CN112403392A - 一种大容量液体环境原位光学测量高温高压反应釜 - Google Patents

一种大容量液体环境原位光学测量高温高压反应釜 Download PDF

Info

Publication number
CN112403392A
CN112403392A CN202011491191.8A CN202011491191A CN112403392A CN 112403392 A CN112403392 A CN 112403392A CN 202011491191 A CN202011491191 A CN 202011491191A CN 112403392 A CN112403392 A CN 112403392A
Authority
CN
China
Prior art keywords
window
pressure
sealing
reaction kettle
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011491191.8A
Other languages
English (en)
Other versions
CN112403392B (zh
Inventor
杨新一
刘闯
邹勃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202011491191.8A priority Critical patent/CN112403392B/zh
Publication of CN112403392A publication Critical patent/CN112403392A/zh
Application granted granted Critical
Publication of CN112403392B publication Critical patent/CN112403392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • G01N2223/04Investigating materials by wave or particle radiation by transmission and measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/31Accessories, mechanical or electrical features temperature control
    • G01N2223/3106Accessories, mechanical or electrical features temperature control heating, furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/311Accessories, mechanical or electrical features high pressure testing, anvil cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/317Accessories, mechanical or electrical features windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/637Specific applications or type of materials liquid

Abstract

本发明的一种大容量液体环境原位光学测量高温高压反应釜高温高压设备技术领域,包括反应釜釜体(1)、光学窗口部件(2)、样品腔组件(3)、加热体组件(4)、电极(5)、密封部件(6)、水冷管(7)和压力组件(8);本发明所设计的反应釜能够承载液体样品,样品容积可高达上百毫升,并为其提供600℃温度、550MPa压力环境,同时能够实现高温高压条件下液体样品的原位X射线吸收谱、荧光谱、拉曼光谱分析。

Description

一种大容量液体环境原位光学测量高温高压反应釜
技术领域
本发明属于高温高压设备技术领域,具体涉及一种可应用于化学、物理学、生物学、材料学、医学等领域的大容量液体环境原位高温高压反应釜。
背景技术
自Bridgeman的开创性工作以来,自然科学中高压的使用越来越受到关注,而且在高压条件下各种介质表现出来的物质属性更是吸引了众多科学研究人员的关注。如在石油勘探行业中,在测试潜在物质作为制动液时,就必须了解高压下流体的可压缩性和冷冻压力,而这个高压值则往往会超过百MPa。此外,固-液相临界点研究、水溶液等的多阶相变研究、固-固相转变研究、一般相平衡研究都会在高温度高压力条件下被激活出新的特性。特别的,在地球科学领域,高温高压条件更是研究的重中之重。如地壳中的流体循环在化学成分(质量)和热量(能量)的运输中起着重要作用,并且是对热液矿床形成的主要控制。近几十年来,通过应用数值流体流动模型,科研人员对与地壳热扰动相关的流体循环相关原理的理解已经取得了显着进展。这些模型结合了描述系统质量、能量和动量守恒的传输方程,并要求循环流体的物理和热力学性质作为输入。早期的数值模拟结合了纯H2O的特性来模拟天然热液。在过去的几十年中,已经产生了一个大型实验数据库,描述了水性电解质系统的压力-体积-温度-成分(PVTx)特性,特别是对于系统H2O-NaCl。现有的实验数据已用于开发算法,以估算高温和高压下更复杂流体的物理和热力学性质。同时,为了验证这些物理和热力学性质,工程人员也在不断地为超高温超高压创造条件,如金刚石对顶砧压腔,已经能够为人们提供高达数千摄氏度,上百万大气压的压力值,这些装置的研发和制造已经为目前的地球科学研究领域带来了巨大的收获。
相比于目前现有的金刚石对顶砧压腔,人们正在追求更大容量,并具备原位在线检测手段的大容量高温高压反应釜。因为大容量液体环境高温高压原位反应釜不仅可以模拟真实样品环境,如温度达到上百度,压力达到上百个兆帕,并对样品环境中的样品进行诸如同步辐射X射线吸收、荧光、拉曼光谱数据的在线采集,实现对样品结构、形态、分子相互作用等演变的真实记录,这将为地球科学乃至材料科学、化学/物理等多种学科领域揭示其内在的深层结构、溶液/材料的物相结构转变,以及相关联的动力学机制提供巨大的帮助。然而目前针对高温高压反应容器的设备往往集中在为容器创造一个合适的高温度或高压力环境场,容器本身往往是一个密封体系,在整个实验过程中无法对容器内的物质进行有效观察。但在实际的科学研究中,研究人员更需要的是直接观测在对样品或溶液进行施加温度、压力条件过程中样品的物相结构变化,从而确定这些样品在特定温度和压力条件下表现出来的特殊物质属性。
发明内容
本发明的目的在于,克服背景技术存在的不足,提供一种可应用于化学、物理学、生物学、材料学、医学等领域的大容量液体环境原位高温高压反应釜,该反应釜能够承载大容量的液体样品,并为其提供高温、高压环境,以满足高温高压条件下液体样品的原位X射线吸收、荧光、拉曼等光谱分析,材料合成-性能一体化原位表征领域。
本发明的技术方案如下:
一种大容量液体环境原位光学测量高温高压反应釜,包括反应釜釜体1、样品腔组件3、加热体组件4、密封部件6、水冷管7和压力组件8;其特征在于,还包括电极5和光学窗口部件2;
所述的反应釜釜体1是整体外形为圆柱形、内部为中空的腔体,在釜体中部位置开设三个圆形窗口,以满足原位光学测试功能需求,三个窗口分别为入射窗口、出射窗口和荧光窗口,其中入射窗口与出射窗口同轴,荧光窗口的轴线与入射和出射窗口的轴线垂直相交,三个窗口的轴线所在平面与釜体轴线垂直,三个窗口内均放置有光学窗口部件2;所述的光学窗口部件2由窗口承载元件21、窗体紧固元件24、窗口密封圈22、窗体23组成,窗体23直径小于釜体所开窗口的直径,放置于窗口最深处,窗体23与釜体之间通过窗体紧固元件24完成固定,窗口承载元件21为中空管状,顶端与窗体23贴合,窗体承载元件21前段与中段位置套有窗口密封圈22,窗口承载元件21与釜体1通过半自紧密封设计,实现承压和透光功能,釜体通过上下两端的密封部件6和三个窗口密封形成密闭腔,反应釜釜体1外部缠绕水冷管7,水冷管7避开光学窗口部件2,通过冷却水循环进行水冷,或者调解制冷量来控制热交换量,实现水冷系统温度控制,以保证内部加载高温样品情况下釜体的耐压性能及可操作性;
釜体1内部的中空腔体放置有样品腔组件3和加热体组件4;所述的样品腔组件3由样品腔31、密封活塞32、全氟橡胶圈33、支撑件34和电极5组成,样品腔31为中空圆管形状,密封活塞32安插于样品腔31两端,全氟橡胶圈33安置于密封活塞32和样品腔31中间,起密封作用,密封活塞32能够根据测试样品体积自由滑动,使样品腔31内压力与压力组件8注入的压力一致;电极5埋入密封活塞32中,连接外部信号处理设备,保证完成不少于两电极的电学测试;
加热体组件4设置于样品腔31的外部,用于对样品腔31加温,所述的加热体组件4由加热套41、绝缘固定元件42、热电偶43、加热管44、绝热层45、堵头46组成,所述的加热管44为中空圆柱体形状,直径大于样品腔31,嵌套于样品腔31外部,加热管44外侧面缠绕加热丝;绝热层45位于加热管44外部,用于减少热量损失;样品腔31、加热管44和绝热层45共同装载于加热套41中,通过上堵头46将加热管44和绝热层45的位置固定,加热套41、绝热层45以及支撑体正对光学窗口处开设圆形窗口,以保证光路畅通;加热套41下端与密封部件6嵌套配合,加热套41下端的加热丝两端通过绝缘固定元件42与两个加热电极连接,实现电气引入,热电偶43穿过绝热层45,布置于靠近加热管44中心处,热电偶43和加热管44通过外部温控设备调控;腔体上下两端设置电极5和密封部件6,实现整个腔体的密封,并将电信号引出反应釜,与外部连接,实现温度控制和电学信号的测量;
所述的密封部件6包括电极引出部分密封和高温高压腔体外缘密封,电极引出部分密封由电极引出元件62、电极绝缘套61和电极5之间的锥面配合,电极绝缘套61为中空尖头子弹形状,套于电极5外部,绝缘套61下方锥形部分与留有锥形卡槽的电极引出元件62配合,利用bridgeman密封组件64在外力的作用下使腔体内外密封,所述的bridgeman密封组件64包括压环和垫环,压环和垫环在外部压力作用下相互挤压并与上下器件紧密贴合实现压力密封,螺母63位于反应釜腔体上下两端,通过与反应釜腔壁配合、螺母63锁紧实现压力密封,两部分密封的结合满足不小与550MPa的压力下的密封和各电极之间的绝缘要求;反应釜下端密封部件6连接压力组件8,反应釜通过高压气体向样品腔31施加压力,所述的高压气体由外部的超高压气体增压系统提供,通过高压气阀82向设置于反应釜下端的电极引出元件62中心的贯通气孔81实现反应釜通气加压操作,气孔处配有压力表84和溢流阀83。
所述的反应釜釜体1采用4340合金钢及其他性能相当的钢材制成;所述的光学窗口组件2,窗口直径为4mm,窗体23形状为厚度2mm的薄圆片,采用高纯高透光单晶Al2O3制成;所述的样品腔31采用高纯石英或者其他高透光且低X射线吸收、耐高温(不低于600℃)材质制成,其内径为30mm,长度为300mm,除去两端密封活塞体积,样品腔可加载容量不低于百毫升;所述的绝热层45采用Al2O3陶瓷纤维制成;所述的电极5采用铂丝电极,以防止反应液对电极的腐蚀。
本发明具有以下有益效果:
1、本发明所设计的反应釜能够承载液体样品,样品容积可高达上百毫升,并为其提供600℃温度、550MPa压力环境,能够模拟真实样品环境
2、本发明所设计的反应釜在釜体开设三个光学观测窗口,能够实现高温高压条件下液体样品的原位X射线吸收谱、荧光谱、拉曼光谱分析,实现对样品结构、形态、分子相互作用等演变的真实记录,揭示其深层结构、动力学机制。
附图说明:
图1为大容量液体环境原位光学测量高温高压反应釜结构示意图。
具体实施方式
实施例1本发明的整体结构
如图1所示,是一种能够进行原位光学测量的大容量液体环境原位光学测量高温高压反应釜,其结构包括反应釜釜体1,光学窗口部件2,样品腔组件3,加热体组件4,电极5,密封部件6,水冷管7,压力组件8
所述的反应釜釜体1采用整体外形为圆柱形,内部为贯穿中空的腔体,釜体直径为412mm,高度645mm,选用4340合金钢或其他性能相当的钢材作为材料,本实施例中压力容器壁厚为152.4mm。在釜体1中部位置垂直角度开设三个圆形窗口,窗口直径为4mm,用于放置光学窗口部件2,其中两个窗口同轴,另一个窗口垂直于其余两个窗口。所述的光学窗口部件2由窗口承载元件21、窗体紧固元件24、窗口密封圈22、窗体23组成,所述的窗体23为2mm厚度的薄圆片,采用高纯高透光单晶Al2O3制成,直径小于釜体窗口直径,放置于窗口最深处,Al2O3窗口抗压强度高,光学透过性好,能够承受500MPa压力。窗体23与釜体之间通过窗体紧固元件24完成固定,窗口承载元件21为中空管状,其顶端与窗体23贴合,窗体承载元件21前段与中段位置套有窗口密封圈22,窗口承载元件21与釜体1通过半自紧密封设计,实现承压和透光功能,主要是通过窗体承载元件21与釜体1之间的螺纹进行预紧固,随着压力组件注入压力实现更大程度的密封承压。三个光学窗口分别为入射窗口、出射窗口和荧光窗口,其中入射窗口与出射窗口同轴,荧光窗口垂直于入射和出射窗口,以满足原位光学测试功能需求。釜体由上下两端的密封部件6和三个窗口密封形成密闭腔。反应釜釜体1外部缠绕水冷管7,避开光学窗口部位2,通过冷却水循环进行水冷,或者调解制冷量来控制热交换量,实现水冷系统温度控制,保证内部加载高温样品情况下釜体的耐压性能及可操作性。
釜体1内部为中空腔体,直径3英寸,用于放置样品腔组件3和加热体组件4。所述的样品腔组件3由样品腔31、密封活塞32、全氟橡胶圈33、支撑件34、电极5组成,样品腔31为中空圆管形状,内径30mm,长度300mm,除去两端密封活塞尺寸,样品腔31容积达到100mL,样品腔31采用高纯石英或其他高透光/低X射线吸收、耐高温材质制成,密封活塞32安插于样品腔31两端,全氟橡胶圈33安置于密封活塞32和样品腔31中间,起密封作用,密封活塞32可以根据测试样品体积随意滑动,使样品腔31内压力与压力组件8注入压力一致;电极5为Pt丝电极,其埋入密封活塞32中,连接外部信号处理设备,保证完成不少于两电极的电学测试。
加热体组件4设置于样品腔31的外部,用于对样品腔31的加温。所述的加热体组件4由加热套41、绝缘固定元件42、热电偶43、加热管44、绝热层45、堵头46组成,所述的加热管44为中空圆柱体形状,直径大于样品腔31,嵌套于样品腔31外部,其外侧面缠绕加热丝;绝热层45位于加热管44外部,由Al2O3陶瓷纤维制成,用于减少热量损失;样品腔31、加热管44和绝热层45共同装载与加热套41中,通过上堵头46将加热管44和绝热层45的位置固定,加热套41、绝热层45和支撑体正对光学窗口处开设圆形窗口,以保证光路畅通;加热套41下端与密封部件6嵌套配合,加热套41下端的加热丝两端通过绝缘固定元件42与两个加热电极链接,实现电气引入,热电偶43穿过绝热层45,布置于靠近加热管44中心处,热电偶43和加热管44通过外部温控设备调控;腔体上下两端设置电极5和密封部件6,实现整个腔体的密封,并将电信号引出反应釜,与外部连接,实现温度控制和电学信号的采集。
所述密封部件6包括电极引出部分密封和高温高压腔体外缘密封。电极引出部分密封由电极引出元件62、电极绝缘套61和电极5之间的锥面配合,其中电极绝缘套61为中空尖头子弹形状,套于电极5外部,绝缘套61下方锥形部分与留有锥形卡槽的电极引出元件62配合,利用bridgeman密封组件64在外力的作用下使腔体内外密封,所述的bridgeman密封组件64包括压环和垫环,压环和垫环在外部压力作用下相互挤压并与上下器件紧密贴合实现压力密封,螺母63位于反应釜腔体上下两端,通过与反应釜腔壁配合、螺母63锁紧实现压力密封,两部分密封的结合满足不小与550MPa的权力下的密封和各电极之间的绝缘要求;反应釜下端密封部件6连接压力组件8,反应釜通过高压气体向样品腔31施加压力,所述的高压气体由外部的超高压气体增压系统提供,通过设置于反应釜下端的电极引出元件62中心的贯通气孔81实现反应釜通气加压操作,气孔处配有压力表84和溢流阀83。
实施例2利用本发明的装置进行高温高压液体环境原位测量的工作过程
(1)将样品注入样品腔,样品腔两端用密封活塞封堵,滑动密封活塞使样品腔体积与样品体积一致,保证加压过程中样品腔内外压力一致,组装好样品腔组件,并与上端密封部件连接;
(2)组装加热体组件,将样品腔组件插入加热体组件中并与下端密封部件连接;
(3)将组装好的上端密封部件、样品腔组件、加热体组件和下端密封部件从反应釜底部开口装入反应釜内腔,通过下端密封部件的紧固原件的逐渐旋进,将样品腔推入工作位置并完成下端密封,再通过上端紧固元件完成上端密封,此时样品腔整体密封完成;
(4)连接反应釜电极,接通电气,打开高压气路阀门,实现气路连接;
(5)将拉曼光谱、荧光光谱或红外光谱设备的光路对准反应釜体的光学观测窗口,保证测试过程中光路贯通,实现原位光学测试信号接收;
(6)通过外部超高压气体增压系统对内腔进行气体加压,同时启动温控和水冷设备,对反应釜进行程序加热和控温。
(7)在选定的温度和压力条件下进行原位光谱学测试。

Claims (2)

1.一种大容量液体环境原位光学测量高温高压反应釜,包括反应釜釜体(1)、样品腔组件(3)、加热体组件(4)、密封部件(6)、水冷管(7)和压力组件(8);其特征在于,还包括电极(5)和光学窗口部件(2);
所述的反应釜釜体(1)是整体外形为圆柱形、内部为中空的腔体,在釜体中部位置开设三个圆形窗口,以满足原位光学测试功能需求,三个窗口分别为入射窗口、出射窗口和荧光窗口,其中入射窗口与出射窗口同轴,荧光窗口的轴线与入射和出射窗口的轴线垂直相交,三个窗口的轴线所在平面与釜体轴线垂直,三个窗口内均放置有光学窗口部件(2);所述的光学窗口部件(2)由窗口承载元件(21)、窗体紧固元件(24)、窗口密封圈(22)、窗体(23)组成,窗体(23)直径小于釜体所开窗口的直径,放置于窗口最深处,窗体(23)与釜体之间通过窗体紧固元件(24)完成固定,窗口承载元件(21)为中空管状,顶端与窗体(23)贴合,窗体承载元件(21)前段与中段位置套有窗口密封圈(22),窗口承载元件(21)与釜体(1)通过半自紧密封设计,实现承压和透光功能,釜体通过上下两端的密封部件(6)和三个窗口密封形成密闭腔,反应釜釜体(1)外部缠绕水冷管(7),水冷管(7)避开光学窗口部件(2),通过冷却水循环进行水冷,或者调解制冷量来控制热交换量,实现水冷系统温度控制,以保证内部加载高温样品情况下釜体的耐压性能及可操作性;
釜体(1)内部的中空腔体放置有样品腔组件(3)和加热体组件(4);所述的样品腔组件(3)由样品腔(31)、密封活塞(32)、全氟橡胶圈(33)、支撑件(34)和电极(5)组成,样品腔(31)为中空圆管形状,密封活塞(32)安插于样品腔(31)两端,全氟橡胶圈(33)安置于密封活塞(32)和样品腔(31)中间,起密封作用,密封活塞(32)能够根据测试样品体积自由滑动,使样品腔(31)内压力与压力组件(8)注入的压力一致;电极(5)埋入密封活塞(32)中,连接外部信号处理设备,保证完成不少于两电极的电学测试;
加热体组件(4)设置于样品腔(31)的外部,用于对样品腔(31)加温,所述的加热体组件(4)由加热套(41)、绝缘固定元件(42)、热电偶(43)、加热管(44)、绝热层(45)、堵头(46)组成,所述的加热管(44)为中空圆柱体形状,直径大于样品腔(31),嵌套于样品腔(31)外部,加热管(44)外侧面缠绕加热丝;绝热层(45)位于加热管(44)外部,用于减少热量损失;样品腔(31)、加热管(44)和绝热层(45)共同装载于加热套(41)中,通过上堵头(46)将加热管(44)和绝热层(45)的位置固定,加热套(41)、绝热层(45)以及支撑体正对光学窗口处开设圆形窗口,以保证光路畅通;加热套(41)下端与密封部件(6)嵌套配合,加热套(41)下端的加热丝两端通过绝缘固定元件(42)与两个加热电极连接,实现电气引入,热电偶(43)穿过绝热层(45),布置于靠近加热管(44)中心处,热电偶(43)和加热管(44)通过外部温控设备调控;腔体上下两端设置电极(5)和密封部件(6),实现整个腔体的密封,并将电信号引出反应釜,与外部连接,实现温度控制和电学信号的测量;
所述的密封部件(6)包括电极引出部分密封和高温高压腔体外缘密封,电极引出部分密封由电极引出元件(62)、电极绝缘套(61)和电极(5)之间的锥面配合,电极绝缘套(61)为中空尖头子弹形状,套于电极(5)外部,绝缘套(61)下方锥形部分与留有锥形卡槽的电极引出元件(62)配合,利用bridgeman密封组件(64)在外力的作用下使腔体内外密封,所述的bridgeman密封组件(64)包括压环和垫环,压环和垫环在外部压力作用下相互挤压并与上下器件紧密贴合实现压力密封;螺母(63)位于反应釜腔体上下两端,通过与反应釜腔壁配合、螺母(63)锁紧实现压力密封,两部分密封的结合满足不小与550MPa的压力下的密封和各电极之间的绝缘要求;反应釜下端密封部件(6)连接压力组件(8),反应釜通过高压气体向样品腔(31)施加压力,所述的高压气体由外部的超高压气体增压系统提供,通过高压气阀(82)向设置于反应釜下端的电极引出元件(62)中心的贯通气孔(81)实现反应釜通气加压操作,气孔处配有压力表(84)和溢流阀(83)。
2.根据权利要求1所述的一种大容量液体环境原位光学测量高温高压反应釜,其特征在于,所述的反应釜釜体(1)采用3040钢及其他性能相当的钢材制成;所述的光学窗口组件(2),窗口直径为4mm,窗体(23)形状为厚度2mm的薄圆片,采用高纯高透光单晶Al2O3制成;所述的样品腔(31)采用高纯石英或者其他高透光且低X射线吸收、耐温不低于600℃的材质制成,其内径为30mm,长度为300mm;所述的绝热层(45)采用Al2O3陶瓷纤维制成;所述的电极(5)采用铂丝电极。
CN202011491191.8A 2020-12-17 2020-12-17 一种大容量液体环境原位光学测量高温高压反应釜 Active CN112403392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011491191.8A CN112403392B (zh) 2020-12-17 2020-12-17 一种大容量液体环境原位光学测量高温高压反应釜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011491191.8A CN112403392B (zh) 2020-12-17 2020-12-17 一种大容量液体环境原位光学测量高温高压反应釜

Publications (2)

Publication Number Publication Date
CN112403392A true CN112403392A (zh) 2021-02-26
CN112403392B CN112403392B (zh) 2021-10-08

Family

ID=74775692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011491191.8A Active CN112403392B (zh) 2020-12-17 2020-12-17 一种大容量液体环境原位光学测量高温高压反应釜

Country Status (1)

Country Link
CN (1) CN112403392B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267468A (zh) * 2021-07-20 2021-08-17 中红外激光研究院(江苏)有限公司 一种用于分子近红外吸收光谱分析的高温高压吸收池装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209158A (ja) * 1994-01-13 1995-08-11 Rikagaku Kenkyusho 高圧装置
JP2005329330A (ja) * 2004-05-20 2005-12-02 Yokogawa Electric Corp 高温・高圧用容器用窓の構造
CN101363959A (zh) * 2008-08-27 2009-02-11 中国科学院金属研究所 能够实现高温高压液体环境下原位光学观测的视镜及应用
US20100046714A1 (en) * 2008-08-21 2010-02-25 Sikora Ag Window Arrangement on a Pressure Pipe
CN105911229A (zh) * 2016-06-30 2016-08-31 中国科学院地球化学研究所 一种高温高围压流体-固体相互作用试验装置和试验方法
CN109731531A (zh) * 2019-03-04 2019-05-10 中国科学院地球化学研究所 一种水热大腔体高温高压实验装置和实验方法
CN110013811A (zh) * 2019-02-15 2019-07-16 江苏科技大学 高温高压条件下的微型光催化反应装置
CN209997616U (zh) * 2019-03-27 2020-01-31 华研环科(北京)科技有限公司 一体式大容量搅拌水热釜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209158A (ja) * 1994-01-13 1995-08-11 Rikagaku Kenkyusho 高圧装置
JP2005329330A (ja) * 2004-05-20 2005-12-02 Yokogawa Electric Corp 高温・高圧用容器用窓の構造
US20100046714A1 (en) * 2008-08-21 2010-02-25 Sikora Ag Window Arrangement on a Pressure Pipe
CN101363959A (zh) * 2008-08-27 2009-02-11 中国科学院金属研究所 能够实现高温高压液体环境下原位光学观测的视镜及应用
CN105911229A (zh) * 2016-06-30 2016-08-31 中国科学院地球化学研究所 一种高温高围压流体-固体相互作用试验装置和试验方法
CN110013811A (zh) * 2019-02-15 2019-07-16 江苏科技大学 高温高压条件下的微型光催化反应装置
CN109731531A (zh) * 2019-03-04 2019-05-10 中国科学院地球化学研究所 一种水热大腔体高温高压实验装置和实验方法
CN209997616U (zh) * 2019-03-27 2020-01-31 华研环科(北京)科技有限公司 一体式大容量搅拌水热釜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267468A (zh) * 2021-07-20 2021-08-17 中红外激光研究院(江苏)有限公司 一种用于分子近红外吸收光谱分析的高温高压吸收池装置
CN113267468B (zh) * 2021-07-20 2021-09-24 中红外激光研究院(江苏)有限公司 一种用于分子近红外吸收光谱分析的高温高压吸收池装置

Also Published As

Publication number Publication date
CN112403392B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN102004053B (zh) 可控温的便携式多功能压力室
CN107748110B (zh) 微机控制电液伺服岩石三轴动态剪切渗流耦合试验方法
CN106645637B (zh) 岩土材料冻融热循环三轴渗流多功能压力室
CN110487697A (zh) 注超临界二氧化碳煤岩力学特性测试及压裂实验装置
CN104142271B (zh) 一种用于测试材料在高温高压气体下拉伸性能的试验装置
CA2941266C (en) Core sample holder
CN101718725B (zh) 一种原位测量样品热物性的装置
CN112403392B (zh) 一种大容量液体环境原位光学测量高温高压反应釜
CN105911229A (zh) 一种高温高围压流体-固体相互作用试验装置和试验方法
CN106289962B (zh) 可高低倍在线观测试样标距段形变及损伤的原位测试系统
CN202387459U (zh) 一种带有气液取样的高温高压光化学反应釜
CN113324889A (zh) 一种评价页岩油原位热解开采驱替效率的装置及测试方法
CN110823757A (zh) 低渗煤层气微波-液氮循环冻融促解增渗实验装置及方法
CN108776151A (zh) 一种基于x射线透射的高低温原位加载装置
CN112642363B (zh) 一种大体积耐高温原位光学观测反应釜腔体
CN112403393B (zh) 一种耐高温高压原位光学观测反应釜壳体
CN205786560U (zh) 一种高温高围压流体‑固体相互作用试验装置
CN116519471B (zh) 一种铅铋环境下的原位双轴环境系统
CN112903740A (zh) 一种测量围压下岩石热膨胀系数的装置及方法
CN213903387U (zh) 深低温区可变压力和温度的接触热阻测试系统
CN210646283U (zh) 可压力测量的可视微型高温高压石英毛细管平衡釜
RU175813U1 (ru) Устройство для определения давления насыщения по нефти и определения давления начала кипения конденсата
CN107817067B (zh) 一种用于中子应力测量的大腔体高低温加载装置
CN218470405U (zh) 测量水合物沉积物力学特性的实验装置
CN101275805A (zh) 一种半导体制冷的二氧化碳超临界干燥装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant