CN112390772A - 一种空穴传输材料及包含该材料的有机电致发光器件 - Google Patents

一种空穴传输材料及包含该材料的有机电致发光器件 Download PDF

Info

Publication number
CN112390772A
CN112390772A CN201910758823.3A CN201910758823A CN112390772A CN 112390772 A CN112390772 A CN 112390772A CN 201910758823 A CN201910758823 A CN 201910758823A CN 112390772 A CN112390772 A CN 112390772A
Authority
CN
China
Prior art keywords
compound
mol
reaction
hole transport
transport material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910758823.3A
Other languages
English (en)
Inventor
钱超
许军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Topto Materials Co Ltd
Original Assignee
Nanjing Topto Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Topto Materials Co Ltd filed Critical Nanjing Topto Materials Co Ltd
Priority to CN201910758823.3A priority Critical patent/CN112390772A/zh
Publication of CN112390772A publication Critical patent/CN112390772A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/94Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom spiro-condensed with carbocyclic rings or ring systems, e.g. griseofulvins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/78Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种空穴传输材料及包含该材料的有机电致发光器件,涉及有机电致发光材料领域,其结构式如下所示:
Figure DDA0002169619920000011
采用本发明所述的空穴传输材料制备的有机电致发光器件与对照例相比,电压大幅度降低,发光效率显著提高。由此可见,本发明的化合物能使器件的驱动电压大大降低,大幅度减少了电能的消耗、显著提高了发光效率。另外通过降低驱动电压,有机电致发光器件的寿命有显著提高。

Description

一种空穴传输材料及包含该材料的有机电致发光器件
技术领域
本发明涉及有机电致发光材料领域,具体涉及一种空穴传输材料及包含该材料的有机电致发光器件。
背景技术
有机电致发光显示器(organic light-emitting devices)又称作有机电致发光二极管(organic light-emitting diodes),简称OLEDs,是二十世纪八十年代发展起来的一种全固态平板化显示技术。有机电致发光是指有机半导体材料在电场驱动下,通过载流子注入、传输、复合形成激子以及激子衰变而导致发光的现象,根据这种发光原理制成的显示器即为OLEDs。
在OLED中,空穴传输层的作用是提高空穴在器件中的传输效率,并将电子阻挡在发光层内,实现载流子的最大复合。空穴传输层可以降低空穴在注入过程中的能量壁垒,增加空穴注入效率,提高器件的亮度和寿命。对于好的空穴传输材料,除了要求其具有很高的空穴迁移率外,还要满足以下条件:(1)能够形成无缺陷的均一无定形薄膜;(2)具有很好的热稳定性,在长期运作下仍可保持无定形态。尽管目前OLED的老化机理并不是很清楚,但是有研究表明有机层物理形态的变化是其影响因素之一,比如由于器件操作时产生的热引起的有机层的熔融与结晶;(3)具有合适的最高分子占据轨道(HOMO)能级,以保证空穴在各个界面之间的有效注入与传输;防止器件在工作中产生过多的焦耳热引起材料的再结晶。这种结晶会破坏薄膜的均一性,同时破坏了空穴传输层同阳极以及有机层之间良好的界面接触,从而导致器件的寿命下降。
目前,寻找性能优良的空穴传输材料已经成为OLED领域技术人员的研究热点。
发明内容
发明目的:针对上述技术问题,本发明提供了一种空穴传输材料及包含该材料的有机电致发光器件。
为了达到上述发明目的,本发明所采用的技术方案如下:
一种空穴传输材料,其结构式如下所示:
Figure BDA0002169619900000011
其中,a为稠合的取代或未取代的苯环;
R1、R2、R3、R4各自独立的为取代或未取代的C6-C30的芳香族基团、取代或未取代的C5-C30的杂芳族基团、取代或未取代的C6-C30的芳香胺基团;
R5为氢、重氢、取代或未取代的C1-C5的烷基、取代或未取代的C2-C5的烯基、取代或未取代的C3-C6的环烷基、取代或未取代的C3-C6的杂环烷基、取代或未取代的C6-C30的芳香族基团、取代或未取代的C5-C30的杂芳族基团中的任意一种;
W为O或S;
m、n各自独立的为0或1。
进一步地,R1、R2、R3、R4各自独立的为苯基、甲苯基、联苯基、三联苯基、萘基、蒽基、菲基、芴基、氧芴基、9,9-二甲基芴基、9,9'-螺二芴、9,9-二苯基芴基、二苯并噻吩基、咔唑基、苯并咔唑基、N-苯基咔唑基、邻二苯基、三氘甲基联苯基、甲基联苯基、三苯胺基。
进一步地,R5选自氢、重氢、甲基、乙基、正丙基、异丙基、叔丁基、苯基中的任意一种。
进一步地,所述空穴传输材料为以下结构式化合物中的任意一种:
Figure BDA0002169619900000021
Figure BDA0002169619900000031
Figure BDA0002169619900000041
Figure BDA0002169619900000051
Figure BDA0002169619900000061
Figure BDA0002169619900000071
Figure BDA0002169619900000081
Figure BDA0002169619900000091
进一步地,上述空穴传输材料的制备方法包括如下步骤:
(1)
Figure BDA0002169619900000092
将化合物A、二氯甲烷、缓慢加入浓硫酸中,加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺,加料完毕后,室温搅拌反应10-15h,向反应液中加入乙醇,析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮2-5h后降至室温后过滤得化合物B;
(2)
Figure BDA0002169619900000093
在惰性气体保护下,将化合物C、无水THF加入到反应瓶中,降温至-60~-90℃,滴加正丁基锂,反应20-40min后,将化合物B、无水THF混匀后滴入,在-60~-90℃下继续反应1-3h,加入氯化铵溶液淬灭后缓慢恢复至室温,加入二氯甲烷和水萃取分液,水洗干燥后减压浓缩得到化合物D的粗品,经过柱层析提纯后得到化合物D纯品;
(3)
Figure BDA0002169619900000094
将化合物D加入到异丙醇中,再滴加盐酸,加热共沸反应4-6h后减压蒸馏脱异丙醇,抽滤,得到化合物E;
(4)
Figure BDA0002169619900000095
在惰性气体保护下,将化合物E、结构通式为
Figure BDA0002169619900000101
的化合物F、叔丁醇钠、Pd2(dba)3、三叔丁基膦、甲苯入反应瓶中,加料完毕后升温至回流反应4-6h,反应完毕后降至室温后加水搅拌10-20min后过滤得滤液,滤液分液后得有机相,有机相干燥后旋干经过柱层析提纯后得到高纯度的最终产品G。
上述空穴传输材料在制备有机电致发光器件中的应用。
一种有机电致发光器件,包括阴极、阳极、发光层和空穴传输层,所述空穴传输层含有上述空穴传输材料。
一种照明装置,含有上述有机电致发光器件。
一种电子显示装置,含有上述有机电致发光器件。
本发明的有益效果:
本发明的设计的空穴传输材料,其核心结构为:
Figure BDA0002169619900000102
该结构保证了该类材料由于具有非常大的共轭体系,扩大了材料分子中电子的非定域范围,使电子在分子中的移动性增强,增加了材料分子的空穴迁移能力。同时R5及芳香胺支链等供电子基团的加入,增加了材料分子的电子云密度及分子的空间构象,进而增加了空穴在材料分子之间的转移速率,提高了材料分子的空穴传输能力。
较高的电子云密度及空间构象,能够有效提高材料分子的HOMO能级,进而降低空穴注入层与空穴传输层及空穴传输层与发光层之间的界面势垒,并且能够大大提高空穴的注入效率及速率,减少空穴的浪费,进而显著的降低器件的驱动电压、降低能耗,提高器件的发光效率及寿命。
同时,该结构属于较大的刚性基团,该基团本身具有非常高的Td(0.5%)及Tg,即具有非常好的热稳定性、化学稳定性及光稳定性,能够大大扩展材料的范围,并提高器件的稳定性及寿命,尤其是当W为氧原子时,使用该类材料的器件具有更好的寿命。
附图说明
图1为本发明应用例5电致发光器件的发光亮度随发光时间的关系图;
由图1可知本发明应用例5电致发光器件的寿命(T97%)为313H。
具体实施方式
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
Figure BDA0002169619900000111
空穴传输材料1的合成方法如下:
(1)
Figure BDA0002169619900000112
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.55g,收率45.5%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000113
氮气保护下将化合物C(1.1eq,278.03g/mol,0.025mol,7.03g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.26g,收率30.9%),MS(EI):458(M+);
(3)
Figure BDA0002169619900000114
将化合物D(1eq,458.09g/mol,0.007mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.02g,收率98.1%),MS(EI):440(M+);
(4)
Figure BDA0002169619900000121
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,361.18g/mol,0.008mol,2.78g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的化合物1(2.98g,收率59.3%),MS(EI):721(M+)。
实施例2:
Figure BDA0002169619900000122
空穴传输材料2的合成方法如下:
(1)
Figure BDA0002169619900000123
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.89g,收率47.9%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000131
氮气保护下将化合物C(1.1eq,278.03g/mol,0.025mol,7.03g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.42g,收率32.5%),MS(EI):458(M+);
(3)
Figure BDA0002169619900000132
将化合物D(1eq,458.09g/mol,0.007mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.02g,收率98.1%),MS(EI):440(M+);
(4)
Figure BDA0002169619900000133
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,361.18g/mol,0.008mol,2.78g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料2(3.29g,收率65.3%),MS(EI):721(M+)。
实施例3:
Figure BDA0002169619900000141
空穴传输材料3的合成方法如下:
(1)
Figure BDA0002169619900000142
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.63g,收率46.1%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000143
氮气保护下将化合物C(1.1eq,278.03g/mol,0.025mol,7.03g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.53g,收率33.5%),MS(EI):458(M+);
(3)
Figure BDA0002169619900000151
将化合物D(1eq,458.09g/mol,0.007mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.03g,收率98.3%),MS(EI):440(M+);
(4)
Figure BDA0002169619900000152
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,361.18g/mol,0.008mol,2.78g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料3(3.12g,收率61.9%),MS(EI):721(M+)。
实施例4:
空穴传输材料4的合成方法如下:
Figure BDA0002169619900000153
步骤1-3与实施例1基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000161
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,321.15g/mol,0.008mol,2.57g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的化合物4(3.05g,收率63.9%),MS(EI):681(M+)。
实施例5:
Figure BDA0002169619900000162
空穴传输材料5的合成方法如下:步骤1与实施例1基本相同,其余步骤如下:
(2)
Figure BDA0002169619900000163
氮气保护下将化合物C(1.1eq,314.03g/mol,0.021mol,6.6g)、无水THF(42.4eq,72.11g/mol,0.89mol,64.2g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.023mol,1.47g),反应30min后,将化合物B(1eq,257.97g/mol,0.021mol,5.4g)、无水THF(36.2eq,72.11g/mol,0.76mol,54.8g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.36g,收率32.4%),MS(EI):494(M+);
(3)
Figure BDA0002169619900000171
将化合物D(1eq,494g/mol,0.006mol,3.0g)加入到异丙醇(化合物D的10倍质量)中,再滴加盐酸(化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.86g,收率98.2%),MS(EI):476(M+);
(4)
Figure BDA0002169619900000172
氮气保护下,将化合物E(1eq,476g/mol,5.25mmol,2.5g),化合物F(1.1eq,361.18g/mol,5.78mmol,2.09g)、叔丁醇钠(1.1eq,96.1g/mol,5.78mmo,0.56g)、Pd2(dba)3(0.05eq,915g/mol,0.26mmol,0.24g)、三叔丁基膦(0.05eq,202.32g/mol,0.26mmol,0.053g)、甲苯(25g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料5(2.55g,收率64.2%),MS(EI):757(M+)。
实施例6:
Figure BDA0002169619900000173
空穴传输材料6的合成方法如下:
(1)
Figure BDA0002169619900000174
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.59g,收率45.8%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000181
氮气保护下将化合物C(1.1eq,328.05g/mol,0.025mol,8.2g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.83g,收率32.8%),MS(EI):508(M+);
(3)
Figure BDA0002169619900000182
将化合物D(1eq,508.10g/mol,0.006mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.85g,收率96.9%),MS(EI):490(M+);
(4)
Figure BDA0002169619900000183
氮气保护下,将化合物E(1eq,490.09g/mol,0.004mol,2.0g),化合物F(1.1eq,361.18g/mol,0.005mol,1.81g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料6(1.99g,收率64.4%),MS(EI):771(M+)。
实施例7:
Figure BDA0002169619900000191
空穴传输材料7的合成方法如下:
(1)
Figure BDA0002169619900000192
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.55g,收率45.5%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000193
氮气保护下将化合物C(1.1eq,328.05g/mol,0.025mol,8.2g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(4.1g,收率32.3%),MS(EI):508(M+);(3)
Figure BDA0002169619900000201
将化合物D(1eq,508.10g/mol,0.006mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.84g,收率96.7%),MS(EI):490(M+);
(4)
Figure BDA0002169619900000202
氮气保护下,将化合物E(1eq,490.09g/mol,0.004mol,2.0g),化合物F(1.1eq,361.18g/mol,0.005mol,1.81g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料7(1.98g,收率64.2%),MS(EI):771(M+)。
实施例8:
Figure BDA0002169619900000203
空穴传输材料8的合成方法如下:
(1)
Figure BDA0002169619900000211
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.43g,收率44.7%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000212
氮气保护下将化合物C(1.1eq,328.05g/mol,0.025mol,8.2g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(4.48g,收率35.3%),MS(EI):508(M+);
(3)
Figure BDA0002169619900000213
将化合物D(1eq,508.10g/mol,0.006mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.81g,收率95.7%),MS(EI):490(M+);
(4)
Figure BDA0002169619900000221
氮气保护下,将化合物E(1eq,490.09g/mol,0.004mol,2.0g),化合物F(1.1eq,361.18g/mol,0.005mol,1.81g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的化合物8(1.99g,收率68.2%),MS(EI):731(M+)。
实施例9:
Figure BDA0002169619900000222
空穴传输材料9的合成方法如下:
(1)
Figure BDA0002169619900000223
于三口烧瓶中加入化合物A(1eq,347.13g/mol,0.029mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.14g,0.0014mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,6.19g,0.0348mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.29g,收率51.1%),MS(EI):425(M+);
(2)
Figure BDA0002169619900000231
氮气保护下将化合物C(1.1eq,278.03g/mol,0.015mol,4.17g)、无水THF(42.4eq,72.11g/mol,0.594mol,42.8g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.015mol,0.96g),反应30min后,将化合物B(1eq,425.04g/mol,0.014mol,6.0g)、无水THF(59.5eq,72.11g/mol,0.833mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.07g,收率32.6%),MS(EI):625(M+);
(3)
Figure BDA0002169619900000232
将化合物D(1eq,625.16g/mol,0.005mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.0g,收率98.9%),MS(EI):607(M+);
(4)
Figure BDA0002169619900000233
氮气保护下,将化合物E(1eq,607.15g/mol,0.005mol,3.0g),化合物F(1.1eq,169.09g/mol,0.006mol,1.01g)、叔丁醇钠(1.1eq,96.1g/mol,0.006mol,0.577g)、Pd2(dba)3(0.05eq,915g/mol,0.00025mol,0.23g)、三叔丁基膦(0.05eq,202.32g/mol,0.00025mol,0.051g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料9(2.27g,收率65.1%),MS(EI):696(M+)。
实施例10:
Figure BDA0002169619900000241
空穴传输材料10的合成方法如下:步骤1与实施例9基本相同,其余步骤如下:
(2)
Figure BDA0002169619900000242
氮气保护下将化合物C(1.1eq,221.97g/mol,0.015mol,3.33g)、无水THF(42.4eq,72.11g/mol,0.594mol,42.8g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.015mol,0.96g),反应30min后,将化合物B(1eq,425.04g/mol,0.014mol,6.0g)、无水THF(59.5eq,72.11g/mol,0.833mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.43g,收率40.2%),MS(EI):569(M+);
(3)
Figure BDA0002169619900000243
将化合物D(1eq,569.10g/mol,0.005mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.68g,收率97.4%),MS(EI):551(M+);
(4)
Figure BDA0002169619900000244
氮气保护下,将化合物E(1eq,551.09g/mol,0.004mol,2.0g),化合物F(1.1eq,169.09g/mol,0.005mol,0.85g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.183g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.041g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料10(1.63g,收率63.7%),MS(EI):640(M+)。
实施例11:
Figure BDA0002169619900000251
空穴传输材料11的合成方法如下:步骤1与实施例9基本相同,其余步骤如下:
(2)
Figure BDA0002169619900000252
氮气保护下将化合物C(1.1eq,328.05g/mol,0.015mol,4.92g)、无水THF(42.4eq,72.11g/mol,0.594mol,42.8g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.015mol,0.96g),反应30min后,将化合物B(1eq,425.04g/mol,0.014mol,6.0g)、无水THF(59.5eq,72.11g/mol,0.833mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.83g,收率37.9%),MS(EI):675(M+);
(3)
Figure BDA0002169619900000253
将化合物D(1eq,675.18g/mol,0.004mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.55g,收率97.2%),MS(EI):657(M+);
(4)
Figure BDA0002169619900000261
氮气保护下,将化合物E(1eq,657.17g/mol,0.003mol,2.0g),化合物F(1.1eq,169.09g/mol,0.004mol,0.68g)、叔丁醇钠(1.1eq,96.1g/mol,0.004mol,0.384g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.183g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.041g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料11(1.46g,收率65.2%),MS(EI):746(M+)。
实施例12:
Figure BDA0002169619900000262
空穴传输材料12的合成方法如:
(1)
Figure BDA0002169619900000263
于三口烧瓶中加入化合物A(1eq,347.13g/mol,0.029mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.14g,0.0014mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,6.19g,0.0348mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.42g,收率52.1%),MS(EI):425(M+);
(2)
Figure BDA0002169619900000271
氮气保护下将化合物C(1.1eq,328.05g/mol,0.015mol,4.92g)、无水THF(42.4eq,72.11g/mol,0.594mol,42.8g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.015mol,0.96g),反应30min后,将化合物B(1eq,425.04g/mol,0.014mol,6.0g)、无水THF(59.5eq,72.11g/mol,0.833mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.49g,收率36.9%),MS(EI):675(M+);
(3)
Figure BDA0002169619900000272
将化合物D(1eq,675.18g/mol,0.004mol,3.0g)加入到异丙醇(71.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(117.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.54g,收率96.8%),MS(EI):657(M+);
(4)
Figure BDA0002169619900000273
氮气保护下,将化合物E(1eq,657.17g/mol,0.003mol,2.0g),化合物F(1.1eq,169.09g/mol,0.004mol,0.68g)、叔丁醇钠(1.1eq,96.1g/mol,0.004mol,0.384g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.183g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.041g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的化合物12(1.52g,收率67.8%),MS(EI):746(M+)。
实施例13:
Figure BDA0002169619900000281
空穴传输材料37的合成方法如下:
(1)
Figure BDA0002169619900000282
于三口烧瓶中加入化合物A(1eq,499.19g/mol,0.020mol,10.0g)、二氯甲烷(117.8eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.098g,0.001mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,4.27g,0.024mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(542.7eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.13g,收率52.1%),MS(EI):588(M+);
(2)
Figure BDA0002169619900000283
氮气保护下将化合物C(1.1eq,278.03g/mol,0.012mol,3.36g)、无水THF(42.4eq,72.11g/mol,0.509mol,36.7g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.012mol,0.769g),反应30min后,将化合物B(1eq,577.1g/mol,0.011mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.434mol,31.32g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.31g,收率38.8%),MS(EI):777(M+);
(3)
Figure BDA0002169619900000291
将化合物D(1eq,777.22g/mol,0.004mol,3.0g)加入到异丙醇(124.8eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(205.5eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.0g,收率96.4%),MS(EI):759(M+);
(4)
Figure BDA0002169619900000292
氮气保护下,将化合物E(1eq,759.21g/mol,0.004mol,3.0g),化合物F(1.1eq,361.18g/mol,0.005mol,1.81g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.041g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料37(2.72g,收率65.5%),MS(EI):1040(M+)。
实施例14:
Figure BDA0002169619900000293
空穴传输材料41的合成方法如下:步骤1与实施例13基本相同,其余步骤如下:
(2)
Figure BDA0002169619900000301
氮气保护下将化合物C(1.1eq,314.03g/mol,0.012mol,3.76g)、无水THF(42.4eq,72.11g/mol,0.509mol,36.7g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.012mol,0.77g),反应30min后,将化合物B(1eq,577.10g/mol,0.011mol,6.0g)、无水THF(69.3eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.68g,收率37.7%),MS(EI):675(M+);
(3)
Figure BDA0002169619900000302
将化合物D(1eq,813.22g/mol,0.004mol,3.0g)加入到异丙醇(124.7eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(205.5eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.01g,收率94.8%),MS(EI):795(M+);
(4)
Figure BDA0002169619900000303
氮气保护下,将化合物E(1eq,795.21g/mol,0.004mol,3.0g),化合物F(1.1eq,361.18g/mol,0.005mol,1.81g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料41(2.90g,收率67.4%),MS(EI):1076(M+)。
实施例15:
Figure BDA0002169619900000311
空穴传输材料83的合成方法如下:
(1)
Figure BDA0002169619900000312
于三口烧瓶中加入化合物A(1eq,347.13g/mol,0.029mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.14g,0.0014mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,6.19g,0.0348mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.29g,收率51.1%),MS(EI):425(M+);
(2)
Figure BDA0002169619900000313
氮气保护下将化合物C(1.1eq,314.03g/mol,0.015mol,4.71g)、无水THF(42.4eq,72.11g/mol,0.636mol,45.8g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.015mol,0.96g),反应30min后,将化合物B(1eq,425.04g/mol,0.014mol,6.0g)、无水THF(59.4eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.68g,收率37.7%),MS(EI):661(M+);
(3)
Figure BDA0002169619900000321
将化合物D(1eq,661.16g/mol,0.005mol,3.0g)加入到异丙醇(99.8eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(164.4eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(3.18g,收率98.8%),MS(EI):643(M+);
(4)
Figure BDA0002169619900000322
氮气保护下,将化合物E(1eq,643.15g/mol,0.005mol,3.0g),化合物F(1.1eq,361.18g/mol,0.006mol,2.17g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0003mol,0.275g)、三叔丁基膦(0.05eq,202.32g/mol,0.0003mol,0.061g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料83(3.05g,收率68.1%),MS(EI):896(M+)。
实施例16:
Figure BDA0002169619900000323
空穴传输材料102的合成方法如下:
(1)
Figure BDA0002169619900000324
于三口烧瓶中加入化合物A(1eq,180.06g/mol,0.056mol,10.0g)、二氯甲烷(42eq,2.355mol,84.93g/mol,200.0g)、缓慢加入浓硫酸(0.05eq,98g/mol,0.27g,0.0028mol),加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺(1.2eq,177.98g/mol,11.96g,0.0672mol),加料完毕后,室温搅拌反应12小时,HPLC监测反应完毕后,停止反应,向反应液中加入乙醇(193.8eq,10.853mol,46.07g/mol,500g),析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮3小时后降至室温后过滤得化合物B(6.79g,收率47.2%),MS(EI):257(M+);
(2)
Figure BDA0002169619900000331
氮气保护下将化合物C(1.1eq,286.00g/mol,0.025mol,7.15g)、无水THF(42.4eq,72.11g/mol,0.975mol,70.3g)加入到反应瓶中,液氮降温至-78℃,滴加正丁基锂(1.1eq,64.05g/mol,0.025mol,1.62g),反应30min后,将化合物B(1eq,257.97g/mol,0.023mol,6.0g)、无水THF(36.2eq,72.11g/mol,0.832mol,60g)混匀后滴入,-78℃下继续反应2h,然后再加入氯化铵溶液淬灭,缓慢恢复室温后加入二氯甲烷和水萃取分液,二氯甲烷相分出后多次水洗,无水硫酸钠干燥,减压浓缩得到化合物4的粗品,经过柱层析提纯后得到化合物D纯品(3.90g,收率33.5%),MS(EI):466(M+);
(3)
Figure BDA0002169619900000332
将化合物D(1eq,466.06g/mol,0.006mol,3.0g)加入到异丙醇(83.2eq,60.06g/mol,0.499mol,30.0g,化合物D的10倍质量)中,再滴加盐酸(137eq,36.5g/mol,0.822mol,30.0g,化合物D的10倍质量),加热共沸反应5h后减压蒸馏脱异丙醇,抽滤,得到化合物E(2.65g,收率98.5%),MS(EI):448(M+);
(4)
Figure BDA0002169619900000341
氮气保护下,将化合物E(1eq,448.05g/mol,0.005mol,2.0g),化合物F(1.1eq,335.13g/mol,0.006mol,2.01g)、叔丁醇钠(1.1eq,96.1g/mol,0.006mol,0.577g)、Pd2(dba)3(0.05eq,915g/mol,0.00025mol,0.229g)、三叔丁基膦(0.05eq,202.32g/mol,0.00025mol,0.051g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料102(2.32g,收率65.9%),MS(EI):703(M+)。
实施例17:
Figure BDA0002169619900000342
空穴传输材料122的合成方法如下:步骤1-3与实施例2基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000343
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,321.15g/mol,0.008mol,2.57g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料122(3.18g,收率66.8%),MS(EI):681(M+)。
实施例18:
Figure BDA0002169619900000351
空穴传输材料123的合成方法如下:步骤1-3与实施例3基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000352
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,378.22g/mol,0.008mol,3.03g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料123(3.12g,收率60.3%),MS(EI):738(M+)。
实施例19:
Figure BDA0002169619900000353
空穴传输材料134的合成方法如下:步骤1-3与实施例6基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000361
氮气保护下,将化合物E(1eq,490.09g/mol,0.004mol,2.0g),化合物F(1.1eq,321.15g/mol,0.005mol,1.61g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料134(1.91g,收率65.3%),MS(EI):731(M+)。
实施例20:
Figure BDA0002169619900000362
空穴传输材料139的合成方法如下:步骤1-3与实施例7基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000363
氮气保护下,将化合物E(1eq,490.09g/mol,0.004mol,2.0g),化合物F(1.1eq,375.20g/mol,0.005mol,1.88g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料139(1.99g,收率63.6%),MS(EI):785(M+)。
实施例21:
Figure BDA0002169619900000371
空穴传输材料149的合成方法如下:步骤1-3与实施例3基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000372
氮气保护下,将化合物E(1eq,440.08g/mol,0.007mol,3.0g),化合物F(1.1eq,426.17g/mol,0.008mol,3.41g)、叔丁醇钠(1.1eq,96.1g/mol,0.008mol,0.769g)、Pd2(dba)3(0.05eq,915g/mol,0.00035mol,0.32g)、三叔丁基膦(0.05eq,202.32g/mol,0.00035mol,0.071g)、甲苯(30.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料149(3.46g,收率62.8%),MS(EI):788(M+)。
实施例22:
Figure BDA0002169619900000373
空穴传输材料151的合成方法如下:步骤1-3与实施例7基本相同,其余步骤如下:
(4)
Figure BDA0002169619900000374
氮气保护下,将化合物E(1eq,490.09g/mol,0.004mol,2.0g),化合物F(1.1eq,426.17g/mol,0.005mol,2.13g)、叔丁醇钠(1.1eq,96.1g/mol,0.005mol,0.481g)、Pd2(dba)3(0.05eq,915g/mol,0.0002mol,0.18g)、三叔丁基膦(0.05eq,202.32g/mol,0.0002mol,0.405g)、甲苯(20.0g,化合物E的10倍质量)加入反应瓶中,加料完毕后升温至回流反应5h,反应完毕后降至室温后加入100ml水进行搅拌15min后过滤得滤液,滤液分液后得有机相,有机相使用无水硫酸镁干燥后旋干经过柱层析提纯后得到高纯度的空穴传输材料151(2.07g,收率61.7%),MS(EI):838(M+)。
性能测试:
应用例1:
采用ITO作为反射层阳极基板材料,并依次用水、丙酮、N2等离子对其进行表面处理;在ITO阳极基板上方,沉积厚度为10nm的HAT-CN形成空穴注入层(HIL);在空穴注入层(HIL)上方蒸镀本发明实施例1中的空穴传输材料1形成厚度为120nm的空穴传输层(HTL);将9,10-Bis(2-naphthyl)anthraces(ADN)作为蓝光主体材料、BD-1作为蓝光掺杂材料(BD-1用量为ADN重量的5%)以不同速率蒸发在空穴传输层(HTL)上形成厚度为20nm的发光层;将ETM和LiQ以1:1的比例混合蒸镀得到厚度为35nm的电子传输层(ETL),在电子传输层(ETL)上方蒸镀厚度为2nm的LiQ形成电子注入层(EIL),此后将镁(Mg)和银(Ag)以9:1的比例混合蒸镀得到厚度为15nm的阴极,在上述阴极封口层上沉积65纳米厚度的DNTPD,此外,在阴极表面以UV硬化胶合剂和含有除湿剂的封装薄膜(seal cap)进行密封,以保护有机电致发光器件不被大气中的氧气或水分所影响至此制备获得有机电致发光器件。
Figure BDA0002169619900000381
Figure BDA0002169619900000391
应用例2-22
分别以本发明实施例2-22中的空穴传输材料2、3、4、5、6、7、8、9、10、11、12、37、41、83、102、122、123、134、139、149、151作为空穴传输层(HTL)物质,其他部分与应用例1一致,据此制作出应用例2-22的有机电致发光器件。
对照例1、2、3、4
与应用例1的区别在于,使用HTL-1、HTL-2以及对比文件CN 102448926中的化合物151及118代替本发明的化合物作为空穴传输层,其余与应用例1相同。
上述应用例制造的有机电致发光器件及对照例制造的有机电致发光器件的特性是在电流密度为10mA/cm2的条件下测定的,结果如表1所示。
表1:
Figure BDA0002169619900000392
Figure BDA0002169619900000401
由如上表1的实验对比数据可知,采用本发明所述的空穴传输材料制备的有机电致发光器件与对照例相比,电压大幅度降低,发光效率显著提高。由此可见,本发明的化合物能使器件的驱动电压大大降低,大幅度减少了电能的消耗、显著提高了发光效率。另外通过降低驱动电压,有机电致发光器件的寿命有显著提高。

Claims (9)

1.一种空穴传输材料,其特征在于,其结构式如下所示:
Figure FDA0002169619890000011
其中,a为稠合的取代或未取代的苯环;
R1、R2、R3、R4各自独立的为取代或未取代的C6-C30的芳香族基团、取代或未取代的C5-C30的杂芳族基团、取代或未取代的C6-C30的芳香胺基团;
R5为氢、重氢、取代或未取代的C1-C5的烷基、取代或未取代的C2-C5的烯基、取代或未取代的C3-C6的环烷基、取代或未取代的C3-C6的杂环烷基、取代或未取代的C6-C30的芳香族基团、取代或未取代的C5-C30的杂芳族基团中的任意一种;
W为O或S;
m、n各自独立的为0或1。
2.如权利要求1所述的空穴传输材料,其特征在于,R1、R2、R3、R4各自独立的为苯基、甲苯基、联苯基、三联苯基、萘基、蒽基、菲基、芴基、氧芴基、9,9-二甲基芴基、9,9'-螺二芴、9,9-二苯基芴基、二苯并噻吩基、咔唑基、苯并咔唑基、N-苯基咔唑基、邻二苯基、三氘甲基联苯基、甲基联苯基、三苯胺基。
3.如权利要求1所述的空穴传输材料,其特征在于,R5选自氢、重氢、甲基、乙基、正丙基、异丙基、叔丁基、苯基中的任意一种。
4.如权利要求1所述的空穴传输材料,其特征在于,所述空穴传输材料为以下结构式化合物中的任意一种:
Figure FDA0002169619890000012
Figure FDA0002169619890000021
Figure FDA0002169619890000031
Figure FDA0002169619890000041
Figure FDA0002169619890000051
Figure FDA0002169619890000061
Figure FDA0002169619890000071
Figure FDA0002169619890000081
Figure FDA0002169619890000091
5.如权利要求1-4中任一项所述的空穴传输材料,其特征在于,其制备方法包括如下步骤:
(1)
Figure FDA0002169619890000092
将化合物A、二氯甲烷、缓慢加入浓硫酸中,加料完毕后室温搅拌下分多次加入N-溴代丁二酰亚胺,加料完毕后,室温搅拌反应10-15h,向反应液中加入乙醇,析出固体,将固体过滤得滤饼,滤饼使用甲苯热煮2-5h后降至室温后过滤得化合物B;
(2)
Figure FDA0002169619890000093
在惰性气体保护下,将化合物C、无水THF加入到反应瓶中,降温至-60~-90℃,滴加正丁基锂,反应20-40min后,将化合物B、无水THF混匀后滴入,在-60~-90℃下继续反应1-3h,加入氯化铵溶液淬灭后缓慢恢复至室温,加入二氯甲烷和水萃取分液,水洗干燥后减压浓缩得到化合物D的粗品,经过柱层析提纯后得到化合物D纯品;
(3)
Figure FDA0002169619890000101
将化合物D加入到异丙醇中,再滴加盐酸,加热共沸反应4-6h后减压蒸馏脱异丙醇,抽滤,得到化合物E;
(4)
Figure FDA0002169619890000102
在惰性气体保护下,将化合物E、结构通式为
Figure FDA0002169619890000103
的化合物F、叔丁醇钠、Pd2(dba)3、三叔丁基膦、甲苯入反应瓶中,加料完毕后升温至回流反应4-6h,反应完毕后降至室温后加水搅拌10-20min后过滤得滤液,滤液分液后得有机相,有机相干燥后旋干经过柱层析提纯后得到高纯度的最终产品G。
6.如权利要求1-4中任一项所述的空穴传输材料在制备有机电致发光器件中的应用。
7.一种有机电致发光器件,其特征在于,包括阴极、阳极、发光层和空穴传输层,所述空穴传输层含有如权利要求1-4中的任一项所述的空穴传输材料。
8.一种照明装置,其特征在于,含有如权利要求7所述的有机电致发光器件。
9.一种电子显示装置,其特征在于,含有如权利要求7所述的有机电致发光器件。
CN201910758823.3A 2019-08-16 2019-08-16 一种空穴传输材料及包含该材料的有机电致发光器件 Pending CN112390772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910758823.3A CN112390772A (zh) 2019-08-16 2019-08-16 一种空穴传输材料及包含该材料的有机电致发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910758823.3A CN112390772A (zh) 2019-08-16 2019-08-16 一种空穴传输材料及包含该材料的有机电致发光器件

Publications (1)

Publication Number Publication Date
CN112390772A true CN112390772A (zh) 2021-02-23

Family

ID=74602062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910758823.3A Pending CN112390772A (zh) 2019-08-16 2019-08-16 一种空穴传输材料及包含该材料的有机电致发光器件

Country Status (1)

Country Link
CN (1) CN112390772A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100082676A (ko) * 2009-01-09 2010-07-19 주식회사 엘지화학 신규한 화합물, 그 유도체 및 이를 이용한 유기전자소자
CN107614494A (zh) * 2015-10-06 2018-01-19 株式会社Lg化学 螺环化合物和包含其的有机发光器件
CN107635983A (zh) * 2015-10-06 2018-01-26 株式会社Lg化学 螺环型化合物和包含其的有机发光二极管
CN111747915A (zh) * 2019-03-29 2020-10-09 南京高光半导体材料有限公司 有机电致发光化合物、有机电致发光器件及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100082676A (ko) * 2009-01-09 2010-07-19 주식회사 엘지화학 신규한 화합물, 그 유도체 및 이를 이용한 유기전자소자
CN107614494A (zh) * 2015-10-06 2018-01-19 株式会社Lg化学 螺环化合物和包含其的有机发光器件
CN107635983A (zh) * 2015-10-06 2018-01-26 株式会社Lg化学 螺环型化合物和包含其的有机发光二极管
CN111747915A (zh) * 2019-03-29 2020-10-09 南京高光半导体材料有限公司 有机电致发光化合物、有机电致发光器件及其应用

Similar Documents

Publication Publication Date Title
EP3604298B1 (en) Heterocyclic compound and organic light emitting element comprising same
TWI461507B (zh) 新穎有機電場發光化合物及使用該化合物之有機電場發光裝置
JP5566898B2 (ja) 新しい有機発光素子化合物およびこれを用いた有機発光素子
TWI607985B (zh) 有機材料及使用其的有機電激發光裝置
TW201300499A (zh) 新穎有機電場發光化合物及包含該化合物之有機電場發光裝置
TW202214818A (zh) 雜環化合物以及包括其之有機發光裝置
KR20110077930A (ko) 유기발광 화합물 및 이를 포함한 유기 전계 발광 소자
JP2013539205A (ja) 新規有機電界発光化合物およびこれを使用する有機電界発光素子
KR102338429B1 (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
TWI668202B (zh) 有機化合物及使用其的有機電激發光元件
CN107011182A (zh) 新颖化合物及包含其的有机电子装置
WO2020083327A1 (zh) 含螺二芴结构的有机化合物及其在oled器件中的应用
CN112250585B (zh) 一种空穴传输材料及使用该种材料的有机电致发光器件
CN113402507B (zh) 三亚苯衍生物,发光器件材料及发光器件
KR20140125061A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20140072295A (ko) 중수소 치환된 유기금속 착물 및 이를 포함하는 유기 발광 소자
TW202122446A (zh) 具有包含高分子量化合物之有機層之有機電致發光元件
TWI756542B (zh) 有機化合物及使用其的有機電激發光元件
CN112979616B (zh) 一种苯并咪唑类化合物及其制备方法和应用
CN115521214A (zh) 有机化合物及包含其的电子元件和电子装置
CN112080273A (zh) 有机电致发光化合物及包含该化合物的有机电致发光器件
CN112961175A (zh) 多环芳族有机物、其合成工艺、发光材料和有机电致发光器件
CN112920059A (zh) 多取代螺二芴化合物、空穴传输材料组合物及光电器件
KR20110119282A (ko) 신규한 유기 전자재료용 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN111747935B (zh) 一种有机电致发光化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination