对映体:
Figure BDA0002804062730000052
其中,Rcat1和Rcat2可以为相同的基团,也可以为不同的基团,Rcat1和Rcat2各自独立地选自苯基、2,4,6-三甲基苯基、2,4,6-三环己基苯基、2,4,6-三异丙基苯基、1-萘基、2-萘基、取代或未取代的、单取代或多取代的9-蒽基、取代或未取代的、单取代或多取代的9-菲基,其中,取代基选自C1-C8烷基、C4-C14芳基、C1-C6烷氧基、氨基、卤原子、氰基、-C(O)ORc’,-C(O)Rc’,-OC(O)Rc”、-NC(O)Rc”,其中,Rc’选自C1-C6烷基,Rc”选自H,C1-C6烷基。
上述不对称亲电芳香取代反应中,手性磷酸催化剂的使用量通常可以是催化量的,例如,式A化合物与手性磷酸催化剂的摩尔比可以为1:0.001~0.5、1:0.001~0.01、1:0.01~0.1、1:0.1~0.3、或1:0.3~0.5,在本发明一具体实施例中,式A化合物与手性磷酸催化剂的摩尔比可以为1:0.1~0.02。
上述不对称亲电芳香取代反应中,反应体系中式A化合物的用量相对于偶氮二甲酸酯通常是可以被调整的,从而可以保证反应的转化率、并能够使反应充分正向,例如,式A化合物与偶氮二甲酸酯的摩尔比可以为1:0.5~1.1、1:0.5~0.55、1:0.55~0.6、1:0.6~0.65、1:0.65~0.7、1:0.7~0.75、1:0.75~0.8、1:0.8~0.85、1:0.85~0.9、1:0.9~0.95、1:0.95~1、1:1~1.05、或1:1.05~1.1,在本发明一具体实施例中,式A化合物与偶氮二甲酸酯的摩尔比为1:0.55~0.65。
上述不对称亲电芳香取代反应中,反应通常可以在溶剂存在的条件下进行,不对称亲电芳香取代反应中所使用的溶剂通常可以是非质子溶剂、且通常是反应体系的良溶剂。例如,不对称亲电芳香取代反应中所使用的溶剂具体可以是卤代烷烃类溶剂、芳香类溶剂等,在本发明一具体实施例中,不对称亲电芳香取代反应中所使用的溶剂可以是氯仿、二氯甲烷、甲苯、苯等中的一种或多种的组合。再例如,不对称亲电芳香取代反应中溶剂的使用量可以参照于式A化合物在体系中的浓度,例如,式A化合物在反应体系汇总的浓度可以为0.3~0.005mmol/mL、0.3~0.2mmol/mL、0.2~0.1mmol/mL、0.1~0.05mmol/mL、0.05~0.03mmol/mL、0.03~0.02mmol/mL、0.02~0.0125mmol/mL、或0.0125~0.005mmol/mL,在本发明一具体实施例中,式A化合物在反应体系汇总的浓度可以为0.1~0.0125mmol/mL。
上述不对称亲电芳香取代反应中,反应通常需要在无水条件下进行,其原因主要是由于反应体系中涉及催化剂与式A化合物间形成氢键从而活化A化合物并控制反应的立体选择性。
上述不对称亲电芳香取代反应中,反应通常需要在低温下进行,例如,不对称亲电芳香取代反应的反应温度可以为-80℃~50℃、-80℃~-70℃、-70℃~-60℃、-60℃~-50℃、-50℃~-40℃、-40℃~-30℃、-30℃~-20℃、-20℃~-10℃、-10℃~0℃、0℃~10℃、10℃~20℃、20℃~30℃、30℃~40℃、或40℃~50℃,在本发明一具体实施例中,不对称亲电芳香取代反应的反应温度可以为-40℃~-20℃。本领域技术人员可根据反应进程调整反应时间,例如,可以通过TLC、色谱法等方法判断不对称亲电芳香取代反应的反应进程,再例如,不对称亲电芳香取代反应的反应时间可以为4~240h、4~8h、8~12h、12~24h、12~24h、24~48h、48~72h、72~120h、120~180h、180~240h,在本发明一具体实施例中,不对称亲电芳香取代反应的反应时间可以为12h~120h。
上述不对称亲电芳香取代反应中,本领域技术人员可以选择合适的方法对不对称亲电芳香取代反应的产物进行后处理,例如,不对称亲电芳香取代反应的后处理可以包括:淬灭、脱除溶剂,纯化以提供(R)或(S)构型的式A化合物和与式A化合物相反构型的式C化合物。合适的淬灭方法对于本领域技术人员来说应该是已知的,例如,可以在反应体系中加入适量的碱(例如,三乙胺等)。不对称亲电芳香取代反应中合适的纯化方法对于本领域技术人员来说应该是已知的,例如,可以是柱层析等方法。
本发明所提供的手性α-叔胺的拆分合成方法中,还可以包括:通过式C化合物提供与其相同构型的式A化合物,反应方程式如下所示:
Figure BDA0002804062730000071
本领域技术人员可选择合适的方法,通过式C化合物提供与其相同构型的式A化合物,例如,所采用的方法具体可以为:将式C化合物在碱存在的条件下进行脱肼基反应,以提供与其相同构型的式A化合物。
上述脱肼基反应中,反应通常在碱存在的条件下进行。合适的碱的种类和使用量对于本领域技术人员来说应该可以是被调整的。例如,脱肼基反应中所使用的碱可以选自有机碱和/或无机碱。再例如,具体的无机碱可以是例如碱金属、碱土金属的氢氧化物和碳酸盐等中的一种或多种的组合,更具体可以为氢化化钾、氢氧化钠、氢氧化锂、碳酸钾、碳酸钠、碳酸锂、碳酸铯等中的一种或多种的组合。再例如,具体的有机碱可以是例如季铵碱、碱金属的醇盐等中的一种或多种的组合,更具体可以为氢氧化四甲基铵、叔丁醇钾、叔丁醇钠、叔丁醇锂、DBU(1,8-二氮杂二环十一碳-7-烯)中的一种或多种的组合。再例如,有机碱优选为季铵碱。
上述脱肼基反应中,反应通常可以在溶剂存在的条件下进行。合适的适用于脱肼基反应的溶剂的种类和使用量对于本领域技术人员来说应该是已知的。例如,脱肼基反应中所使用的溶剂体系可以是单一溶剂,也可以是两种或两种以上溶剂的混合。再例如,脱肼基反应中所使用的溶剂可以是水、醇类溶剂、醚类溶剂、酰胺类溶剂、砜类溶剂、芳香烃类溶剂等中的一种或多种的组合,更具体可以是水、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、异丁醇、四氢呋喃、二氧六环、N,N-二甲基甲酰胺、二甲亚砜、甲苯等中的一种或多种的混合。再例如,脱肼基反应中溶剂的使用量为使底物初始浓度在0.01mol/L~5mol/L、0.01mol/L~0.1mol/L、0.1mol/L~0.5mol/L、0.5mol/L~1mol/L、1mol/L~2mol/L、2mol/L~3mol/L、或3mol/L~5mol/L。
上述脱肼基反应中,反应通常需要在室温或加热条件下进行,例如,脱肼基反应的反应温度可以为室温至溶剂沸点的温度条件,更具体可以为20~100℃、20~30℃、30~40℃、40~50℃、50~60℃、60~70℃、70~80℃、80~90℃、或90~100℃,在本发明一具体实施例中,脱肼基反应的反应温度可以为60~80℃。本领域技术人员可根据反应进程调整反应时间,例如,可以通过TLC、色谱法等方法判断脱肼基反应的反应进程,再例如,脱肼基反应的反应时间可以为4~144h、4~8h、8~12h、12~24h、12~24h、24~48h、48~72h、72~144h,在本发明一具体实施例中,脱肼基反应的反应时间可以为12h~72h。
上述脱肼基反应中,本领域技术人员可以选择合适的方法对脱肼基反应的产物进行后处理,例如,脱肼基反应的后处理可以包括:萃取、脱除溶剂,纯化以提供与化合物C相同构型的式A化合物。脱肼基反应中合适的纯化方法对于本领域技术人员来说应该是已知的,例如,可以是柱层析等方法。
本发明所提供的手性α-叔胺的拆分合成方法,具有以下有益效果:
1、动力学拆分效果好,反应对消旋的底物进行动力学拆分后能以高收率和高对映选择性得到手性产物和手性原料,反应选择性系数(s-factor)可以得到高达259;
2、反应的底物适用性广,对α,α-二取代二氢喹啉、四氢喹啉、5,6-二氢菲啶、1,1-二取代炔丙胺等底物都有优良的拆分效果,手性碳上的基团R1、R2的选择性非常多;
3、原料易得,底物制备通过常规原料进行几步就可以得到高纯度、高光学活性的产物;
4、催化活性高,催化剂用量最低可以降低到0.5mol%以下,并保持很优异的反应效果;
5、反应便于放大,反应操作简单,可以放大到至少克级规模,同时仅用0.5mol%手性磷酸催化剂,有利于工业放大生产。
下面通过实施例对本申请的发明予以进一步说明,但并不因此而限制本申请的范围。
除非另外说明,化学品均购自商业化产品并且不用经进一步纯化。
薄层色谱分析(TLC)使用黄海HSGF254硅胶板。
硅胶柱层析使用黄海HHGJ-300硅胶(300-400目)TLC显色采用UV光(254nm)。
1H NMR和13C NMR使用Bruker 400MHz或者500MHz核磁共振仪表征,溶剂为氘代氯仿。化学位移的单位是ppm,耦合常数的单位是Hz。在1H NMR中,δ表示化学位移,s表示单峰,d表示双峰,t表示三重峰,q表示四重峰,p表示五重峰,m表示多重,br表示宽峰。在13C NMR中,δ表示化学位移。
通过Agilent 1260手性HPLC仪器和大赛璐IA、IB、IC、ID和IG手性色谱柱测定对映体过量值。
高分辨质谱(HRMS)使用Agilent 6230TOF LC/MS质谱设备,离子源采用ESI。
红外光谱使用ThermoFisher Scientific Nicolet iS7光谱仪设备,单位是cm-1
实施例1
底物的合成方法:
四氢喹啉底物的第一种合成方法:
Figure BDA0002804062730000091
在氮气氛围下,向2-溴喹啉(15.0毫摩尔)、芳基硼酸(22.5毫摩尔,1.5当量)和Pd(Ph3P)4(866毫克,0.75毫摩尔,5mol%)的甲苯(105毫升)和甲醇(18毫升)的混合物中加入碳酸钾水溶液(2.5M,18毫升,3.0当量)。在80摄氏度反应2小时后冷却到室温,用乙酸乙酯萃取三次。有机相用无水硫酸钠干燥,旋蒸除去溶剂,石油醚/二氯甲烷柱层析得到2-芳基喹啉S1。
室温下,向2-芳基喹啉S1(7.5毫摩尔)的冰醋酸(50毫升)溶液中一次加入NaBH3CN(15.0毫摩尔,2.0当量)。反应过夜后,旋蒸除去大部分冰醋酸,加入二氯甲烷(50毫升)再加足量饱和碳酸氢钠溶液,快速搅拌30分钟,然后用二氯甲烷萃取3次,合并有机相,无水硫酸钠干燥,旋蒸溶剂,用石油醚/二氯甲烷柱层析得到四氢二芳基喹啉S2。
2-芳基四氢喹啉(7.0毫摩尔)S2溶于30毫升干四氢呋喃中,在-78℃下,滴加正丁基锂(1.6M,11.2毫摩尔,1.6当量)。在同样温度下搅拌1小时后,Boc酸酐(14.0毫摩尔,2.0当量)溶于30毫升的干四氢呋喃的溶液往其中滴加,加完后温度逐渐升到室温,并继续搅拌1小时。反应用饱和碳酸氢钠溶液淬灭,并用乙酸乙酯萃取三次。有机相用无水硫酸钠干燥后,旋蒸溶剂,再把残留物溶于40毫升二氯甲烷,加N,N-二甲基乙二胺(617毫克,0.76毫升,7.0毫摩尔,1.0当量),搅拌30分钟,然后用饱和食盐水洗3次,有机相用无水硫酸钠干燥,旋蒸溶剂,残留物柱层析(石油醚/乙酸乙酯作为洗脱剂)分出产物S3。
向含-78℃的S3(7.0毫摩尔)的干四氢呋喃20毫升中滴加丁基锂(5.7毫升,1.6M,9.1毫摩尔,1.3当量)。在同样温度下搅拌15分钟后,往其中滴加卤代烃RX(28.0毫摩尔,4.0当量)后,体系逐渐升温到室温,再搅拌1小时。向反应中加入1毫升甲醇淬灭反应,然后加100毫升乙酸乙酯稀释,再用饱和食盐水洗3次。有机相用无水硫酸钠干燥后,旋蒸溶剂,得到的残留物用柱层析分离(石油醚/乙酸乙酯为洗脱剂)得到产物S4。
S4(7.0毫摩尔)溶于二氯甲烷100毫升里,再向其中滴加三氟乙酸(5.3毫升,70毫摩尔,10.0当量)。在室温搅拌6小时后,加入足量饱和碳酸氢钠溶液中和,再用饱和食盐水洗3次。有机相用无水硫酸钠干燥,旋蒸溶剂后柱层析(石油醚/二氯甲烷洗脱剂)得到产物1。
二氢喹啉底物的第一种合成方法:
Figure BDA0002804062730000101
S1(1.0毫摩尔)溶于干四氢呋喃5毫升,冰水浴冷却下向其中滴加甲基锂(2.5M,1.2毫升,3.0毫摩尔,3.0当量)。在室温下搅拌6小时后,加冰水浴冷却,用饱和氯化铵水溶液淬灭,然后再加入30毫升乙酸乙酯,用饱和食盐水洗两次。有机相用无水硫酸钠干燥,旋蒸溶剂后,柱层析(石油醚/二氯甲烷洗脱剂)得到二氢喹啉产物。
四氢喹啉底物的第二种合成方法:
Figure BDA0002804062730000102
二氢喹啉底物(0.85毫摩尔)溶于乙酸乙酯4毫升里,加入钯碳催化剂(钯10%,55%水,30毫克,1.5mol%),在一个大气压的氢气氛围下搅拌室温搅拌3小时。用硅藻土过滤后,柱层析(石油醚/二氯甲烷)得到四氢喹啉产物。
二氢喹啉底物的第二种合成方法:
Figure BDA0002804062730000111
底物S5经过乙酰化得到S6。在室温和氮气氛围下,S6(2.0克,11.9毫摩尔)溶于70毫升四氢呋喃中,再加入氯化亚铜(236毫克,2.38毫摩尔,0.2当量)、苯胺(1.3毫升,14.3毫摩尔,1.2当量)和三乙胺(2.48毫升,1.8克,17.9毫摩尔,1.5当量)。在63℃搅拌12小时后,冷却到室温,加乙酸乙酯100毫升稀释,用饱和食盐水洗三次,有机相用无水硫酸钠干燥后,旋蒸溶剂,柱层析(石油醚/乙酸乙酯洗脱剂)得到产物S7(1.29克,54%)。
室温氮气氛围下,S7(800毫克,3.97毫摩尔)溶于干四氢呋喃25毫升里,再加入氯化亚铜(512毫克,5.17毫摩尔,1.3当量)。57℃下搅拌12小时后,冷却到室温,用硅藻土过滤,并用80毫升乙酸乙酯洗。旋蒸溶剂后柱层析(石油醚/二氯甲烷洗脱剂)得到产物(136毫克,17%)
炔基-α-叔胺合成方法:
Figure BDA0002804062730000112
首先,芳基酮和芳基胺在
Figure BDA0002804062730000113
分子筛的存在下,在甲苯里回流得到N-芳基亚胺S8。氮气氛围下,炔S9(25毫摩尔)溶于干四氢呋喃15毫升。在冰水浴冷却下,向其中滴加正丁基锂(1.6M,15.0毫升,24.0毫摩尔),在相同温度下继续搅拌30分钟。继续保持冰水浴冷却,并且向反应体系中按顺序加入20.0毫升六甲基磷酰三胺和N-芳基亚胺S8(20.0毫摩尔)。然后反应体系升到室温,并继续搅拌2小时。反应液倒入40毫升饱和氯化铵溶液,用正己烷/乙酸乙酯(5/1)的混合溶剂萃取三次,合并有机相,无水硫酸钠干燥,旋蒸溶剂。
对于R1是TMS(三甲基硅基)的产物,旋蒸除去溶剂后,无需纯化,直接如50毫升甲醇,并加入碳酸钾(6.6克,48毫摩尔),搅拌直到薄层色谱检测TMS基团完全除去,加入50毫升饱和食盐水,再用乙酸乙酯萃取3次,有机相无水硫酸钠干燥,旋蒸除去溶剂,柱层析的到端炔产物;对于R1非TMS的产物,直接柱层析得到产物。
实施例2
消旋四氢喹啉的动力学拆分
本实施例中使用的手性磷酸催化剂结构如下:
Figure BDA0002804062730000121
四氢喹啉类底物的动力学拆分的通用方法:
氮气氛围下,消旋底物(0.2毫摩尔)、磷酸催化剂(0.02毫摩尔,10mol%)和
Figure BDA0002804062730000123
分子筛(100毫克)加入8毫升玻璃瓶内,加入2毫升干燥的氯仿。把带但气球的玻璃瓶放入一定温度的冷浴里搅拌3分钟。再向其中滴加溶解偶氮二甲酸二苄酯(36毫克,0.12毫摩尔,0.6当量)的2毫升干燥氯仿。通过手性高效液相色谱检测发现原料已经转化了大约50%的时候,向反应体系里加入20微升三乙胺淬灭反应。然后经过硅藻土过滤后,二氯甲烷洗硅藻土,旋蒸溶剂,再经柱色谱分离(石油醚/乙酸乙酯40/1到4/1)回收手性原料和胺化的产物。
2-甲基-2-苯基-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000122
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间12小时。
(R)-1a:无色油状液体,20.5mg,回收率46%。1H NMR(400MHz,CDCl3)δ7.58–7.46(m,2H),7.41(td,J=8.3,7.8,2.1Hz,2H),7.32(t,J=7.3Hz,1H),7.16(t,J=7.8Hz,1H),7.03(d,J=7.4Hz,1H),6.73(dd,J=9.0,7.0Hz,2H),4.21(s,1H),2.72(dt,J=16.6,5.0Hz,1H),2.45(ddd,J=16.3,11.1,5.0Hz,1H),2.33(dt,J=12.9,4.8Hz,1H),2.03(tdd,J=13.1,5.0,2.0Hz,1H),1.69(s,3H)。13C NMR(101MHz,CDCl3)δ148.3,143.9,129.3,128.4,127.0,126.4,125.5,120.4,116.7,113.5,55.5,35.4,30.7,24.4。高分辨质谱:(ESI)实测值[M+H]+224.1432,C16H18N+理论值224.1434。[α]D 20=+218(c 1.0,CHCl3)。HPLC分析,Chiralpak IA柱,正己烷/异丙醇=97/3,流速1.0mL/min;tR=5.4min(major),5.9min(minor),95%ee。IR(cm-1):f=3398,2961,2925,1607,1481,1312,1260,744,699。
3a:淡黄色泡沫状固体,51.4mg,产率49%。1H NMR(400MHz,CDCl3)δ7.43–7.01(m,16H),7.02–6.66(m,2H),6.43(d,J=8.5Hz,1H),5.07(s,2H),5.03(s,2H),4.14(brs,1H),2.53–2.27(m,1H),2.27–2.00(m,2H),1.76(td,J=12.0,4.9Hz,1H),1.46(s,3H)。13C NMR(126MHz,CDCl3)δ156.2,148.0,143.3,136.1,135.7,130.8,128.6,128.6,128.5,128.5,128.4,128.2,128.0,127.7(br),126.5,125.5,124.4(br),120.4,113.3,68.2,67.8,55.7,35.1,30.7,24.4。高分辨质谱(ESI),实测值[M+H]+522.2380,C32H32N3O4 +理论值522.2387。[α]D 20=-61.8(c 1.0,CHCl3)。HPLC分析,Chiralpak IC柱,正己烷/异丙醇=70/30,流速1.0mL/min;tR=17.1min(minor),18.3min(major),91%ee。IR(cm-1):f=3377,3290,3031,2960,1705,1504,1392,1342,1216,1058,739,696。
2-甲基-2-(4-甲基苯基)-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000131
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间21小时。
(R)-1b:无色油状液体,23.0mg,回收率49%。1H NMR(500MHz,CDCl3)δ7.40–7.29(m,2H),7.21–7.14(m,2H),7.10(t,J=7.7Hz,1H),6.98(d,J=7.4Hz,1H),6.72–6.60(m,2H),4.16(brs,1H),2.67(dt,J=16.5,4.9Hz,1H),2.47–2.40(m,1H),2.39(s,3H),2.26(dt,J=13.1,5.0Hz,1H),1.97(ddd,J=13.1,11.0,4.9Hz,1H),1.63(s,3H)。13C NMR(126MHz,CDCl3)δ145.4,144.0,135.9,129.3,129.1,127.0,125.5,120.5,116.7,113.6,55.3,35.5,30.7,24.5,21.0。高分辨质谱:(ESI)实测值[M+H]+238.1587,C17H20N+理论值238.1590。[α]D 20=+176(c 1.0,CHCl3)。HPLC分析,Chiralpak IA柱,正己烷/异丙醇=90/10。流速1.0mL/min;tR=4.4min(major),4.8min(minor),89%ee。IR(cm-1):f=3408,2920,2853,1608,1455,1375,1312,1260,815,743。
3b:淡黄色泡沫状固体,52.5mg,产率49%。1H NMR(400MHz,CDCl3)δ7.53–7.20(m,12H),7.19–6.82(m,5H),6.55(d,J=8.6Hz,1H),5.20(s,2H),5.16(s,2H),4.25(s,1H),2.58(d,J=16.8Hz,1H),2.40–2.25(m,4H),2.18(dt,J=13.0,4.8Hz,1H),1.88(td,J=11.9,4.8Hz,1H),1.57(s,3H)。13C NMR(101MHz,CDCl3)δ156.2,145.1,143.3,136.1,136.0,135.7,130.7,129.1,128.6,128.5,128.3,128.2,128.0,125.4,120.4,113.2,67.8,55.4,35.1,30.6,24.4,20.9。高分辨质谱(ESI)实测值,[M+H]+536.2540,C33H34N3O4 +理论值,536.2544。[α]D 20=-50.0(c 1.0,CHCl3)。HPLC分析Chiralpak IB柱,正己烷/异丙醇=50/50,流速1.0mL/min;tR=12.3min(major),14.0min(minor),92%ee。IR(cm-1):f=3358,3289,2921,2852,1747,1670,1506,1456,1408,1350,1215,757,696。
2-甲基-2-(4-氯苯基)-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000141
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-50℃,反应时间24小时。
(R)-1c:白色固体,24.2mg,回收率47%。1H NMR(500MHz,CDCl3)δ7.27–7.21(m,2H),7.19–7.14(m,2H),6.96(td,J=7.7,1.6Hz,1H),6.83(dd,J=7.6,1.5Hz,1H),6.59–6.48(m,2H),3.95(brs,1H),2.52(dt,J=16.4,4.6Hz,1H),2.22(ddd,J=16.5,11.4,5.1Hz,1H),2.09(dt,J=13.0,4.7Hz,1H),1.82(ddd,J=13.0,11.4,4.9Hz,1H),1.48(s,3H)。13C NMR(126MHz,CDCl3)δ146.9,143.6,132.2,129.4,128.5,127.2,127.1,120.4,117.0,113.7,55.4,35.4,30.7,24.4。高分辨质谱:(ESI)实测值[M+H]+258.1043,C16H17ClN+理论值258.1044。[α]D 20=+167(c 1.0,CHCl3)。HPLC分析,Chiralpak IB柱,正己烷/异丙=95/5,流速1.0mL/min;tR=7.8min(minor),8.8min(major),91%ee。IR(cm-1):f=3372,2949,2922,1606,1480,1370,1259,1093,1009,822,746。
3c:淡黄色泡沫状固体,54.8mg,产率49%。1H NMR(500MHz,CDCl3)δ7.45–6.68(m,17H),6.42(d,J=8.6Hz,1H),5.07(s,2H),5.03(s,2H),4.11(brs,1H),2.50–2.29(m,1H),2.20–2.07(m,1H),2.03(dt,J=13.0,4.6Hz,1H),1.73(td,J=12.3,4.8Hz,1H),1.43(s,3H)。13C NMR(126MHz,CDCl3)δ156.2,146.6,142.9,136.1,135.7,132.3,131.0,128.6,128.5,128.5,128.4,128.2,128.1,127.6(br),127.1,125.3(br),120.3,113.4,68.2,67.8,55.5,35.0,30.6,24.2。高分辨质谱(ESI)实测值,[M+H]+556.2000,C32H31ClN3O4 +理论值,556.1998。[α]D 20=-60.3(c 1.0,CHCl3)。HPLC分析,Chiralpak IB柱,正己烷/异丙醇=50/50,流速1.0mL/min;tR=13.2min(major),15.0min(minor),85%ee。IR(cm-1):f=3374,3289,2959,2927,1705,1504,1394,1217,1058,826,744,695。
2-甲基-2-(4-甲氧基苯基)-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000142
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间17小时。
(R)-1d:白色固体,22.9mg,回收率45%。1H NMR(500MHz,CDCl3)δ7.38–7.29(m,2H),7.05(t,J=7.6Hz,1H),6.94(d,J=7.5Hz,1H),6.89–6.81(m,2H),6.67–6.58(m,2H),4.11(s,1H),3.80(s,3H),2.63(dt,J=16.4,5.0Hz,1H),2.37(ddd,J=16.3,10.9,5.2Hz,1H),2.18(dt,J=12.9,5.0Hz,1H),1.91(td,1H),1.58(s,3H)。13C NMR(126MHz,CDCl3)δ158.2,144.0,140.5,129.3,127.0,126.7,120.5,116.7,113.7,113.6,55.3,55.1,35.6,30.7,24.5。高分辨质谱:(ESI)实测值[M+H]+254.1536,C17H20NO+理论值254.1539。[α]D 20=+212(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=5.6min(major),6.5min(minor),99.5%ee。IR(cm-1):f=3398,2956,2927,1607,1510,1481,1311,1245,1179,1033,829,744。
3d:淡黄色泡沫状固体,58.2mg,产率53%。1H NMR(500MHz,CDCl3)δ7.38–7.06(m,13H),6.99(brs,1H),6.87(brs,1H),6.71(d,J=8.2Hz,2H),6.40(d,J=8.7Hz,1H),5.06(s,2H),5.02(s,2H),4.10(s,1H),3.64(s,3H),2.51–2.29(m,1H),2.19(t,J=13.8Hz,1H),2.07–1.95(m,1H),1.72(td,J=12.0,4.7Hz,1H),1.42(s,3H)。13C NMR(126MHz,CDCl3)δ158.1,156.2,143.3,140.2,136.1,135.7,130.7,128.6,128.6,128.5,128.3,128.2,128.0,127.6(br),126.6,125.2(br),120.3,113.7,113.2,68.1,67.7,55.3,55.2,35.2,30.6,24.4。高分辨质谱:(ESI)实测值[M+H]+552.2490,C33H34N3O5 +理论值552.2493。[α]D 20=-44.4(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=10.6min(minor),12.3min(major),88%ee。IR(cm-1):f=3375,3284,2962,1701,1504,1391,1245,1028,738,696。
2-甲基-2-(4-氟苯基)-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000151
反应规模为0.2毫摩尔,偶氮二甲酸二苄酯用1.0当量,催化剂用CPA1,反应温度-50℃,反应时间36小时。
(R)-1e:无色油状液体,23.0mg,回收率48%。1H NMR(500MHz,CDCl3)δ7.42–7.29(m,2H),7.04(td,J=7.7,1.5Hz,1H),7.01–6.94(m,2H),6.92(d,J=7.6Hz,1H),6.67–6.55(m,2H),4.09(brs,1H),2.62(dt,J=16.4,4.7Hz,1H),2.32(ddd,J=16.2,11.1,5.0Hz,1H),2.17(dt,J=13.0,4.9Hz,1H),1.90(td,1H),1.57(s,3H)。13C NMR(126MHz,CDCl3)δ161.5(d,J=245.7Hz),144.1,143.7,129.3,127.2(d,J=7.6Hz),127.1,120.4,116.9,115.1(d,J=21.4Hz),113.6,55.3,35.6,30.8,24.4。19F NMR(471MHz,CDCl3)δ-117.1。高分辨质谱:(ESI)实测值[M+H]+242.1336,C16H17FN+理论值242.1340。[α]D 20=+202(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=4.8min(major),5.5min(minor),87%ee。IR(cm-1):f=3371,2946,2925,1600,1504,1480,1311,1260,1227,1160,1131,829,748。
3e:淡黄色泡沫状固体,54.2mg,产率50%。1H NMR(500MHz,CDCl3)δ7.34–7.04(m,13H),6.97(brs,1H),6.90–6.65(m,3H),6.40(d,J=8.6Hz,1H),5.05(s,2H),5.00(s,2H),4.13(brs,1H),2.51–2.27(m,1H),2.20–2.05(m,1H),2.01(dt,J=13.0,4.7Hz,1H),1.71(td,J=12.1,4.8Hz,1H),1.42(s,3H)。13C NMR(126MHz,CDCl3)δ161.5(d,J=245.7Hz),156.2,143.7,143.7,142.9,136.0,135.6,130.9,128.5,128.4,128.3,128.2,128.0,127.6(br),127.1(d,J=7.6Hz),125.3(br),120.2,115.1(d,J=21.4Hz),113.3,68.1,67.7,55.3,35.1,30.6,24.2。19F NMR(471MHz,CDCl3)δ-117.3。高分辨质谱:(ESI)实测值[M+H]+540.2288,C32H31FN3O4 +理论值540.2293。[α]D 20=-65.0(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=8.6min(minor),9.9min(major),83%ee。IR(cm-1):f=3376,3288,2963,2927,1705,1504,1394,1220,1160,1057,738,695。
2-甲基-2-(3-甲基苯基)-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000161
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-50℃,反应时间36小时。
(R)-1f:无色油状液体,20.6mg,回收率44%。1H NMR(500MHz,CDCl3)δ7.22(t,J=6.4Hz,3H),7.05(d,J=7.1Hz,2H),6.94(d,J=7.4Hz,1H),6.63(t,J=7.5Hz,2H),4.11(s,1H),2.64(dt,J=16.4,4.9Hz,1H),2.44–2.31(m,4H),2.23(dt,J=12.7,5.0Hz,1H),1.92(ddd,J=12.7,10.9,4.8Hz,1H),1.59(s,3H)。13C NMR(126MHz,CDCl3)δ148.5,144.0,138.0,129.3,128.3,127.3,127.0,126.2,122.7,120.5,116.7,113.6,55.5,35.5,30.7,24.5,21.8。高分辨质谱:(ESI)实测值[M+H]+238.1587,C17H20N+理论值238.1590。[α]D 20=+210(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),97:3正己烷/异丙醇,流速1.0mL/min;tR=7.3min(minor),8.1min(major),97%ee。IR(cm-1):f=3401,2958,2923,1606,1480,1312,1261,1131,785,744,705。
3f:淡黄色泡沫状固体,54.2mg,产率51%。1H NMR(500MHz,CDCl3)δ7.41–7.27(m,10H),7.24–7.14(m,4H),7.14–6.82(m,3H),6.55(d,J=8.6Hz,1H),5.20(s,2H),5.16(s,2H),4.23(s,1H),2.65–2.46(m,1H),2.40–2.26(m,4H),2.20(dt,J=13.1,4.9Hz,1H),1.87(td,J=11.9,4.6Hz,1H),1.57(s,3H)。13C NMR(126MHz,CDCl3)δ156.2,148.1,143.3,138.0,136.1,135.7,130.7,128.7,128.6,128.5,128.4,128.3,128.1,127.3,126.1,122.6,120.4,113.3,68.2,67.8,55.6,35.1,30.6,24.4,21.8。高分辨质谱:(ESI)实测值[M+H]+536.2540,C33H34N3O4 +理论值536.2544。[α]D 20=-56.1(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),70:30正己烷/异丙醇,流速1.0mL/min;tR=14.2min(minor),15.1min(major),85%ee。IR(cm-1):f=3375,3290,2960,2925,1706,1504,1392,1217,1058,738,695。
2-甲基-2-(3-甲氧基苯基)-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000171
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间15小时。
(R)-1g:白色固体,23.3mg,回收率46%。1H NMR(500MHz,CDCl3)δ7.23(td,J=7.9,1.8Hz,1H),7.06–6.94(m,3H),6.91(d,J=7.9Hz,1H),6.79–6.71(m,1H),6.66–6.55(m,2H),4.11(s,1H),3.77(brs,3H),2.61(dt,J=16.4,4.5Hz,1H),2.36(ddd,J=16.3,10.9,5.1Hz,1H),2.27–2.15(m,1H),1.91(tdd,J=12.8,4.9,1.8Hz,1H),1.57(s,3H)。13C NMR(126MHz,CDCl3)δ159.7,150.3,143.9,129.4,129.3,127.0,120.5,118.0,116.7,113.6,112.1,111.1,55.6,55.2,35.4,30.6,24.5。高分辨质谱:(ESI)实测值[M+H]+254.1536,C17H20NO+理论值254.1539。[α]D 20=+221(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=6.5min(major),7.7min(minor),99%ee。IR(cm-1):f=3396,2955,2926,1606,1481,1312,1260,1045,745,700。
3g:淡黄色泡沫状固体,58.5mg,产率53%。1H NMR(500MHz,CDCl3)δ7.31–7.05(m,12H),7.05–6.76(m,4H),6.63(dd,J=8.1,2.5Hz,1H),6.40(d,J=8.7Hz,1H),5.06(s,2H),5.02(s,2H),4.13(s,1H),3.62(s,3H),2.51–2.26(m,1H),2.26–2.10(m,1H),2.06(dt,J=12.9,4.8Hz,1H),1.73(td,J=12.0,4.7Hz,1H),1.42(s,3H)。13C NMR(126MHz,CDCl3)δ159.6,156.2,150.0,143.2,136.1,135.7,130.8,129.5,128.6,128.5,128.4,128.3,128.2,128.0,127.6(br),125.3(br),120.3,117.9,113.2,112.1,111.0,68.1,67.7,55.7,55.2,35.0,30.6,24.3。高分辨质谱:(ESI)实测值[M+H]+552.2485,C33H34N3O5 +理论值552.2493。[α]D 20=-59.7(c 1.0,CHCl3)。HPLC分析:(Chiralpak IC柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=11.0min(minor),13.0min(major),84%ee。IR(cm-1):f=3377,3294,2955,2926,1707,1504,1392,1217,1044,738,696。
2-(苯并[d][1,3]二氧代-5-基)-2-甲基-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000172
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-50℃,反应时间24小时。
(R)-1h:白色固体,26.1mg,回收率49%。1H NMR(500MHz,CDCl3)δ7.04(t,J=8.0Hz,1H),6.92(dd,J=12.3,4.7Hz,2H),6.87(dd,J=8.2,1.9Hz,1H),6.74(d,J=8.2Hz,1H),6.66–6.56(m,2H),5.95–5.87(m,2H),4.07(brs,1H),2.62(dt,J=16.4,4.7Hz,1H),2.39(ddd,J=16.3,11.2,5.1Hz,1H),2.17(dt,J=13.0,4.9Hz,1H),1.93–1.82(m,1H),1.56(s,3H)。13C NMR(126MHz,CDCl3)δ147.7,146.0,143.8,142.6,129.3,127.1,120.5,118.7,116.8,113.6,108.0,106.4,101.0,55.5,35.6,30.9,24.4。高分辨质谱:(ESI)实测值[M+H]+268.1326,C17H18NO2 +理论值268.1332。[α]D 20=+157(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=6.8min(major),7.3min(minor),92%ee。IR(cm-1):f=3297,2961,2925,1706,1503,1483,1226,1036,809,739,695。
3h:淡黄色泡沫状固体,53.4mg,产率47%。1H NMR(400MHz,CDCl3)δ7.42–7.23(m,10H),7.17(s,1H),7.06(s,1H),6.98(d,J=8.7Hz,1H),6.86(d,J=1.9Hz,1H),6.82(dd,J=8.1,1.9Hz,1H),6.72(d,J=8.1Hz,1H),6.51(d,J=7.7Hz,1H),5.96–5.88(m,2H),5.19(s,2H),5.15(s,2H),4.18(s,1H),2.56(d,J=17.0Hz,1H),2.33(s,1H),2.12(dt,J=12.9,4.8Hz,1H),1.89–1.76(m,1H),1.53(s,3H)。13C NMR(101MHz,CDCl3)δ156.2,147.7,146.1,143.1,142.3,136.1,135.7,135.6,130.8,128.7,128.6,128.5,128.3,128.1,120.4,118.6,113.3,108.0,106.3,101.1,68.2,67.8,55.6,35.2,30.9,24.4。高分辨质谱:(ESI)实测值[M+H]+566.2277,C33H32N3O6 +理论值566.2286。[α]D 20=-60.7(c 1.0,CHCl3)。HPLC分析:(Chiralpak IC柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=17.0min(minor),18.2min(major),95%ee。IR(cm-1):f=3369,3297,2961,2925,1706,1503,1483,1226,1036,809,739,695。
2-乙基-2-苯基-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000181
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间20小时。
(R)-1i:白色固体,21.1mg,回收率45%。1H NMR(400MHz,CDCl3)δ7.29–7.17(m,4H),7.14–7.07(m,1H),6.95(td,J=7.8,1.7Hz,1H),6.84–6.75(m,1H),6.57(dd,J=8.0,1.2Hz,1H),6.50(td,J=7.3,1.2Hz,1H),4.17(s,1H),2.48(dt,J=16.2,4.3Hz,1H),2.22(ddd,J=16.5,12.1,5.1Hz,1H),2.10(dt,J=12.9,5.1,3.7Hz,1H),1.94–1.73(m,3H),0.72(t,J=7.4Hz,3H)。13C NMR(101MHz,CDCl3)δ146.6,144.0,129.3,128.4,127.0,126.3,126.1,121.0,116.7,113.6,58.6,35.5,33.8,24.2,7.8。高分辨质谱:(ESI)实测值[M+H]+238.1588,C17H20N+理论值238.1590。[α]D 20=+213(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),97:3正己烷/异丙醇,流速1.0mL/min;tR=6.7min(minor),7.3min(major),98%ee。IR(cm-1):f=3399,2964,2927,1602,1478,1308,1256,1079,747,703。
3i:淡黄色泡沫状固体,51.6mg,产率49%。1H NMR(400MHz,CDCl3)δ7.35–6.61(m,18H),6.48(d,J=8.5Hz,1H),5.08(s,2H),5.04(s,2H),4.27(brs,1H),2.52–2.24(m,1H),2.23–2.10(m,1H),2.06(dt,J=12.9,4.3Hz,1H),1.93–1.70(m,3H),0.69(t,J=7.4Hz,3H)。13C NMR(126MHz,CDCl3)δ156.2,146.3,143.3,136.1,135.7,130.7,128.7,128.6,128.5,128.4,128.4,128.3,128.1,127.7(br),126.4,126.0,125.2(br),120.9,113.4,68.2,67.8,58.7,35.5,33.4,24.1,7.8。高分辨质谱:(ESI)实测值[M+H]+536.2541,C33H34N3O4 +理论值536.2544。[α]D 20=-56.9(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),70:30正己烷/异丙醇,流速1.0mL/min;tR=14.4min(major),16.8min(minor),83%ee。IR(cm-1):f=3383,3287,2961,2931,1706,1504,1392,1301,1217,1060,750,696。
2-烯丙基-2-苯基-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000191
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间17小时。
(S)-1j:白色固体,23.5mg,回收率47%。1H NMR(400MHz,CDCl3)δ7.39–7.22(m,4H),7.22–7.11(m,1H),7.01(t,J=7.6Hz,1H),6.86(d,J=7.4Hz,1H),6.68–6.49(m,2H),5.46(dtd,J=17.3,9.8,5.0Hz,1H),5.21–4.99(m,2H),4.34(brs,1H),2.83(dd,J=13.7,5.0Hz,1H),2.61–2.37(m,2H),2.33–2.17(m,2H),1.93(td,J=12.9,12.3,4.8Hz,1H)。13CNMR(101MHz,CDCl3)δ146.3,143.7,133.5,129.2,128.5,127.1,126.4,126.1,120.7,119.4,116.7,113.5,57.4,47.9,34.4,24.1。高分辨质谱:(ESI)实测值[M+H]+250.1587,C18H20N+理论值250.1590。[α]D 20=+132(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),95:5正己烷/异丙醇,流速1.0mL/min;tR=5.1min(minor),5.6min(major),92%ee。IR(cm-1):f=3402,2928,2915,1606,1481,1444,1314,915,744,702。
3j:淡黄色泡沫状固体,57.8mg,产率53%。1H NMR(500MHz,CDCl3)δ7.43–7.04(m,16H),6.98(brs,1H),6.85(brs,1H),6.44(d,J=8.7Hz,1H),5.44–5.27(m,1H),5.20–4.86(m,6H),4.35(s,1H),2.73(dd,J=13.7,5.0Hz,1H),2.47–2.23(m,2H),2.20–2.00(m,2H),1.80(td,J=13.7,7.3Hz,1H)。13C NMR(126MHz,CDCl3)δ156.2,145.9,143.0,136.1,135.7,133.3,130.7,128.6,128.6,128.5,128.3,128.2,128.0,127.7(br),126.5,126.0,125.2(br),120.6,119.5,113.2,68.1,67.8,57.5,47.8,34.0,23.9。高分辨质谱:(ESI)实测值[M+H]+548.2537,C34H34N3O4 +理论值548.2544。[α]D 20=-41.5(c 1.0,CHCl3)。HPLC分析:(Chiralpak IG柱),60:40hexanes:isopropanol,流速1.0mL/min;tR=17.2min(minor),20.0min(major),85%ee。IR(cm-1):f=3373,3287,3031,2930,1707,1504,1392,1298,1218,1057,737,695。
2-苄基-2-苯基-1,2,3,4-四氢喹啉的动力学拆分:
Figure BDA0002804062730000201
反应规模为0.2毫摩尔,催化剂用CPA1,反应温度-40℃,反应时间16小时。
(S)-1k:白色固体,29.7mg,回收率50%。1H NMR(500MHz,CDCl3)δ7.34–7.12(m,8H),7.03(t,J=7.6Hz,1H),6.90(d,J=7.3Hz,1H),6.86–6.78(m,2H),6.67–6.52(m,2H),4.18(brs,1H),3.38(d,J=13.1Hz,1H),3.05(d,J=13.1Hz,1H),2.64(dt,J=16.2,4.2Hz,1H),2.50(ddd,J=12.8,5.3,3.2Hz,1H),2.35(ddd,J=16.8,12.1,5.2Hz,1H),2.10(td,J=12.4,5.0Hz,1H)。13C NMR(126MHz,CDCl3)δ145.7,143.6,136.2,130.6,129.3,128.4,128.1,127.0,126.8,126.6,126.5,120.9,116.9,113.8,58.6,49.8,34.7,24.2。高分辨质谱:(ESI)实测值[M+H]+300.1743,C22H22N+理论值300.1747。[α]D 20=+120(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),95:5正己烷/异丙醇,流速1.0mL/min;tR=6.3min(minor),7.0min(major),89%ee。IR(cm-1):f=3418,2960,2921,1606,1478,1313,1123,1080,1029,774,747,701。
3k:淡黄色泡沫状固体,59.4mg,产率50%。1H NMR(400MHz,CDCl3)δ7.38–6.99(m,19H),6.93(brs,1H),6.85(brs,1H),6.67(d,J=7.0Hz,2H),6.35(d,J=8.5Hz,1H),5.04(s,2H),5.00(s,2H),4.16(s,1H),3.22(d,J=13.0Hz,1H),2.87(d,J=13.1Hz,1H),2.54–2.25(m,2H),2.25–2.02(m,1H),1.90(td,J=12.7,4.8Hz,1H)。13C NMR(126MHz,CDCl3)δ156.2,145.4,142.9,136.1,135.9,135.7,130.9,130.5,128.6,128.5,128.4,128.2,128.1,127.6(br),126.8,126.7,126.5,125.1(br),120.8,113.5,68.1,67.8,58.7,49.6,34.2,24.1。高分辨质谱:(ESI)实测值[M+H]+598.2695,C38H36N3O4 +理论值598.2700。[α]D 20=-49.4(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),60:40正己烷/异丙醇,流速1.0mL/min;tR=11.1min(minor),16.5min(major),90%ee。IR(cm-1):f=3374,3286,3029,2927,1707,1504,1391,1299,1216,1056,749,696。
实施例3
消旋二氢喹啉的动力学拆分
本实施例中使用到的手性磷酸催化剂结构如下:
Figure BDA0002804062730000202
二氢喹啉类底物的动力学拆分的通用方法:
氮气氛围下,消旋底物(0.2毫摩尔)、磷酸催化剂(0.02毫摩尔,10mol%)和
Figure BDA0002804062730000212
分子筛(100毫克)加入8毫升玻璃瓶内,加入2毫升干燥的氯仿。把带但气球的玻璃瓶放入一定温度的冷浴里搅拌3分钟。再向其中滴加溶解偶氮二甲酸二苄酯(36毫克,0.12毫摩尔,0.6当量)的2毫升干燥氯仿。通过手性高效液相色谱检测发现原料已经转化了大约50%的时候,向反应体系里加入20微升三乙胺淬灭反应。然后经过硅藻土过滤后,二氯甲烷洗硅藻土,旋蒸溶剂,再经柱色谱分离(石油醚/乙酸乙酯40/1到4/1)回收手性原料和胺化的产物。
2-甲基-2-苯基-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000211
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间18小时。
(R)-1l:无色油状液体,21.8mg,回收率49%。1H NMR(500MHz,CDCl3)δ7.59–7.48(m,2H),7.34(t,J=7.7Hz,2H),7.26–7.20(m,1H),7.00(td,J=7.6,1.5Hz,1H),6.91(dd,J=7.3,1.5Hz,1H),6.60(td,J=7.4,1.1Hz,1H),6.45(d,J=7.9Hz,1H),6.34(d,J=9.7Hz,1H),5.60(d,J=9.7Hz,1H),4.04(brs,1H),1.73(s,3H)。13C NMR(126MHz,CDCl3)δ149.1,142.7,129.9,129.0,128.1,127.0,126.9,125.5,123.5,119.2,117.3,112.5,57.5,30.3。高分辨质谱:(ESI)实测值[M+H]+300.1743,C22H22N+理论值300.1747。高分辨质谱:(ESI)实测值[M+H]+222.1274,C16H16N+理论值222.1277。[α]D 20=+339(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),95:5正己烷/异丙醇,流速1.0mL/min;tR=5.9min(major),6.4min(minor),98%ee。IR(cm-1):f=3384,3030,2968,1603,1470,1317,1234,1126,1027,741,696。
3l:淡黄色泡沫状固体,52.3mg,产率50%.1H NMR(500MHz,CDCl3)δ7.43(d,J=1.5Hz,1H),7.41(s,1H),7.33–7.10(m,13H),7.07–6.65(m,3H),6.29(d,J=9.0Hz,1H),6.20(d,J=9.7Hz,1H),5.51(d,J=9.7Hz,1H),5.11(s,2H),5.08(s,2H),4.04(s,1H),1.64(s,3H)。13C NMR(126MHz,CDCl3)δ156.2,148.8,141.9,136.1,135.7,131.3,130.2,128.6,128.5,128.5,128.4,128.3,128.1,127.9(br),127.0,125.5,125.0(br),122.9,119.0,112.2,68.3,67.9,57.6,30.3。高分辨质谱:(ESI)实测值[M+H]+520.2226,C32H30N3O4 +理论值520.2231。[α]D 20=-94.5(c1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=8.6min(major),10.6min(minor),96%ee。IR(cm-1):f=3369,3284,3032,2962,1705,1497,1397,1341,1219,1165,1027,755,733,695。
2-(4-甲氧基苯基)-2-甲基-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000221
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间18小时。
(R)-1m:白色固体,25.1mg,回收率50%。1H NMR(500MHz,CDCl3)δ7.48–7.41(m,2H),6.98(td,J=7.7,1.5Hz,1H),6.90(dd,J=7.5,1.5Hz,1H),6.88–6.83(m,2H),6.58(td,J=7.4,1.1Hz,1H),6.42(d,J=7.9Hz,1H),6.32(d,J=9.7Hz,1H),5.55(d,J=9.7Hz,1H),3.99(s,1H),3.79(s,3H),1.70(s,3H)。13C NMR(126MHz,CDCl3)δ158.5,142.7,141.5,130.2,129.0,126.9,126.8,123.2,119.2,117.2,113.7,112.4,57.0,55.4,30.2。高分辨质谱:(ESI)实测值[M+H]+252.1381,C17H18NO+理论值252.1383。[α]D 20=+195(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=6.9min(major),7.8min(minor),95%ee。IR(cm-1):f=3355,3032,2966,1639,1599,1465,1233,1178,1114,1019,806,775,745,643。
3m:淡黄色泡沫状固体,54.4mg,产率50%.1H NMR(500MHz,CDCl3)δ7.30(d,J=8.8Hz,2H),7.27–7.05(m,11H),6.90(brs,2H),6.74(d,J=8.8Hz,2H),6.21(d,J=8.4Hz,1H),6.17–5.97(m,1H),5.43(d,J=9.8Hz,1H),5.07(s,2H),5.03(s,2H),4.02(s,1H),3.66(s,3H),1.57(s,3H)。13C NMR(126MHz,CDCl3)δ158.5,156.2,141.9,141.2,136.1,135.7,131.2,130.5,128.6,128.5,128.4,128.2,128.1,127.8(br),126.8,124.9(br),122.6,118.9,113.7,112.1,68.2,67.8,57.1,55.3,30.2。高分辨质谱:(ESI)实测值[M+H]+550.2327,C33H32N3O5 +理论值550.2336。[α]D 20=-92.7(c 1.0,CHCl3)。HPLC分析:(ChiralpakIB柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=9.8min(major),11.6min(minor),95%ee。IR(cm-1):f=3387,3278,3034,2961,1745,1666,1499,1409,1347,1221,1168,1029,823,750,696。
2-(3-甲氧基苯基)-2-甲基-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000222
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间16小时。
(R)-1n:白色固体,24.1mg,回收率48%。1H NMR(500MHz,CDCl3)δ7.26(t,J=8.1Hz,1H),7.13–7.06(m,2H),6.99(td,J=7.7,1.5Hz,1H),6.90(dd,J=7.4,1.5Hz,1H),6.77(ddd,J=8.2,2.6,0.9Hz,1H),6.59(td,J=7.4,1.1Hz,1H),6.45(d,J=7.9Hz,1H),6.33(d,J=9.6Hz,1H),5.59(d,J=9.7Hz,1H),4.04(brs,1H),3.78(s,3H),1.71(s,3H)。13CNMR(126MHz,CDCl3)δ159.7,150.8,142.7,129.8,129.5,129.0,127.0,123.6,119.3,117.8,117.4,112.5,112.0,111.8,57.5,55.3,30.3。高分辨质谱:(ESI)实测值[M+H]+252.1380,C17H18NO+理论值252.1383。[α]D 20=+311(c 1.0,CHCl3)。HPLC分析:(ChiralpakIA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=6.6min(minor),7.0min(major),99%ee。IR(cm-1):f=3381,3005,2965,1062,1470,1317,1251,1042,742,697。
3n:淡黄色泡沫状固体,53.7mg,产率49%。1H NMR(500MHz,CDCl3)δ7.34–7.04(m,12H),7.03–6.74(m,4H),6.66(dd,J=8.1,2.5Hz,1H),6.24(d,J=8.9Hz,1H),6.18–5.98(m,1H),5.47(d,J=9.7Hz,1H),5.07(s,2H),5.03(s,2H),4.07(s,1H),3.65(s,3H),1.57(s,3H)。13C NMR(126MHz,CDCl3)δ159.7,156.2,150.5,141.9,136.1,135.7,129.5,128.6,128.6,128.5,128.4,128.2,128.1,127.8(br),124.1(br),123.0,119.0,117.8,112.2,112.0,111.8,68.2,67.8,57.6,55.3,30.3。高分辨质谱:(ESI)实测值[M+H]+550.2319,C33H32N3O4 +理论值550.2336。[α]D 20=-102(c 1.0,CHCl3)。HPLC分析:(Chiralpak IC柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=12.7min(major),15.2min(minor),96%ee。IR(cm-1):f=3386,3285,3035,2968,1745,1667,1606,1500,1412,1349,1219,1169,1040,779,756,639,698。
2-甲基-2-(2-萘基)-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000231
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间28小时。
(R)-1o:黄色油状液体,24.0mg,回收率44%。1H NMR(500MHz,CDCl3)δ7.90(d,J=1.9Hz,1H),7.88–7.80(m,3H),7.76(dd,J=8.7,1.9Hz,1H),7.53–7.46(m,2H),7.05(td,J=7.7,1.5Hz,1H),6.96(dd,J=7.4,1.5Hz,1H),6.64(td,J=7.4,1.1Hz,1H),6.50(d,J=7.9Hz,1H),6.41(d,J=9.7Hz,1H),5.69(d,J=9.7Hz,1H),4.13(s,1H),1.85(s,3H)。13CNMR(126MHz,CDCl3)δ146.1,142.7,133.2,132.4,129.7,129.1,128.4,128.4,127.6,127.1,126.3,126.0,124.8,123.8,123.3,119.3,117.4,112.6,57.6,30.2。高分辨质谱:(ESI)实测值[M+H]+,C20H18N+272.1429理论值272.1434。[α]D 20=+350(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=7.1min(major),7.8min(minor),99%ee。IR(cm-1):f=3386,3053,2968,1600,1470,1318,1127,817,792,740。
3o:黄色泡沫状固体,56.4mg,产率49%。1H NMR(400MHz,CDCl3)δ7.89–7.75(m,4H),7.71(dd,J=8.6,1.9Hz,1H),7.54–7.41(m,2H),7.41–7.24(m,9H),7.18–6.70(m,3H),6.58–6.10(m,2H),5.66(s,1H),5.20(s,2H),5.17(s,3H),4.23(brs,1H),1.83(s,3H)。13CNMR(101MHz,CDCl3)δ156.2,145.8,141.9,136.0,135.7,133.1,132.4,131.3,130.0,128.6,128.5,128.4,128.4,128.2,128.1,127.8,127.6,126.3,126.1,124.8,123.3,118.9,112.2,68.2,67.8,57.8,30.2。高分辨质谱:(ESI)实测值[M+H]+,C36H32N3O4 +570.2377理论值570.2387。[α]D 20=-80.8(c1.0,CHCl3)。HPLC分析:(Chiralpak ID柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=16.3min(minor),20.3min(major),92%ee。IR(cm-1):f=3359,3287,3032,2964,1705,1497,1392,1222,1163,1057,818,744,695。
2-甲基-2-(3-噻吩基)-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000241
反应规模为0.2毫摩尔,催化剂用CPA3,反应温度-20℃,反应时间36小时。
(R)-1p:黄色油状液体,18.7mg,回收率41%。1H NMR(500MHz,CDCl3)δ7.28(dd,J=5.1,2.9Hz,1H),7.20(dd,J=5.1,1.4Hz,1H),7.16(dd,J=3.0,1.4Hz,1H),7.02(td,J=7.6,1.6Hz,1H),6.95(dd,J=7.4,1.5Hz,1H),6.64(t,J=7.4Hz,1H),6.44(d,J=7.9Hz,1H),6.37(d,J=9.7Hz,1H),5.60(d,J=9.6Hz,1H),4.06(s,1H),1.74(s,3H)。13C NMR(126MHz,CDCl3)δ150.7,142.6,129.5,129.0,127.0,126.3,126.2,123.6,119.5,119.4,117.5,112.6,55.6,30.5。高分辨质谱:(ESI)实测值[M+H]+228.0839,C14H14NS+理论值228.0841。[α]D 20=+240(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=5.7min(major),6.3min(minor),87%ee。IR(cm-1):f=3377,3031,2964,1602,1469,1316,1126,1083,857,776,742,652。
3p:黄色泡沫状固体,49.2mg,产率47%.1H NMR(500MHz,CDCl3)δ7.19(d,J=6.7Hz,12H),7.03(d,J=5.1Hz,1H),6.99(d,J=3.0Hz,1H),6.96–6.67(m,2H),6.18(dd,J=26.5,9.1Hz,2H),5.44(d,J=9.7Hz,1H),5.07(s,2H),5.03(s,2H),4.06(s,1H),1.58(s,3H)。13C NMR(126MHz,CDCl3)δ156.2,150.4,141.8,136.0,135.7,131.4,129.8,128.6,128.5,128.4,128.2,128.1,127.8,126.3,126.2,123.0,119.6,119.1,112.3,68.2,67.8,55.7,30.5。高分辨质谱:(ESI)实测值[M+H]+526.1788,C30H28N3O4S+理论值526.1795。[α]D 20=-68.1(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=11.0min(major),13.3min(minor),97%ee。IR(cm-1):f=3356,3278,3032,2962,1705,1497,1393,1217,1163,1057,779,734,695,656。
2-异丁基-2-甲基-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000242
反应规模为0.2毫摩尔,催化剂用CPA3,反应温度-40℃,反应时间18小时。
(S)-1q:无色油状液体,17.1mg,回收率43%。1H NMR(400MHz,CDCl3)δ6.94(td,J=7.6,1.6Hz,1H),6.85(dd,J=7.3,1.5Hz,1H),6.53(t,J=7.4Hz,1H),6.35(d,J=7.9Hz,1H),6.26(d,J=9.8Hz,1H),5.39(d,J=9.8Hz,1H),3.50(s,1H),2.00–1.86(m,1H),1.50–1.34(m,2H),1.27(s,3H),0.95(d,J=6.7Hz,6H)。13C NMR(126MHz,CDCl3)δ143.5,130.3,128.7,126.7,124.1,119.6,116.8,112.3,55.7,53.0,31.6,25.0,24.7,24.6。高分辨质谱:(ESI)实测值[M+H]+202.1585,C14H20N+理论值202.1590。[α]D 20=+7.7(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),99:1正己烷/异丙醇,流速1.0mL/min;tR=5.9min(minor),6.3min(major),92%ee。IR(cm-1):f=3366,3032,2953,1705,1498,1394,1219,1162,1059,734,695。
3q:黄色泡沫状固体,45.4mg,产率45%。1H NMR(500MHz,CDCl3)δ7.43–7.01(m,11H),7.00–6.56(m,2H),6.29–5.91(m,2H),5.30(s,1H),5.09(s,2H),5.05(s,2H),3.51(s,1H),1.90–1.77(m,1H),1.40–1.24(m,2H),1.16(s,3H),0.85(d,J=6.7Hz,6H)。13C NMR(126MHz,CDCl3)δ156.2,142.8,136.1,135.7,128.6,128.5,128.4,128.3,128.1,127.7,127.6,124.7,123.6,119.3,111.9,68.2,67.8,55.9,53.1,31.8,24.9,24.6,24.5。高分辨质谱:(ESI)实测值[M+H]+500.2531,C32H34N3O4 +理论值500.2544。[α]D 20=-4.1(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),60:40正己烷/异丙醇,流速1.0mL/min;tR=9.7min(major),12.2min(minor),93%ee。IR(cm-1):f=3365,3285,3033,2952,1705,1498,1391,1339,1220,1161,1059,733,695。
2,3-二甲基-2-苯基-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000251
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间16小时。
(R)-1r:无色油状液体,21.9mg,回收率47%。1H NMR(500MHz,CDCl3)δ7.63(d,J=7.0Hz,2H),7.37(t,J=7.8Hz,2H),7.28(t,J=7.5Hz,1H),6.97(td,J=7.7,1.5Hz,1H),6.94–6.86(m,1H),6.63(t,J=7.4Hz,1H),6.38(d,J=7.9Hz,1H),6.25(s,1H),3.89(s,1H),1.79(s,3H),1.62(s,3H)。13C NMR(126MHz,CDCl3)δ147.3,142.0,136.3,128.3,128.1,127.2,126.6,125.9,121.9,120.3,117.3,112.0,60.8,26.3,19.7。高分辨质谱:(ESI)实测值[M+H]+236.1425,C17H18N+理论值236.1434。[α]D 20=+72.4(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=6.0min(minor),7.9min(major),98%ee。IR(cm-1):f=3374,3020,2970,1603,1475,1318,1283,1185,1025,743,698,617。
3r:淡黄色泡沫状固体,54.4mg,产率51%.1H NMR(500MHz,CDCl3)δ7.48(d,J=7.7Hz,2H),7.42–7.11(m,13H),7.11–6.55(m,3H),6.41–5.82(m,2H),5.11(s,2H),5.08(s,2H),3.87(brs,1H),1.67(s,3H),1.52(brs,3H)。13C NMR(126MHz,CDCl3)δ156.2,147.0,141.2,136.8,136.1,135.7,131.4,128.6,128.5,128.4,128.3,128.3,128.1,127.8(br),127.2,126.5,123.9(br),121.5,120.0,111.6,68.2,67.8,60.9,26.4,19.6。高分辨质谱:(ESI)实测值[M+H]+534.2397,C33H32N3O4 +理论值534.2387。[α]D 20=-10.0(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=14.6min(major),21.5min(minor),94%ee。IR(cm-1):f=3356,3288,3030,2967,1705,1500,1392,1341,1217,1056,738,696。
4-甲氧基-2-甲基-2-苯基-1,2-二氢喹啉的动力学拆分:
Figure BDA0002804062730000261
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间16小时。
(R)-1s:浅黄色固体,21.2mg,回收率42%。1H NMR(500MHz,CDCl3)δ7.57(d,J=8.6Hz,2H),7.40(dd,J=8.1,1.4Hz,1H),7.36(t,J=7.7Hz,2H),7.29–7.21(m,1H),7.12–7.00(m,1H),6.67(t,J=7.4Hz,1H),6.50(d,J=7.9Hz,1H),4.74(s,1H),4.10(s,1H),3.71(s,3H),1.78(s,3H)。13C NMR(126MHz,CDCl3)δ150.0,149.9,143.4,129.5,128.4,126.8,125.4,122.3,117.2,116.8,112.6,100.3,57.8,54.6,31.4。高分辨质谱:(ESI)实测值[M+H]+252.1375,C17H18NO+理论值252.1383。[α]D 20=+137(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),80:20正己烷/异丙醇,流速1.0mL/min;tR=7.0min(minor),8.4min(major),97%ee。IR(cm-1):f=3380,3056,2963,1647,1603,1476,1363,1272,1239,1142,1103,1027,743,697。
3s:黄色固体,54.8mg,产率50%。1H NMR(500MHz,CDCl3)δ7.52(d,J=7.7Hz,2H),7.46–7.19(m,14H),7.19–6.73(m,2H),6.41(d,J=8.7Hz,1H),5.20(s,2H),5.17(s,2H),4.70(brs,1H),4.16(s,1H),3.65(s,3H),1.75(s,3H)。13C NMR(126MHz,CDCl3)δ156.2,149.8,149.2,142.6,136.1,135.7,131.3,128.7,128.6,128.5,128.5,128.3,128.1,127.7(br),126.9,125.4,120.5(br),116.5,112.4,100.6,68.3,67.9,58.1,54.6,31.5。高分辨质谱:(ESI)实测值[M+H]+550.2322,C33H32N3O5 +理论值550.2336。[α]D 20=-34.6(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=8.2min(major),9.2min(minor),86%ee。IR(cm-1):f=3362,3288,3032,2959,1708,1501,1219,1105,1027,741,695。
6-甲基-6-苯基-5,6-二氢菲啶的动力学拆分:
Figure BDA0002804062730000262
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间36小时。
(S)-1t:灰色固体,24.7mg,回收率46%。1H NMR(500MHz,CDCl3)δ7.67(dd,J=7.9,1.3Hz,1H),7.60(dd,J=7.8,1.4Hz,1H),7.45–7.37(m,2H),7.25–7.16(m,3H),7.16–7.10(m,1H),7.07(td,J=7.6,1.3Hz,1H),7.01(td,J=7.6,1.4Hz,1H),6.85(dd,J=7.8,1.3Hz,1H),6.71(td,J=7.6,1.2Hz,1H),6.55(dd,J=7.9,1.2Hz,1H),4.16(brs,1H),1.76(s,3H)。13C NMR(126MHz,CDCl3)δ147.5,143.2,140.2,130.9,129.1,128.2,127.3,127.3,127.2,127.1,126.0,123.4,122.6,121.0,118.9,115.3,59.8,28.7。高分辨质谱:(ESI)实测值[M+H]+272.1430,C20H18N+理论值272.1434。[α]D 20=-48.5(c 1.0,CHCl3)。HPLC分析:(Chiralpak IC柱),90:10正己烷/异丙醇,流速1.0mL/min;tR=5.4min(minor),6.1min(major),98%ee。IR(cm-1):f=3407,2989,2972,1603,1490,1441,1266,772,750,740,723,699。
3t:黄色固体,59.0mg,产率52%。1H NMR(500MHz,CDCl3)δ7.66(brs,1H),7.54(brs,1H),7.40(d,J=7.7Hz,2H),7.36–6.89(m,17H),6.81(d,J=7.8Hz,1H),6.50(s,1H),5.13(s,2H),5.09(s,2H),4.28(brs,1H),1.76(s,3H)。13C NMR(126MHz,CDCl3)δ156.3,147.3,142.2,139.9,136.0,135.7,135.6,132.9,130.1,128.6,128.6,128.4,128.4,128.3,128.2,127.8(br),127.4,127.3,127.2,127.2,125.9,122.7,121.6,120.7,115.1,68.3,67.9,59.8,28.8。高分辨质谱:(ESI)实测值[M+H]+570.2380,C36H32N3O4 +理论值570.2387。[α]D 20=+28.5(c 1.0,CHCl3)。HPLC分析:(Chiralpak IC柱),50:50正己烷/异丙醇,流速1.0mL/min;tR=8.3min(major),14.4min(minor),88%ee。IR(cm-1):f=3355,3289,3031,2968,1705,1499,1443,1390,1329,1295,1217,1058,907,730,695。
9-甲氧基-6-甲基-6-苯基-5,6-二氢菲啶的动力学拆分:
Figure BDA0002804062730000271
反应规模为0.2毫摩尔,催化剂用CPA2,反应温度-40℃,反应时间21小时。
(S)-1u:浅黄色固体,28.8mg,回收率48%。1H NMR(500MHz,CDCl3)δ7.69(dd,J=7.9,1.4Hz,1H),7.59–7.46(m,3H),7.37–7.27(m,3H),7.24–7.17(m,1H),7.10(td,J=7.6,1.5Hz,1H),6.83–6.71(m,2H),6.51(dd,J=7.8,1.3Hz,1H),3.93(s,1H),3.34(s,3H),1.99(s,3H)。13C NMR(126MHz,CDCl3)δ156.4,150.0,142.5,132.6,129.3,129.2,128.3,127.6,126.5,126.3,123.9,119.5,118.1,115.3,114.3,111.7,58.8,55.4,27.2。高分辨质谱:(ESI)实测值[M+H]+302.1528,C21H20NO+理论值302.1539。[α]D 20=-73.4(c 1.0,CHCl3)。HPLC分析:(Chiralpak IA柱),70:30正己烷/异丙醇,流速1.0mL/min;tR=4.7min(minor),5.1min(major),98%ee。IR(cm-1):f=3361,2967,2930,1593,1467,1433,1254,1085,1018,799,756,745,700。
3u:浅黄色固体,60.7mg,产率51%。1H NMR(500MHz,CDCl3)δ7.77–7.51(m,1H),7.38(d,J=7.7Hz,2H),7.32–6.79(m,17H),6.63(d,J=8.0Hz,1H),6.31(s,1H),5.13(s,2H),5.09(s,2H),3.97(brs,1H),3.21(s,3H),1.85(s,3H)。13C NMR(126MHz,CDCl3)δ156.3,149.9,141.6,136.1,135.7,132.1,131.8,129.0,128.6,128.6,128.4,128.3,128.3,128.2,127.9(br),127.6,126.5,126.3,122.1(br),119.1,115.4,114.1,112.1,68.3,67.9,58.9,55.4,27.2。高分辨质谱:(ESI)实测值[M+H]+600.2476,C37H34N3O5 +理论值600.2493。[α]D 20=+40.4(c 1.0,CHCl3)。HPLC分析:(Chiralpak IB柱),70:30正己烷/异丙醇,流速1.0mL/min;tR=15.1min(major),17.6min(minor),95%ee。IR(cm-1):f=3356,3290,3031,2960,1707,1575,1506,1467,1329,1255,1217,1027,737,695。
实施例4
消旋苯并双杂原子杂环的动力学拆分
本实施例中使用到的手性磷酸催化剂结构如下:
Figure BDA0002804062730000281
二氢喹啉类底物的动力学拆分的通用方法:
通用方法:反应瓶中加入S1(0.2mmol)、催化剂(5mol%)以及3A分子筛100mg,加入3.5mL氯仿并置于对应低温环境中(-40℃或-60℃),S2溶于0.5mL氯仿中,在低温条件下缓慢滴加,结束后低温反应。TLC或HPLC监测反应结束后0.3mL三乙胺加入中低温搅拌15min后提至室温,旋蒸除去溶剂,经柱层析纯化得到相应手性原料和产物。
苯并六元氮氧杂环的动力学拆分:
Figure BDA0002804062730000282
通用方法:反应瓶中加入S1(0.2mmol)、催化剂(5mol%)以及3A分子筛100mg,加入3.5mL氯仿并置于对应低温环境中(-40℃或-60℃),S2溶于0.5mL氯仿中,在低温条件下缓慢滴加,结束后低温反应。TLC或HPLC监测反应结束后0.3mL三乙胺加入中低温搅拌15min后提至室温,旋蒸除去溶剂,经柱层析纯化得到相应手性原料和产物。
Figure BDA0002804062730000291
条件:-60℃,S1:S2=1:0.55,0.2mmol规模,12h,S=75.7。
3-甲基-3-苯基-3,4-二氢-2H-苯并[b][1,4]恶嗪:22mg,49%回收率,85.5%ee,白色固体。1H NMR(500MHz,Chloroform-d)δ7.42(d,J=7.7Hz,2H),7.29(t,J=7.6Hz,2H),7.23–7.15(m,1H),6.79–6.71(m,2H),6.68–6.53(m,2H),4.08(d,J=10.5Hz,1H),3.90(d,J=10.6Hz,1H),1.54(s,3H).m/z HRMS(ESI)发现[M+H]+226.1221,C15H16NO+理论226.1226.
Figure BDA0002804062730000292
1-(3-甲基-3-苯基-3,4-二氢-2H-苯并[b][1,4]恶嗪-7-基)肼-1,2-二羧酸二苄酯:50mg,48%产率,93%ee,白色泡沫。1H NMR(400MHz,Chloroform-d)δ7.51–7.40(m,2H),7.37–7.11(m,14H),7.07–6.71(m,2H),6.67–6.38(m,1H),5.14(d,J=16.0Hz,4H),4.20–3.95(m,2H),3.90(d,J=10.5Hz,1H),1.55(s,3H).m/z HRMS(ESI)发现[M+H]+524.2172,C31H30N3O5 +理论524.2180.
苯并六元氮硫杂环的动力学拆分:
Figure BDA0002804062730000293
条件:-40℃,S1:S2=1:0.55,0.2mmol规模,12h,S=212.4。
3-甲基-3-苯基-3,4-二氢-2H-苯并[b][1,4]噻嗪:22mg,47%回收率,98.5%ee,白色固体。1H NMR(500MHz,Chloroform-d)δ7.46–7.40(m,2H),7.37–7.31(m,2H),7.29–7.26(m,1H),7.00(dd,J=7.7,1.5Hz,1H),6.96(td,J=7.6,1.5Hz,1H),6.69–6.58(m,2H),4.18(s,1H),3.14(d,J=12.7Hz,1H),2.94(d,J=12.7Hz,1H),1.71(s,3H).m/z HRMS(ESI)发现[M+H]+242.0992,C15H16NS+理论242.0998.
Figure BDA0002804062730000294
1-(3-甲基-3-苯基-3,4-二氢-2H-苯并[b][1,4]噻嗪-7-基)肼-1,2-二羧酸二苄酯:54mg,50%产率,95.5%ee,白色泡沫。1H NMR(400MHz,Chloroform-d)δ7.56–6.73(m,19H),6.51(s,1H),5.31–4.96(m,4H),4.16(s,1H),3.09(d,J=12.7Hz,1H),2.88(d,J=12.9Hz,1H),1.67(s,3H).m/z HRMS(ESI)发现[M+H]+540.1949,C31H30N3O4S+理论540.1952.
苯并氮氮杂环的动力学拆分:
Figure BDA0002804062730000301
条件:室温,S1:S2=1:0.55,0.05mmol规模,12h,S=38.3。
2,3-二甲基-3-苯基-3,4-二氢喹喔啉-1(2H)-羧酸叔丁酯:7mg,47%回收率,80%ee,白色固体。1H NMR(500MHz,Chloroform-d)δ7.73–7.44(m,3H),7.39(t,J=7.6Hz,2H),7.29(t,J=7.3Hz,1H),7.06–6.88(m,1H),6.80–6.58(m,2H),4.73(s,1H),4.08(s,1H),1.56(s,9H),1.51(s,3H),0.69(d,J=6.8Hz,3H).m/z HRMS(ESI)发现[M+H]+339.2061,C21H27N2O2 +理论339.2068.
Figure BDA0002804062730000302
1-(4-(叔丁氧基羰基)-2,3-二甲基-2-苯基-1,2,3,4-四氢喹喔啉-6-基)肼-1,2-二羧酸二苄酯:15mg,47%产率,80%ee,棕色胶状。1H NMR(500MHz,Chloroform-d)δ7.49(d,J=7.7Hz,3H),7.45–7.27(m,13H),7.21–6.52(m,3H),5.28–5.03(m,4H),4.71(s,1H),4.19(s,1H),1.51(d,J=11.8Hz,9H),1.34–1.21(m,3H),0.69(d,J=6.7Hz,3H).m/z HRMS(ESI)发现[M+H]+637.3012,C37H41N4O6 +理论637.3021.
苯并氮氧七元环动力学拆分:
Figure BDA0002804062730000303
Figure BDA0002804062730000311
条件:-40℃,S1:S2=1:1,0.2mmol规模,14h,S=153.9。
11-甲基-11-苯基-10,11-二氢二苯并[b,f][1,4]奥氮平:28mg,49%回收率,96%ee,白色固体。1H NMR(400MHz,Chloroform-d)δ7.48(dd,J=7.8,1.7Hz,1H),7.33–7.15(m,7H),7.11(dd,J=7.9,1.4Hz,1H),6.95–6.83(m,2H),6.69–6.57(m,2H),4.24(s,1H),1.85(s,3H).m/z HRMS(ESI)发现[M+H]+288.1377,C20H18NO+理论288.1383.
Figure BDA0002804062730000312
1-(11-甲基-11-苯基-10,11-二氢二苯并[b,f][1,4]恶唑啉-7-基)肼-1,2-二羧酸二苄酯:59mg,50%产率,95%ee,白色泡沫。1H NMR(400MHz,Chloroform-d)δ7.56–6.41(m,25H),5.25–4.98(m,4H),4.34(s,1H),1.80(s,3H).m/z HRMS(ESI)发现[M+H]+586.2331,C36H32N3O5 +理论586.2336.
苯并氮硫七元环动力学拆分:
Figure BDA0002804062730000313
条件:-40℃,S1:S2=1:1,0.2mmol规模,72h,S=47。
11-甲基-11-苯基-10,11-二氢二苯并[b,f][1,4]噻氮平:29mg,48%回收率,87.5%ee,黄色泡沫。1H NMR(500MHz,Chloroform-d)δ7.46(d,J=7.4Hz,1H),7.40(d,J=7.7Hz,1H),7.30–7.18(m,7H),7.15(d,J=7.6Hz,1H),7.00(t,J=7.6Hz,1H),6.67(t,J=7.5Hz,1H),6.58(d,J=8.0Hz,1H),4.19(s,1H),1.89(s,3H).m/z HRMS(ESI)发现[M+H]+304.1149,C20H18NS+理论304.1154.
Figure BDA0002804062730000314
1-(11-甲基-11-苯基-10,11-二氢二苯并[b,f][1,4]噻唑啉-7-基)肼-1,2-二羧酸二苄酯:59mg,49%回收率,88.5%ee,白色泡沫。1H NMR(400MHz,Chloroform-d)δ7.90–6.18(m,25H),5.31–4.91(m,4H),4.31(s,1H),1.84(s,3H).m/z HRMS(ESI)发现[M+H]+602.2101,C36H32N3O4S+理论602.2109.
实施例5
反应催化剂减量和反应放大
二氢喹啉底物的克级别放大反应
Figure BDA0002804062730000321
氮气氛围下50毫升蛋形瓶里计入搅拌子、消旋底物1l(1.0克,4.52毫摩尔)和手性磷酸CPA2(12.4毫克,0.0225毫摩尔,0.5mol%)和
Figure BDA0002804062730000322
分子筛320毫克。加入13毫升干氯仿后,体系温度降低到-30℃,往里滴加含偶氮二甲酸二苄酯(714毫克,2.40毫摩尔,0.53当量)的10毫升干氯仿,继续在-30℃下搅拌60小时,然后加入加入100微升三乙胺淬灭反应。用硅藻土过滤,旋蒸溶剂,柱层析分离(洗脱剂:石油醚/乙酸乙酯40/1到4/1),回收原料(R)-1l(487毫克,49%,97%ee),得到产物3l(1.17克,50%,94%ee)。
实施例6
二氢喹啉底物胺化反应的脱氨基反应:
Figure BDA0002804062730000323
氮气氛围下,原料3l(52.0毫克,0.1毫摩尔,94%ee)溶于乙醇/水溶液(乙醇/水=40/1)2毫升,加入氢氧化钾(66.0毫克,85%,10.0当量),然后75摄氏度加热14小时。用乙酸乙酯稀释,饱和食盐水洗两次。有机相用无水硫酸钠干燥,旋蒸溶剂,柱层析得到产物(S)-1l(18.2毫克,产率82%,93%ee)。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种手性α-叔胺的拆分合成方法,包括:
将消旋的式A化合物在催化剂存在的条件下与偶氮二甲酸酯进行不对称亲电芳香取代反应,以提供(R)或(S)构型的式A化合物和与式A化合物相反构型的式C化合物,反应方程式如下:
Figure FDA0002804062720000011
其中,R1、R2各自独立地选自H,C1-C8烷基,C1-C8烯基,C1-C8炔基,取代基选自卤素、C1-C6烷基、C1-C6烷氧基的取代或未取代的芳基,芳基烷基,杂芳基,-OC(O)R’,R’选自H、C1-C6烷基;
X选自NR”,O,S,C(O)OR”’,C(O)R”’,或不存在,R”选自H,C1-C6烷基,R”’选自C1-C6烷基;
Y选自C,或不存在;
R3、R6各自独立地选自H,C1-C6烷基,C1-C6烷氧基,或与它们所连接的原子一起形成稠合的取代基选自C1-C6烷氧基的取代或未取代的芳基;
R4选自H、C1-C8烷基、芳基、卤素、C1-C6烷氧基;
R5选自C1-C8烷基、芳基、芳基烷基;
所述催化剂选自手性磷酸催化剂。
2.如权利要求1所述的一种手性α-叔胺的拆分合成方法,其特征在于,R1选自取代基选自卤素、C1-C6烷基、C1-C6烷氧基的取代或未取代的芳基,杂芳基;
R2选自C1-C8烷基、C1-C8烯基、芳基,芳基烷基;
X选自NR”,O,S,或不存在,R”选自H,C1-C6烷基;
Y选自C,或不存在;
R3、R6各自独立地选自H,C1-C6烷基,C1-C6烷氧基,或与它们所连接的原子一起形成稠合的取代基选自C1-C6烷氧基的取代或未取代的芳基;
R4选自H;
R5选自芳基烷基。
3.如权利要求1所述的一种手性α-叔胺的拆分合成方法,其特征在于,所述式A化合物选自化学结构式如下之一所示的化合物:
Figure FDA0002804062720000021
4.如权利要求1所述的一种手性α-叔胺的拆分合成方法,其特征在于,所述手性磷酸催化剂为
Figure FDA0002804062720000022
酸催化剂。
5.如权利要求4所述的一种手性α-叔胺的拆分合成方法,其特征在于,所述手性磷酸催化剂具有SPINOL骨架、BINOL骨架、或H8-BINOL骨架。
6.如权利要求5所述的一种手性α-叔胺的拆分合成方法,其特征在于,所述手性磷酸催化剂选自化学结构式如下之一所示的化合物,或这些催化剂的对映体:
Figure FDA0002804062720000031
其中,Rcat1和Rcat2为相同基团或不同的基团;
Rcat1和Rcat2各自独立地选自苯基、2,4,6-三甲基苯基、2,4,6-三环己基苯基、2,4,6-三异丙基苯基、1-萘基、2-萘基、9-蒽基、9-菲基。
7.如权利要求1所述的一种手性α-叔胺的拆分合成方法,其特征在于,不对称亲电芳香取代反应在溶剂存在的条件下进行,优选的,不对称亲电芳香取代反应中所使用的溶剂选自非质子溶剂;
和/或,式A化合物与偶氮二甲酸酯的摩尔比为1:0.5~1.1,优选的,式A化合物与偶氮二甲酸酯的摩尔比为1:0.55~0.65;
和/或,不对称亲电芳香取代反应在无水条件下进行;
和/或,不对称亲电芳香取代反应的反应温度为-80℃~50℃,优选的,不对称亲电芳香取代反应的反应温度为-40℃~-20℃;
和/或,所述不对称亲电芳香取代反应的后处理包括:淬灭、脱除溶剂,纯化以提供(R)或(S)构型的式A化合物以及与式A化合物相反构型的式C化合物。
8.如权利要求1所述的一种手性α-叔胺的拆分合成方法,其特征在于,所述方法还包括:通过式C化合物提供与其相同构型的式A化合物,反应方程式如下所示:
Figure FDA0002804062720000032
9.如权利要求8所述的一种手性α-叔胺的拆分合成方法,其特征在于,通过式C化合物提供与其相同手性构型的式A化合物的方法具体为:将式C化合物在碱存在的条件下进行脱肼基反应,以提供与其相同手性构型的式A化合物。
10.如权利要求9所述的一种手性α-叔胺的拆分合成方法,其特征在于,所述脱肼基反应中,所述碱选自有机碱和/或无机碱,无机碱优选为碱金属、碱土金属的氢氧化物和碳酸盐中的一种或多种的组合,更优选为氢化化钾、氢氧化钠、氢氧化锂、碳酸钾、碳酸钠、碳酸锂、碳酸铯中的一种或多种的组合,有机碱优选为季铵碱、碱金属的醇盐中的一种或多种的组合,优选为氢氧化四甲基铵、叔丁醇钾、叔丁醇钠、叔丁醇锂、DBU(1,8-二氮杂二环十一碳-7-烯)中的一种或多种的组合,有机碱更优选为季铵碱;
和/或,所述脱肼基反应在溶剂存在的条件下进行,优选的,所述脱肼基反应中,溶剂选自水、醇类溶剂、醚类溶剂、酰胺类溶剂、砜类溶剂、芳香烃类溶剂中的一种或多种的组合;
和/或,所述脱肼基反应的反应温度为20~100℃,优选的,所述脱肼基反应的反应温度为60~80℃。
CN202011361366.3A 2020-11-27 2020-11-27 一种催化动力学拆分合成手性α-叔胺的方法 Active CN112409253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011361366.3A CN112409253B (zh) 2020-11-27 2020-11-27 一种催化动力学拆分合成手性α-叔胺的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011361366.3A CN112409253B (zh) 2020-11-27 2020-11-27 一种催化动力学拆分合成手性α-叔胺的方法

Publications (2)

Publication Number Publication Date
CN112409253A true CN112409253A (zh) 2021-02-26
CN112409253B CN112409253B (zh) 2022-11-29

Family

ID=74843345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011361366.3A Active CN112409253B (zh) 2020-11-27 2020-11-27 一种催化动力学拆分合成手性α-叔胺的方法

Country Status (1)

Country Link
CN (1) CN112409253B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340514A (zh) * 2022-08-31 2022-11-15 中国科学院化学研究所 一种手性胺类化合物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010359A2 (en) * 2008-07-24 2010-01-28 Cilpa Limited A process for the preparation of cinacalcet and its salts
CN111423332A (zh) * 2020-05-25 2020-07-17 上海科技大学 一种拆分手性化合物的方法
CN111517964A (zh) * 2020-05-25 2020-08-11 上海科技大学 一种拆分手性化合物的方法
CN112694376A (zh) * 2020-12-25 2021-04-23 浙江工业大学 一种手性磷酸催化的烯丙基叔醇动力学拆分方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010359A2 (en) * 2008-07-24 2010-01-28 Cilpa Limited A process for the preparation of cinacalcet and its salts
CN111423332A (zh) * 2020-05-25 2020-07-17 上海科技大学 一种拆分手性化合物的方法
CN111517964A (zh) * 2020-05-25 2020-08-11 上海科技大学 一种拆分手性化合物的方法
CN112694376A (zh) * 2020-12-25 2021-04-23 浙江工业大学 一种手性磷酸催化的烯丙基叔醇动力学拆分方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRIGORY A. SHEVCHENKO, ET AL: "Catalytic Asymmetric α-Amination of α-Branched Ketones via Enol Catalysis", 《SYNLETT.》 *
SHOU-GUO WANG, ET AL: "Asymmetric Dearomatization of β-Naphthols through an Amination Reaction Catalyzed by a Chiral Phosphoric Acid", 《ANGEWANDTE CHEMIE, INTERNATIONAL EDITION》 *
刘财路 等: "手性磷酸催化己内酯的动力学拆分", 《中国科技论文》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340514A (zh) * 2022-08-31 2022-11-15 中国科学院化学研究所 一种手性胺类化合物及其制备方法

Also Published As

Publication number Publication date
CN112409253B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
Lu et al. Asymmetric hydrogenation of quinolines and isoquinolines activated by chloroformates
Song et al. Organometallic methods for the synthesis and functionalization of azaindoles
Roesch et al. Synthesis of isoindolo [2, 1-a] indoles by the palladium-catalyzed annulation of internal acetylenes
CN111471047B (zh) 选择性合成吡唑并[1,2-a]吡唑酮或2-酰基吲哚类化合物的方法
CN110105293B (zh) 一种c-3位二氟甲基取代喹喔啉酮类衍生物的合成方法
Tan et al. Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn (III) complex for enantioselective epoxidation of styrene
CN112409253B (zh) 一种催化动力学拆分合成手性α-叔胺的方法
CN112916042A (zh) 基于四甲基螺二氢茚骨架的手性季铵盐相转移催化剂及制备方法
CN111517964B (zh) 一种拆分手性化合物的方法
Durán-Galván et al. Enantioselective synthesis of butadien-2-ylcarbinols via (silylmethyl) allenic alcohols from chromium-catalyzed additions to aldehydes utilizing chiral carbazole ligands
Yum et al. Synthesis of pyrrolo-heterocycles via Pd-loaded zeolite catalyzed annulation of o-haloaromatic amine with terminal alkynes
Zhang et al. Synthesis of chiral fluorine-containing compounds via Pd-catalyzed asymmetrical allylations of dimethyl 2-fluoromalonate using sulfonamide-pyridine ligands
CN111423332B (zh) 一种拆分手性化合物的方法
CN111100165B (zh) 一种含双吡唑环的化合物及其中间体的制备方法
CN111548269B (zh) 一种二芳基甲烷结构化合物的制备方法
CN111057080B (zh) 一种含硼吲哚啉酮衍生物的制备方法
Huang et al. Synthesis of Tricyclic Isoquinoline Derivatives via Palladium‐Catalyzed Tandem Reactions of 2, 7‐Alkadiynylic Carbonates with 2, 3‐Allenyl Sulfamides
CN109776546B (zh) 一种制备吲哚并吡咯酮化合物的方法
CN109897039A (zh) 一种制备吡咯并[3,2,1-ij]喹啉酮化合物的方法
CN106986810B (zh) 手性3-取代异吲哚啉酮类化合物及其制备方法与应用
CN113121543B (zh) 一种吖庚环并[4,5-b]吲哚化合物的制备方法
CN110683940B (zh) 一种二苯并[c,e][1,2]氧硫杂环己烷-6-氧化物类化合物的转化方法
CN110041355B (zh) 一种合成硼取代的手性二苯并-1,4-氮杂*类化合物的方法
CN104321330A (zh) 铑催化剂和制备胺化合物的方法
CN111808072B (zh) 一种3-甲酰基吲哚衍生物的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant