CN112382692B - 基于双光电栅极结构的半导体波长探测器及其制备方法 - Google Patents

基于双光电栅极结构的半导体波长探测器及其制备方法 Download PDF

Info

Publication number
CN112382692B
CN112382692B CN202011110843.9A CN202011110843A CN112382692B CN 112382692 B CN112382692 B CN 112382692B CN 202011110843 A CN202011110843 A CN 202011110843A CN 112382692 B CN112382692 B CN 112382692B
Authority
CN
China
Prior art keywords
metal contact
substrate
silicon
thin film
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011110843.9A
Other languages
English (en)
Other versions
CN112382692A (zh
Inventor
万景
邓嘉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202011110843.9A priority Critical patent/CN112382692B/zh
Publication of CN112382692A publication Critical patent/CN112382692A/zh
Application granted granted Critical
Publication of CN112382692B publication Critical patent/CN112382692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于半导体器件技术领域,具体为一种基于双光电栅极结构的半导体波长探测器及其制备方法。本发明探测器包括:衬底、氧化埋层、源端、漏端、沟道、源端金属接触、漏端金属接触、背栅金属接触、顶部栅极金属接触、上栅极和绝缘栅介质;上栅极使用薄膜材料,且下栅极使用衬底材料,形成两个光电栅极共同控制沟道的耦合结构;两个光电栅极具有不同的掺杂类型和光谱响应。相比于传统波长探测器,本发明探测器结构简单,通过扫描器件的转移曲线即可提取出入射光的波长,不需后续复杂的放大及处理电路;上栅极薄膜材料,提高了器件的波长探测范围;在极微弱的光强下,器件的光电响应度非常高,减小了波长探测误差;制备工艺简单减少了生产成本。

Description

基于双光电栅极结构的半导体波长探测器及其制备方法
技术领域
本发明属于半导体器件技术领域,具体涉及一种基于双光电栅极结构的半导体波长探测器及其制备方法。
背景技术
随着信息技术的飞速发展,色彩识别在生物荧光成像、细胞色差比较、溶液pH检测、光学调制解调、工业自动化生产等领域愈发显得重要。
现有的基于CMOS工艺的波长探测器通常是用硅本身作为滤光片,并由两个内嵌的、上下重叠的PN结二极管构成。由于不同波长的光的穿透深度不同,这两个PN结二极管光电频谱的峰值不同;同时研究发现这两个PN结二极管光电流的比值的对数和波长呈线性关系,从而可以导出需要探测的波长。然而,现有的双结型波长探测器也有很多缺点。
(1)这种器件需要后续复杂的放大电路、运算电路、A/D转换电路和中央处理器对采集到的信号进行处理分析和对比。
(2)由于蓝紫光的穿透深度很浅,只有一个p-n二极管可以感应出光电流,因此这种器件无法用于可见光短波的波长探测。
(3)由于这两个p-n结二极管没有内部增益,其探测灵敏度收到了限制,对弱光强的波长探测存在较大的误差。
(4)两个p-n结二极管的深度、掺杂浓度、掺杂轮廓等等都会对波长探测产生影响,缩小了制造工艺的窗口,增加了生产的成本。
基于以上原因,波长探测器件并没有大规模的使用。
发明内容
本发明的目的在于提出一种结构简单、波长探测范围大、光电响应度高、工艺可靠性好,生产成本低的基于双光电栅极结构的半导体波长探测器及其制备方法。
本发明提出的基于双光电栅极结构的半导体波长探测器,是基于全新原理的薄膜材料/绝缘介质/超薄绝缘体上硅(Ultra-Thin Body and BOX,UTBB)的可见光波长探测器。其使用上下两个栅极中的场感应PN结,使得光照时沟道中的光电流同暗电流相等,并通过读取零光电响应点对应的顶栅电压,提取出入射光的波长信息。
本发明提出的半导体波长探测器,其结构如图1所示,由以下几个部分组成:衬底1,氧化埋层2,源端3,漏端4,沟道5,源端金属接触6,漏端金属接触7, 背栅金属接触8,顶部栅极金属接触9,上栅极10和绝缘栅介质11;其中,上栅极10使用薄膜材料,且下栅极使用衬底材料1,形成两个光电栅极共同控制沟道的耦合结构;两个光电栅极具有不同的掺杂类型和光谱响应。
本发明中,采用超薄绝缘层上硅的基本结构。衬底1可为半导体,如硅、锗、锗硅、氮化镓或铟镓砷等,其轻掺杂浓度为1013-1017cm-3;或者衬底内嵌PN 结,其中,N、P型的掺杂浓度一般在1019-1021cm-3。其上层沟道5也可为半导体,如硅、锗、锗硅、氮化镓或铟镓砷等。其氧化埋层2可为二氧化硅、氧化铝和氧化铪等绝缘材料。
本发明中,所述源端3和漏端4为重型掺杂,掺杂浓度为1019-1021cm-3;沟道5相对于源端、漏端为反型的轻掺杂,掺杂浓度为1014-1016cm-3。
本发明中,源端3与漏端4之间的距离一般在100nm-50μm之间。顶部栅极在源漏之间的占空比一般为30%到80%之间。超薄绝缘体上硅的顶层硅厚度依据探测波长范围,一般在5nm到 300nm之间。上栅极10的薄膜材料采用包括但不限于石墨烯、黑磷、过渡金属硫化物等新兴的二维材料,或者IGZO、多晶硅等传统的光电薄膜材料。
本发明中,所述上栅极10的薄膜材料,其掺杂类型可以为与衬底相反的轻掺杂,掺杂浓度为1013-1017cm-3;也可以为与衬底内嵌PN结方向相反的PN结,其P、N结掺杂浓度一般为 1019-1021cm-3。薄膜材料栅极厚度一般在1nm到1μm之间。
本发明中,绝缘栅介质11采用包括但不限于CMOS工艺中常见的绝缘介质,例如氧化铝、氧化硅、 氧化铪、氧化锆、铪锆氧中的一种或几种。其厚度一般在1nm到100nm之间。
本发明还提出上述半导体波长探测器的制备方法,参见图3所示,具体步骤为:
(1)制备起始的绝缘层上硅,包括图1所示的衬底1,埋层氧化层2和上层沟道层5。之后在衬底背面淀积背部金属电极8;
(2)光刻并刻蚀后,在上硅层中形成有源区;
(3)光刻并进行离子注入,形成N型掺杂的源极3、漏极4区域;之后进行高温退火,激活注入的离子;
(4)光刻并淀积金属接触,之后退火,以形成源端金属接触6,漏端金属接触7;
(5)沉积顶栅绝缘介质11;
(6)转移或生长薄膜栅极材料10;
(7)制备顶栅金属接触9。
相比于传统的波长探测器,本发明具有如下特点:
(1)结构简单,更与传统的MOS器件结 构类似,相互兼容。
(2)通过扫描器件的转移曲线即可提取出入射光的波长,不需要后续复杂的放大及处理电路。
(3)由于硫化钼的厚度很薄,使得下层衬底硅也能对蓝紫光产生光电 响应,提高了器件的波长探测范围。
(4) 在极微弱的光强下,器件的光电响应度非常高, 减小了波长探测的误差。
(5)器件的制备工艺简单不需要额外进行掺杂、离子注入和退火, 提升了工艺的可靠性,减少了生产成本。
附图说明
图1为本发明的波长探测器的结构纵剖图。
图2为本发明的波长探测器的结构平面图。
图3为本发明的波长探测器的制备流程图示。
图4,图5和图6为本发明的波长探测器的实施例(2)、(3)、(4)的结构。
图中标号:1为衬底 ,2为氧化埋层,3为源端,4为漏端,5为沟道,6为源端金属接触,7为漏端金属接触,8为背栅金属接触,9为顶部栅极金属接触,10为上栅极,11为绝缘栅介质。
具体实施方式
基于同一工作原理,器件的结构可以不同,具体实施方式体现在如下不同的实施例中。
实施例1(对应图1的器件结构和图3的工艺流程)。
(1)如图3(a)所示,为起始的绝缘层上硅晶片。其衬底掺杂一般为轻掺杂的硅,掺杂浓度在1013cm-2 至 1017cm-2之间。根据传感的光学波长不同,衬底也可为锗硅,氮化镓或者铟镓砷等材料。其埋层一般为二氧化硅,厚度在10nm至1000nm之间。上层的沟道一般为硅、锗硅,氮化镓或者铟镓砷等材料。厚度为5nm至500nm之间。
(2)光刻并打开有源区的窗口,之后利用光刻胶为掩膜刻蚀以形成有源区的图形;刻蚀 可选用干法或者湿法方法。干法刻蚀一般使用氟基或者卤族元素气体,如SF6,CHF3,HBr或 者Cl2等。而湿法腐蚀一般使用TMAH,KOH等溶液。最终在上层硅中形成有源区,如图3(b)。
(3)光刻并打开源漏的离子注入的窗口,并进行离子注入形成基区的P型重掺杂区域; 离子注入一般使用硼,剂量为1013cm-2 至 1016cm-2 之间,能量为1keV至100keV之间。离子激活 退火温度一般为900度至1200度之间,时间为1微秒至10秒。
(4)淀积金属并退火以在源、漏区域形成电极;常用金属为铝,镍或钛等,退火温度为300度至900度之间,如图3(d)所示。
(5)使用原子层沉积生产顶栅介质,其常用介质为氧化铝、氧化硅、氧化铪等,其生长温度约为300℃。
(6)使用化学气相沉积等方法制备薄膜材料栅极,常用的栅极材料为石墨烯、黑磷、 过渡金属硫化物等新兴的二维材料,或者为IGZO、多晶硅等传统的光电薄膜材料。
(7)使用电子束蒸发制备金属顶栅,常用金属为铝,镍或钛等。
实施例2(对应图4的器件结构图)实施例2与实施例1类似,区别在于上层硅层中的晶体管是N型的,而非P型。衬底为弱N型掺杂,而顶栅材料为弱P型掺杂。因此,此实施例的工艺流程与实施例1类似,只需将步骤(3)的离子注入类型反转。
实施例3(对应图5的器件结构图),实施例3与实施例1类似,区别在于衬底与薄膜材料顶栅均为内嵌PN结型。此实施例的工艺流程与实施例1类似,只需额外进行两次衬底与顶栅材料内的离子注入。
实施例4(对应图6的器件结构图),实施例4与实施例2类似,区别在于衬底与薄膜材料顶栅均为内嵌PN结型。此实施例的工艺流 程与实施例1类似,只需额外进行两次衬底与顶栅材料内的离子注入。

Claims (4)

1.一种基于双光电栅极结构的半导体波长探测器,其特征在于,包括:衬底(1),氧化埋层(2),源端(3),漏端(4),沟道(5),源端金属接触(6),漏端金属接触(7),背栅金属接触(8),顶部栅极金属接触(9),上栅极(10)和绝缘栅介质(11);其中,上栅极(10)使用薄膜材料,且下栅极使用衬底材料(1),形成两个光电栅极共同控制沟道的耦合结构;两个光电栅极具有不同的掺杂类型和光谱响应;
所述衬底(1)内嵌PN结,其中,N、P型的掺杂浓度为1019-1021cm-3;上层沟道(5)为半导体;所述氧化埋层(2)为二氧化硅、氧化铝和氧化铪绝缘材料;
所述源端(3)和漏端(4)为重型掺杂,掺杂浓度为1019-1021cm-3;所述沟道(5)相对于源端、漏端为反型的轻掺杂,掺杂浓度为1014-1016cm-3
所述上栅极(10)的薄膜材料为与衬底内嵌PN结方向相反的PN结,其P、N结掺杂浓度为1019-1021cm-3;薄膜材料厚度为1nm到1μm。
2.根据权利要求1所述的半导体波长探测器,其特征在于,源端(3)与漏端(4)之间的距离为100nm-50μm;上栅极(10)在源漏之间的占空比为30%到80%;超薄绝缘体上硅的顶层硅厚度依据探测波长范围,控制在5nm到300nm之间;上栅极(10)的薄膜材料采用石墨烯、黑磷或过渡金属硫化物的二维材料,或者采用IGZO、多晶硅光电薄膜材料。
3.根据权利要求1所述的半导体波长探测器,其特征在于,所述绝缘栅介质(11)采用氧化铝、氧化硅、氧化铪、氧化锆、铪锆氧中的一种或几种;其厚度为1nm到100nm。
4.一种如权利要求1-3之一所述的半导体波长探测器的制备方法,其特征在于,具体步骤为:
(1)制备起始的绝缘层上硅,包括衬底(1)、埋层氧化层(2)和上层沟道层(5);之后在衬底背面淀积背部金属电极(8);
(2)光刻并刻蚀,然后在上硅层中形成有源区;
(3)光刻并进行离子注入,形成N型掺杂的源极(3)、漏极(4)区域;之后进行高温退火,激活注入的离子;
(4)光刻并淀积金属接触,之后退火,以形成源端金属接触(6),漏端金属接触(7);
(5)沉积顶栅绝缘介质(11);
(6)转移或生长薄膜栅极材料(10);
(7)制备顶栅金属接触(9)。
CN202011110843.9A 2020-10-16 2020-10-16 基于双光电栅极结构的半导体波长探测器及其制备方法 Active CN112382692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011110843.9A CN112382692B (zh) 2020-10-16 2020-10-16 基于双光电栅极结构的半导体波长探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011110843.9A CN112382692B (zh) 2020-10-16 2020-10-16 基于双光电栅极结构的半导体波长探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112382692A CN112382692A (zh) 2021-02-19
CN112382692B true CN112382692B (zh) 2022-08-19

Family

ID=74581567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011110843.9A Active CN112382692B (zh) 2020-10-16 2020-10-16 基于双光电栅极结构的半导体波长探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112382692B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899266B (zh) * 2022-07-14 2022-11-11 西安电子科技大学 基于二硫化钼/锗异质结的pin型光电探测器及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064856A (ko) * 2005-12-19 2007-06-22 매그나칩 반도체 유한회사 이미지 센서 제조방법
CN101853867A (zh) * 2009-03-31 2010-10-06 索尼公司 固态成像装置及其制造方法和电子设备
CN203826392U (zh) * 2014-04-25 2014-09-10 格科微电子(上海)有限公司 背照式cmos图像传感器
CN106711275A (zh) * 2016-12-25 2017-05-24 复旦大学 一种半导体光电传感器
CN106876421A (zh) * 2017-01-18 2017-06-20 复旦大学 一种基于动态耦合效应的半导体光电传感器及其制备方法
CN107634079A (zh) * 2017-09-19 2018-01-26 中山大学 光电传感器及其制造方法
US10193009B1 (en) * 2018-04-05 2019-01-29 Stmicroelectronics (Crolles 2) Sas Single photon avalanche gate sensor device
CN111180547A (zh) * 2020-01-06 2020-05-19 深圳第三代半导体研究院 一种新型两端光栅压结构SiC光探测器及其制备方法
CN111463310A (zh) * 2020-04-16 2020-07-28 复旦大学 一种单晶体管多维度光信息探测器
CN111739964A (zh) * 2020-06-29 2020-10-02 西北工业大学 一种双栅结构的二维半导体光电探测器及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064856A (ko) * 2005-12-19 2007-06-22 매그나칩 반도체 유한회사 이미지 센서 제조방법
CN101853867A (zh) * 2009-03-31 2010-10-06 索尼公司 固态成像装置及其制造方法和电子设备
CN203826392U (zh) * 2014-04-25 2014-09-10 格科微电子(上海)有限公司 背照式cmos图像传感器
CN106711275A (zh) * 2016-12-25 2017-05-24 复旦大学 一种半导体光电传感器
CN106876421A (zh) * 2017-01-18 2017-06-20 复旦大学 一种基于动态耦合效应的半导体光电传感器及其制备方法
CN107634079A (zh) * 2017-09-19 2018-01-26 中山大学 光电传感器及其制造方法
US10193009B1 (en) * 2018-04-05 2019-01-29 Stmicroelectronics (Crolles 2) Sas Single photon avalanche gate sensor device
CN111180547A (zh) * 2020-01-06 2020-05-19 深圳第三代半导体研究院 一种新型两端光栅压结构SiC光探测器及其制备方法
CN111463310A (zh) * 2020-04-16 2020-07-28 复旦大学 一种单晶体管多维度光信息探测器
CN111739964A (zh) * 2020-06-29 2020-10-02 西北工业大学 一种双栅结构的二维半导体光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MoS2/HfO2/Silicon-On-Insulator Dual-Photogating Transistor with Ambipolar Photoresponsivity for High-Resolution Light Wavelength Detection;Jianan Deng等;《Advanced Functional Materials》;20190909;第29卷;第1页右栏最后一段-第3页倒数第3段以及4实验部分,图1 *

Also Published As

Publication number Publication date
CN112382692A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
TWI420659B (zh) 成像器轉移閘極裝置中之矽化物帶
KR100647959B1 (ko) 능동픽셀센서및그제조방법
CN101356653B (zh) 光控场效应晶体管和使用它的集成光电检测器
US8106422B2 (en) SiC avalanche photodiode with improved edge termination
CN109728019B (zh) 基于绝缘层上硅的单晶体管主动像素传感器及制备方法
US6100556A (en) Method of forming a semiconductor image sensor and structure
CN103199100B (zh) 一种单芯片集成用硅基复合增强型光电探测器的制作方法
US8890219B2 (en) UTBB CMOS imager having a diode junction in a photosensitive area thereof
CN106711275B (zh) 一种半导体光电传感器
CN112382692B (zh) 基于双光电栅极结构的半导体波长探测器及其制备方法
CN106876421B (zh) 一种基于动态耦合效应的半导体光电传感器及其制备方法
US7582522B2 (en) Method and device for CMOS image sensing with separate source formation
CN116598322A (zh) 基于绝缘衬底上硅-二维材料异质集成光电探测器及其制备方法
CN111463310B (zh) 一种单晶体管多维度光信息探测器
CN108281483A (zh) 一种基于二维半导体薄膜/绝缘层/半导体结构的电荷耦合器件
US11316063B2 (en) Diode devices and methods of forming a diode device
US11164987B2 (en) Si—Ge—Si phototransistor
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
CN110896115B (zh) 光电晶体管、红外探测器和光电晶体管的制作方法
CN109904271A (zh) 光传感半导体单元和光传感半导体阵列
CN112420752B (zh) 基于半导体衬底的新型单晶体管像素传感器及制备方法
CN116110990A (zh) 一种基于soi结构的雪崩光电二极管器件及其制备方法
KR101927236B1 (ko) 고감도 애벌런치 광 다이오드 및 그 제조방법
JPH0276260A (ja) 集積半導体デバイスとその製法
Abid Gated lateral silicon pin junction photodiodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant