CN112375051A - 一种乙酰丙酸连续式制备γ-戊内酯的方法 - Google Patents

一种乙酰丙酸连续式制备γ-戊内酯的方法 Download PDF

Info

Publication number
CN112375051A
CN112375051A CN202011408006.4A CN202011408006A CN112375051A CN 112375051 A CN112375051 A CN 112375051A CN 202011408006 A CN202011408006 A CN 202011408006A CN 112375051 A CN112375051 A CN 112375051A
Authority
CN
China
Prior art keywords
resistant
acid
water
carrier material
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011408006.4A
Other languages
English (en)
Inventor
张兴华
马隆龙
王晨光
张琦
陈伦刚
刘琪英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202011408006.4A priority Critical patent/CN112375051A/zh
Publication of CN112375051A publication Critical patent/CN112375051A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6484Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Abstract

本发明公开了一种乙酰丙酸连续式制备γ‑戊内酯的方法。一种乙酰丙酸连续式制备γ‑戊内酯的方法,包括以下步骤:在固定床反应器中填装耐酸耐水热催化剂,将乙酰丙酸水溶液持续放入固定床反应器进行加氢反应,反应温度为60℃~120℃,氢气压力2~6MPa,液时空速为1~5h‑1,氢油体积比为100~1000:1。本发明在固定床反应器上填装RuNb/TiO2‑ZrO2催化剂,连续泵入乙酰丙酸进行加氢转化制得γ‑戊内酯,该加氢反应可以在反应物浓度较高的条件下进行反应。

Description

一种乙酰丙酸连续式制备γ-戊内酯的方法
技术领域
本发明涉及生物质能源技术领域,尤其涉及一种乙酰丙酸连续式制备γ-戊内酯的方法。
背景技术
化石能源消耗与其带来的环境问题使发展新型可持续绿色能源成为当今社会发展亟待解决的问题。生物质原料来源广泛,价格低廉,是一种丰富的碳资源,适合作为转化为燃料及化学品,对化石能源替代、能源危机和环境污染问题缓解具有重要的意义。
乙酰丙酸作为重要的平台化合物,可由生物质在酸催化作用下一步水热解聚获得。乙酰丙酸可加氢转化制备一系列的化学品,例如γ-戊内酯,1,4-戊二醇等。其中γ-戊内酯用途广泛,可以作为溶剂、燃料添加剂及化工中间体等,被美国能源部列为优先开发利用的12种生物基平台化合物之一。因此,开发乙酰丙酸高效转化为γ-戊内酯的相关技术具有重要的意义。
乙酰丙酸催化加氢制备γ-戊内酯已经有许多科研文献报道与发明专利公开。对于均相催化剂体系,由于γ-戊内酯沸点较高,反应后产物和催化剂存在分离困难的问题。固体催化剂体系尽管不存在产物分离困难的问题,但由于反应物含有羧酸基团,水热环境中催化材料的稳定性瓶颈尚未突破。此外,目前文献及专利中报道的由乙酰丙酸合成γ-戊内酯的方法大多投料量较少,浓度稀,需要大量水、醇类溶剂,反应效率较低,生产成本高。这些因素直接限制了γ-戊内酯在生物质化工领域中的大规模生产。
发明内容
本发明提供了一种乙酰丙酸连续式制备γ-戊内酯的方法,本发明在固定床反应器上填装RuNb/TiO2-ZrO2催化剂,连续泵入乙酰丙酸进行加氢转化制得γ-戊内酯,该加氢反应可以在能在反应物浓度较高的条件下进行反应。
本发明的目的是提出了一种耐酸耐水热催化剂,包括质量分数为1%~5%的活性金属Ru,质量分数1%~10%的助剂Nb2O5,其余为载体材料TiO2-ZrO2,载体材料的Ti/Zr原子比0.5~2:1。
本发明另一个目的是提出了上述耐酸耐水热催化剂的制备方法,包括如下步骤:
(1)将氧氯化锆溶解于水中,形成质量浓度1~20%的水溶液;搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A,将四氯化钛添加于水中进行水解,形成质量浓度1~20%的氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,使Ti/Zr原子比0.5~2:1;再添加助剂氢氧化铌,搅拌条件下蒸干水分,干燥,焙烧得载体材料;
(3)将RuCl3溶解于水中,以步骤(2)制备的载体材料为载体,采用等体积浸渍法制备成耐酸耐水热催化剂。
优选地,步骤(2)中焙烧的具体步骤为450℃焙烧2-8h。
优选地,步骤(3)将RuCl3溶解于水中,以步骤(2)制备的载体材料为载体,采用浸渍法制备成耐酸耐水热催化剂的具体步骤为:将RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥4~24h,然后在400℃的马弗炉中焙烧2-6h,即获得耐酸耐水热催化剂。
本发明还保护一种乙酰丙酸连续式制备γ-戊内酯的方法,包括以下步骤:在固定床反应器中填装上述耐酸耐水热催化剂,将乙酰丙酸水溶液持续放入固定床反应器进行加氢反应,反应温度为60℃~120℃,氢气压力2~6MPa,液时空速为1~5h-1,氢油体积比为100~1000:1。
优选地,所述的乙酰丙酸水溶液的质量分数为1%~50%。
优选地,反应温度为80℃~120℃,氢气压力2~4MPa,液时空速为1~5h-1,氢油体积比为100~1000:1。
与现有技术相比,本发明的有益效果是:
(1)耐酸耐水热催化剂中的Ru、Nb2O5、TiO2、ZrO2组分均具有优异的水热稳定性能、抗酸腐蚀性能,解决了催化剂材料的稳定性难题,延长了催化剂寿命;
(2)本发明提出的加氢反应温度相对较低,并且能在反应物浓度较高的条件下进行反应。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。除特别说明,本发明使用的设备和试剂为本技术领域常规市购产品。
实施例1
耐酸耐水热催化剂由如下步骤制备得到:
(1)将32.2g氧氯化锆溶解于水中,形成质量浓度10%的水溶液,搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A;将19g四氯化钛添加于水200mL水中进行水解,形成氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,再添助剂加氢氧化铌0.28g,搅拌条件下蒸干水分,干燥,在450℃条件下焙烧4h,即获得催化剂的载体材料,其Ti/Zr原子比为1:1;
(3)将0.43g RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥12h,然后在400℃的马弗炉中焙烧2h,即获得Ru-Nb/TiO2-ZrO2催化剂,具体如表1所示。
实施例2
耐酸耐水热催化剂由如下步骤制备得到:
(1)将32.2g氧氯化锆溶解于水中,形成质量浓度10%的水溶液,搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A;将19g四氯化钛添加于200mL水中进行水解,形成氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,再添助剂加氢氧化铌1.78g,搅拌条件下蒸干水分,干燥,在450℃条件下焙烧4h,即获得催化剂的载体材料,其Ti/Zr原子比为1:1;
(3)将1.35g RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥12h,然后在400℃的马弗炉中焙烧2h,即获得3Ru6Nb/TiO2-ZrO2催化剂,具体如表1所示。
实施例3
耐酸耐水热催化剂由如下步骤制备得到:
(1)将32.2g氧氯化锆溶解于水中,形成质量浓度20%的水溶液,搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A;将19g四氯化钛添加于200mL水中进行水解,形成氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,再添助剂加氢氧化铌3.2g,搅拌条件下蒸干水分,干燥,在450℃条件下焙烧4h,即获得催化剂的载体材料,其Ti/Zr原子比为1:1;
(3)将2.45g RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥12h,然后在400℃的马弗炉中焙烧2h,即获得5Ru10Nb/TiO2-ZrO2催化剂,具体如表1所示。
实施例4
耐酸耐水热催化剂由如下步骤制备得到:
(1)将16.1g氧氯化锆溶解于水中,形成质量浓度1%的水溶液,搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A;将19g四氯化钛添加于1900mL水中进行水解,形成氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,再添助剂加氢氧化铌1.25g,搅拌条件下蒸干水分,干燥,在450℃条件下焙烧4h,即获得催化剂的载体材料,其Ti/Zr原子比为2:1;
(3)将0.9g RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥12h,然后在400℃的马弗炉中焙烧2h,即获得3Ru6Nb/TiO2-ZrO2催化剂,具体如表1所示。
实施例5
耐酸耐水热催化剂由如下步骤制备得到:
(1)将64.4g氧氯化锆溶解于水中,形成质量浓度1%的水溶液,搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A;将19g四氯化钛添加于1900mL水中进行水解,形成氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,再添助剂加氢氧化铌2.88g,搅拌条件下蒸干水分,干燥,在450℃条件下焙烧4h,即获得催化剂的载体材料,其Ti/Zr原子比为0.5:1;
(3)将2.21g RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥12h,然后在400℃的马弗炉中焙烧2h,即获得3Ru6Nb/TiO2-ZrO2催化剂,具体如表1所示。
表1
实施例 催化剂 Ru含量(%) Nb<sub>2</sub>O<sub>5</sub>含量(%)
实施例1 Ru-Nb/TiO<sub>2</sub>-ZrO<sub>2</sub> 1 1
实施例2 3Ru6Nb/TiO<sub>2</sub>-ZrO<sub>2</sub> 3 6
实施例3 5Ru10Nb/TiO<sub>2</sub>-ZrO<sub>2</sub> 5 10
实施例4 3Ru6Nb/TiO<sub>2</sub>-ZrO<sub>2</sub>(2:1) 3 6
实施例5 3Ru6Nb/0.5TiO<sub>2</sub>-ZrO<sub>2</sub>(0.5:1) 3 6
实施例6-17
装填实施例1-5制备得到的耐酸耐水热催化剂于固定床反应器中进行乙酰丙酸转化为γ-戊内酯的实验评价。在固定床反应器中填装上述耐酸耐水热催化剂,通过高压计量泵将乙酰丙酸水溶液持续泵入固定床反应器进行加氢反应,乙酰丙酸水溶液进料前,耐酸耐水热催化剂在氢气流中升温至350℃还原2h,升温速率1℃/min。随后降温至反应温度开始进料。具体工艺参数与反应结果如表2所示。
表2
Figure BDA0002816268950000061
Figure BDA0002816268950000071
*进料24h时取样分析计算得到的产品收率。
表2中的实施例结果表明,本发明提供的乙酰丙酸制备γ-戊内酯方法可以得到较高的产品收率。
实施例18
实施例7工况参数下开展耐酸水热催化剂的稳定性评价测试。3Ru6Nb/TiO2-ZrO2催化剂在稳定运行480h后,产品γ-戊内酯的收率仍稳定在96%以上,无明显下降。
实施例19
以5%Ru/TiO2-Al2O3为催化剂(该催化剂参照文献(RSC Advances,2018,8,40989)制备),在实施例7工况参数下开展对比实验。该催化剂在稳定运行160h后,产品γ-戊内酯的收率开始明显下降。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种耐酸耐水热催化剂,其特征在于,包括质量分数为1%~5%的活性金属Ru,质量分数1%~10%的助剂Nb2O5,其余为载体材料TiO2-ZrO2,载体材料的Ti/Zr原子比0.5~2:1。
2.权利要求1所述的耐酸耐水热催化剂的制备方法,其特征在于,包括如下步骤:
(1)将氧氯化锆溶解于水中,形成质量浓度1~20%的水溶液;搅拌条件下逐滴加入氨水,形成氢氧化锆悬浮液A,将四氯化钛添加于水中进行水解,形成质量浓度1~20%的氢氧化钛悬浮液B;
(2)将悬浮液A和悬浮液B混合,使Ti/Zr原子比0.5~2:1;再添加助剂氢氧化铌,搅拌条件下蒸干水分,干燥,焙烧得载体材料;
(3)将RuCl3溶解于水中,以步骤(2)制备的载体材料为载体,采用等体积浸渍法制备成耐酸耐水热催化剂。
3.根据权利要求1所述的耐酸耐水热催化剂的制备方法,其特征在于,步骤(2)中焙烧的具体步骤为450℃焙烧2-8h。
4.根据权利要求1所述的耐酸耐水热催化剂的制备方法,其特征在于,步骤(3)将RuCl3溶解于水中,以步骤(2)制备的载体材料为载体,采用浸渍法制备成耐酸耐水热催化剂的具体步骤为:将RuCl3溶解于水中配置成溶液,将配置好的溶液等体积浸渍在步骤(2)制备的载体材料上,在烘箱干燥4~24h,然后在400℃的马弗炉中焙烧2-6h,即获得耐酸耐水热催化剂。
5.一种乙酰丙酸连续式制备γ-戊内酯的方法,其特征在于,包括以下步骤:在固定床反应器中填装权利要求1所述的耐酸耐水热催化剂,将乙酰丙酸水溶液持续放入固定床反应器进行加氢反应,反应温度为60℃~120℃,氢气压力2~6MPa,液时空速为1~5h-1,氢油体积比为100~1000:1。
6.根据权利要求5所述的乙酰丙酸连续式制备γ-戊内酯的方法,其特征在于,所述的乙酰丙酸水溶液的质量分数为1%~50%。
7.根据权利要求5所述的乙酰丙酸连续式制备γ-戊内酯的方法,其特征在于,反应温度为80℃~120℃,氢气压力2~4MPa,液时空速为1~5h-1,氢油体积比为100~1000:1。
CN202011408006.4A 2020-12-03 2020-12-03 一种乙酰丙酸连续式制备γ-戊内酯的方法 Pending CN112375051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011408006.4A CN112375051A (zh) 2020-12-03 2020-12-03 一种乙酰丙酸连续式制备γ-戊内酯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011408006.4A CN112375051A (zh) 2020-12-03 2020-12-03 一种乙酰丙酸连续式制备γ-戊内酯的方法

Publications (1)

Publication Number Publication Date
CN112375051A true CN112375051A (zh) 2021-02-19

Family

ID=74590456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011408006.4A Pending CN112375051A (zh) 2020-12-03 2020-12-03 一种乙酰丙酸连续式制备γ-戊内酯的方法

Country Status (1)

Country Link
CN (1) CN112375051A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318139A (zh) * 2008-07-22 2008-12-10 上海应用技术学院 复合型固体超强酸催化剂及其制备方法
US20100324310A1 (en) * 2009-06-23 2010-12-23 Dumesic James A Catalytic Conversion of Cellulose to Liquid Hydrocarbon Fuels by Progressive Removal of Oxygen to Facilitate Separation Processes and Achieve High Selectivities
CN105289592A (zh) * 2015-11-19 2016-02-03 中科合成油技术有限公司 催化乙酰丙酸加氢制备γ-戊内酯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318139A (zh) * 2008-07-22 2008-12-10 上海应用技术学院 复合型固体超强酸催化剂及其制备方法
US20100324310A1 (en) * 2009-06-23 2010-12-23 Dumesic James A Catalytic Conversion of Cellulose to Liquid Hydrocarbon Fuels by Progressive Removal of Oxygen to Facilitate Separation Processes and Achieve High Selectivities
CN105289592A (zh) * 2015-11-19 2016-02-03 中科合成油技术有限公司 催化乙酰丙酸加氢制备γ-戊内酯的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANNA PISKUN ET AL.,: "Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts", 《CATALYSTS》 *
MAXIM E.GRIGOREV ET AL.,: "Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance", 《 COLLOIDS AND SURFACES A》 *
胡荣启 等: "Ru/ZrO2 催化乙酰丙酸加氢合成γ-戊内酯", 《石油化工》 *

Similar Documents

Publication Publication Date Title
CN109603819B (zh) 一种石墨烯负载PdRu双金属催化剂及其制备方法和应用
CN106861703B (zh) 一种用于顺酐液相加氢合成γ-丁内酯的催化剂的制备方法
CN101985103B (zh) 一种选择氧化甲醇合成甲酸甲酯的催化剂及其制备方法
CN106866589B (zh) 一种γ-戊内酯的制备方法
CN105712840A (zh) 一种乙醇催化转化制备高碳伯醇的方法
CN107020075B (zh) 二氧化碳电化学还原单质铋催化剂及其制备和应用
CN110743544B (zh) 一种苯乙酮选择加氢制备α-苯乙醇用钯炭催化剂及其制备方法与应用
CN104069882A (zh) 一种制备碳氮材料负载的纳米金属催化剂的方法
CN108997274A (zh) 一种液相氢转移催化糠醛加氢制备2-甲基呋喃的方法
CN111408392A (zh) 钴氮共掺杂多孔碳材料催化剂及其制备方法和应用
CN110479258A (zh) 一种乙酰丙酸加氢合成γ-戊内酯的高稳定性催化剂及其制备方法
CA2198777C (en) Photocatalyst, method for preparing the same, and production of hydrogen using the same
CN110215927A (zh) 一种高分散的负载型磷化镍催化剂的制备方法
CN106866364A (zh) 一种由糠醇制备1,3-环戊二醇的方法
CN111013615A (zh) 一种具有氢析出和氧析出高效双功能的CoP催化剂的制备方法
CN104923218A (zh) 一种衣康酸加氢的催化剂及其制备方法和用途,以及由衣康酸制备高附加值产品的方法
CN105837391A (zh) 一种无金属加氢催化剂在催化苯加氢反应中的应用
CN108409692A (zh) 一种硫掺杂碳材料负载钌催化剂催化乙酰丙酸加氢制取γ-戊内酯的方法
CN107952484B (zh) 一种以Nafion薄膜负载稀土金属催化剂的制备方法及其应用
CN107245065A (zh) 一种催化氢化乙酰丙酸乙酯制备戊内酯的方法
CN113877583A (zh) 一种生物糠醇临氢开环生产1,5-戊二醇工艺中的催化剂及制备和应用
CN109999907B (zh) 一种磺酸功能化无机有机杂化聚合物催化剂的制备方法及其应用
CN111423398A (zh) 一种由乙酰丙酸制备γ-戊内酯的方法
CN112375051A (zh) 一种乙酰丙酸连续式制备γ-戊内酯的方法
CN114804997B (zh) 环己基苯的制备方法及相应的金属催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210219