CN112366303A - 一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法 - Google Patents

一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法 Download PDF

Info

Publication number
CN112366303A
CN112366303A CN202011278735.2A CN202011278735A CN112366303A CN 112366303 A CN112366303 A CN 112366303A CN 202011278735 A CN202011278735 A CN 202011278735A CN 112366303 A CN112366303 A CN 112366303A
Authority
CN
China
Prior art keywords
powder
silicon alloy
lithium ion
ion battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011278735.2A
Other languages
English (en)
Inventor
钟庆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Shanglin New Material Technology Co ltd
Original Assignee
Hunan Shanglin New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Shanglin New Material Technology Co ltd filed Critical Hunan Shanglin New Material Technology Co ltd
Priority to CN202011278735.2A priority Critical patent/CN112366303A/zh
Publication of CN112366303A publication Critical patent/CN112366303A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池用纳米晶铁硅合金基负极材料,采用纳米晶铁硅合金粉末作为前驱体,通过将纳米晶铁硅合金粉末与碳源、分散剂混合、球磨,再经高温锻烧处理而成,所述纳米晶铁硅合金粉末表面包覆有碳层。本发明提高了负极材料的高功率特性和快速充放电能力,而且提高了负极材料的电池容量,同时本发明制备工艺简单易控制,生产成本低。

Description

一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法
技术领域
本发明涉及锂离子电池负极材料领域,尤其涉及一种锂离子电池用铁硅合金基负极材料及其制备方法。
背景技术
随着新兴经济的快速发展,全球能源消耗量急剧增长。锂离子电池以其高电压、高能量密度、循环寿命长、安全性能好、成本低廉等优点在电脑、相机和移动电话等便携式电子设备上已经得到了广泛的应用。近年来,世界各国都在积极开展锂离子电池运用于混合动力电动汽车、纯电动汽车等的研究,但锂离子电池作为车载动力电池的主要瓶颈是锂离子电池负极材料的性能。
石墨是目前应用最广泛的锂离子电池负极材料,然而,石墨的理论容量只有372mAh/g,无法满足动力能源的高比容量的需求。相比于石墨,硅具有较高的理论容量为4200mAh/g,且廉价、易制取、性质稳定,被认为是一个具有前途的锂离子负极材料。但是,存在循环性差、衰减迅速等缺点。中国专利公开了一种一锂离子电池的制备方法与应用,其步骤包括纳米晶铁硅合金粉末的制备、高温烧结等制备复合材料具有较高的初始放电容量和循环稳定性,提高了负极材料的高功率特性。
发明内容
本发明的目的是克服目前商业化石墨作为锂离子电池负极材料时比容量低、快速充放电能力差等缺点,提供一种锂离子电池用纳米晶铁硅合金基负极材料及制备方法,提高了负极材料的比容量和快速充放电能力,同时该方法加工成本低、工艺简单易控制、周期短、高效节能。
本发明采用的的技术方案为:一种锂离子电池用纳米晶铁硅合金基负极材料,采用纳米晶铁硅合金粉末作为前驱体,通过将纳米晶铁硅合金粉末与碳源、分散剂混合、球磨,再经高温锻烧处理而成,所述纳米晶铁硅合金粉末表面包覆有碳层。
所述锂离子电池用纳米晶铁硅合金基负极材料的制备方法,包括如下步骤:
步骤一:将纳米晶铁硅合金粉末用作前驱体,将纳米晶铁硅合金粉末与碳源、分散剂混合在一起球磨;其中纳米晶铁硅合金粉末与碳源、分散剂按质量百分比计:纳米晶铁硅合金粉末79-94.9;碳源5-20%;分散剂0.1-1%;
步骤二:将球磨所得的粉末干燥后,放入管式炉中以1-2℃/min的速率升温至200-900℃并保温1-2小时,冷却至室温,研磨过筛得到锂离子电池用纳米晶铁硅合金基负极材料。
所述步骤一中碳源为碳纳米管、石墨烯、石墨烯量子点、石墨粉、乙炔黑中的一种或多种。
所述步骤一中分散剂为聚乙烯吡咯烷酮、聚乙二醇、羟丙基纤维素中的一种。
所述步骤一中球磨方式为湿法球磨,所述湿法球磨中所用的溶剂为乙醇和异丙醇中的一种。
所述步骤二中管式炉中通入的气氛为氢气、氮气或氢氮混合气体。
由于采用了上述技术方案,本发明具有如下优点和效果:
1.本发明材料提高了负极材料的高功率特性和快速充放电能力,而且提高了负极材料的电池容量;
2.本发明制备工艺简单易控制,生产成本低。
具体实施方式
下面将结合本发明实施例对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
称取一定的纳米晶铁硅合金粉末用作前驱体,将纳米晶铁硅合金粉末与碳源、分散剂按照84:15:1混合在一起,其中碳源为碳纳米管和硅粉按2:1添加,分散剂为聚乙烯吡咯烷酮,放入玛瑙罐中在球磨机上球磨60min;将所得的粉末用烘箱干燥后,放入管式炉中以1-2℃/min的速率升温至600℃并保温30min,冷却至室温,研磨过300目的筛得到锂离子电池用纳米晶铁硅基负极材料。
实施例2
称取一定的纳米晶铁硅合金粉末用作前驱体,将纳米晶铁硅合金粉末与碳源、分散剂按照80:19.7:0.3混合在一起,其中碳源为石墨烯和硅粉按2:1添加,分散剂为聚乙烯吡咯烷酮,放入玛瑙罐中在球磨机上球磨60min;将所得的粉末用烘箱干燥后,放入管式炉中以1-2℃/min的速率升温至600℃并保温30min,冷却至室温,研磨过300目的筛得到锂离子电池用纳米晶铁硅基负极材料。
实施例3
称取一定的纳米晶铁硅合金粉末用作前驱体,将纳米晶铁硅合金粉末与碳源、分散剂按照79.5:20:0.5混合在一起,其中碳源为石墨粉:石墨烯量子点3:2加入,分散剂为聚乙烯吡咯烷酮,放入玛瑙罐中在球磨机上球磨60min;将所得的粉末用烘箱干燥后,放入管式炉中以1-2℃/min的速率升温至600℃并保温30min,冷却至室温,研磨过300目的筛得到锂离子电池用纳米晶铁硅基负极材料。
Figure DEST_PATH_IMAGE002
本发明所述的实施例仅仅是对本发明的优选实施方式进行的描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。

Claims (6)

1.一种锂离子电池用纳米晶铁硅合金基负极材料,其特征在于:采用纳米晶铁硅合金粉末作为前驱体,通过将纳米晶铁硅合金粉末与碳源、分散剂混合、球磨,再经高温锻烧处理而成,所述纳米晶铁硅合金粉末表面包覆有碳层。
2.根据权利要求1所述的锂离子电池用纳米晶铁硅合金基负极材料的制备方法,其特征在于包括以下步骤:
步骤一:将纳米晶铁硅合金粉末用作前驱体,将纳米晶铁硅合金粉末与碳源、分散剂混合在一起球磨;其中纳米晶铁硅合金粉末与碳源、分散剂按质量百分比计:纳米晶铁硅合金粉末79-94.9;碳源5-20%;分散剂0.1-1%;
步骤二:将球磨所得的粉末干燥后,放入管式炉中以1-2℃/min的速率升温至200-1500℃并保温1-2小时,冷却至室温,研磨过筛得到锂离子电池用纳米晶铁硅合金基负极材料。
3.根据权利要求2所述的锂离子电池用纳米晶铁硅基负极材料的制备方法,其特征在于,所述步骤一中碳源为碳纳米管、石墨烯、石墨烯量子点、石墨粉、乙炔黑中的一种或多种。
4.根据权利要求2所述的锂离子电池用纳米晶铁硅基负极材料的制备方法,其特征在于,所述步骤一中分散剂为聚乙烯吡咯烷酮、聚乙二醇、羟丙基纤维素中的一种。
5.根据权利要求2所述的锂离子电池用纳米晶铁硅基负极材料的制备方法,其特征在于,所述步骤一中球磨方式为湿法球磨,该湿法球磨中所用的溶剂为乙醇和异丙醇中的一种。
6.根据权利要求2所述的锂离子电池用纳米晶铁硅基负极材料的制备方法,其特征在于,所述步骤二中管式炉中通入的气氛为氢气、氮气或氢氮混合气体。
CN202011278735.2A 2020-11-16 2020-11-16 一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法 Pending CN112366303A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011278735.2A CN112366303A (zh) 2020-11-16 2020-11-16 一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011278735.2A CN112366303A (zh) 2020-11-16 2020-11-16 一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112366303A true CN112366303A (zh) 2021-02-12

Family

ID=74514884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011278735.2A Pending CN112366303A (zh) 2020-11-16 2020-11-16 一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112366303A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617269A (zh) * 2015-01-23 2015-05-13 深圳市贝特瑞新能源材料股份有限公司 一种硅合金复合负极材料、制备方法及锂离子电池
CN105084366A (zh) * 2014-05-15 2015-11-25 国家纳米科学中心 一种以硅灰为原料制备纳米尺寸的硅及硅/碳复合材料的方法及其用途
CN107204438A (zh) * 2016-03-17 2017-09-26 国家纳米科学中心 一种碳硅复合材料及其制备方法和用途
CN107275590A (zh) * 2017-05-19 2017-10-20 浙江大学 一种多孔硅碳复合材料及其制备方法和应用
CN108346788A (zh) * 2018-01-31 2018-07-31 广东省稀有金属研究所 一种碳包覆硅铁合金复合负极材料的制备方法
CN109449421A (zh) * 2018-11-09 2019-03-08 广东省稀有金属研究所 一种锂离子电池硅基合金复合负极材料的制备方法
CN109461921A (zh) * 2018-11-09 2019-03-12 广东省稀有金属研究所 一种基于改性的锂离子电池硅基合金复合负极材料的制备方法
CN110085853A (zh) * 2019-05-30 2019-08-02 郑州中科新兴产业技术研究院 氧化亚硅基碳负极材料、负极极片及其制备方法和锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084366A (zh) * 2014-05-15 2015-11-25 国家纳米科学中心 一种以硅灰为原料制备纳米尺寸的硅及硅/碳复合材料的方法及其用途
CN104617269A (zh) * 2015-01-23 2015-05-13 深圳市贝特瑞新能源材料股份有限公司 一种硅合金复合负极材料、制备方法及锂离子电池
CN107204438A (zh) * 2016-03-17 2017-09-26 国家纳米科学中心 一种碳硅复合材料及其制备方法和用途
CN107275590A (zh) * 2017-05-19 2017-10-20 浙江大学 一种多孔硅碳复合材料及其制备方法和应用
CN108346788A (zh) * 2018-01-31 2018-07-31 广东省稀有金属研究所 一种碳包覆硅铁合金复合负极材料的制备方法
CN109449421A (zh) * 2018-11-09 2019-03-08 广东省稀有金属研究所 一种锂离子电池硅基合金复合负极材料的制备方法
CN109461921A (zh) * 2018-11-09 2019-03-12 广东省稀有金属研究所 一种基于改性的锂离子电池硅基合金复合负极材料的制备方法
CN110085853A (zh) * 2019-05-30 2019-08-02 郑州中科新兴产业技术研究院 氧化亚硅基碳负极材料、负极极片及其制备方法和锂离子电池

Similar Documents

Publication Publication Date Title
EP4084181A1 (en) Doped phosphorus-sulfur iodide solid electrolyte, preparation method therefor, and use thereof
CN102522530B (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
CN106532012B (zh) 一种硫-生物质碳/过渡金属复合电极材料及其制备方法和应用
CN102881870A (zh) 一种锂离子电池硅基锂盐复合负极材料及其制备方法与应用
CN111193014B (zh) 蛋壳-蛋黄结构的四氧化三钴-氮掺杂碳/碳纳米笼复合材料及其制备方法和应用
CN110104677B (zh) 复合钛酸锂材料及其制备方法与应用
KR20240032709A (ko) 나노 사이즈 황화물 고체 전해질 소재 및 이의 제조방법
WO2023056767A1 (zh) 一种高倍率磷酸铁锂正极材料的制备方法
CN103000874A (zh) 一种碳包覆三元正极材料的制备方法
CN103326010A (zh) 一种纳米硅掺杂复合钛酸锂负极材料的制备方法
CN104201353A (zh) 钛系氧化物/碳纳米管的复合负极材料及其制备方法
CN110957486A (zh) 超结构锡碳-氧化钼复合材料的制备方法及其应用于电极
CN112271274A (zh) 一种基于硫化锂正极的高安全性、高能量准固态锂二次电池及其制备方法
WO2022126882A1 (zh) 硅碳基负极材料及其制备方法
CN114242961B (zh) 一种石墨烯/硅的氧化物包覆纳米硅复合材料及制备方法与应用
CN115249799A (zh) 钠离子电池松香基氮掺杂包覆硬碳负极材料及其制备方法
CN109546099B (zh) 一种石墨复合负极材料及其制备方法、锂离子电池
CN112366304A (zh) 一种锂离子电池用纳米晶铁硅合金基正极材料及其制备方法
CN113130887A (zh) 一种锂离子电池的补锂方法
CN110867607A (zh) 一种掺杂改性降低锂电池的固态电池制备成本的方法
CN114497481B (zh) 一种导电聚合物包覆纳米硅粉及其制备方法和应用以及硅碳负极材料
CN114242962B (zh) 一种正硅酸锂和碳包覆纳米硅复合材料及其制备方法与应用
CN115663135A (zh) 一种三元正极活性材料,其制备方法及含有该材料的锂离子电池
CN113224291B (zh) 一种氮硫掺杂碳负载Fe7S8电池负极材料的制备方法及其应用
CN112366303A (zh) 一种锂离子电池用纳米晶铁硅合金基负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210212