CN112345615A - 一种氮化镓基高电子迁移率晶体管的氢气传感器 - Google Patents

一种氮化镓基高电子迁移率晶体管的氢气传感器 Download PDF

Info

Publication number
CN112345615A
CN112345615A CN202011213032.1A CN202011213032A CN112345615A CN 112345615 A CN112345615 A CN 112345615A CN 202011213032 A CN202011213032 A CN 202011213032A CN 112345615 A CN112345615 A CN 112345615A
Authority
CN
China
Prior art keywords
layer
hydrogen
gallium nitride
epitaxial wafer
hydrogen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011213032.1A
Other languages
English (en)
Inventor
张贺秋
杨勇强
梁红伟
夏晓川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202011213032.1A priority Critical patent/CN112345615A/zh
Publication of CN112345615A publication Critical patent/CN112345615A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于气体传感器技术领域,提供了一种氮化镓基高电子迁移率晶体管的氢气传感器,在所述氮化镓基材料表面分别蒸镀源极、漏极和Pd/Pt层。本发明利用当氢气吸附在Pd/Pt层上分解为氢原子传递到界面处,氢原子在界面极化吸附以后所产生的电场将引起表面纵向电荷的变化,进而调制异质结界面处二维电子气浓度,改变源漏电极的输出电流,从而测试氢气的浓度。而且本发明具有操作简单,所制备的氢气传感器稳定性好和成本低等优势,所制备的氢气传感器质量好,能够保持良好的性能且该氢气传感器可以在较为宽松的湿度环境中进行测试,不会影响其输出。制备环境条件要求简单,可稳定制备。

Description

一种氮化镓基高电子迁移率晶体管的氢气传感器
技术领域
本发明属于气体传感器技术领域,具体涉及一种氮化镓基高电子迁移率晶体管的氢气传感器。
背景技术
随着世界对能源需求的不断增加,使得对化石能源的消耗不断增多,对环境也产生更加不利的影响。因此人们迫切希望增加可再生能源在能源结构中的占比,氢气作为可再生能源被人们给予厚望。同时氢气在航空航天、武器系统领域,还是医疗健康、燃料电池等方面都有着广泛的应用。但是当局部空气中的氢气的含量处在4%-90%时将会产生爆炸,而且又由于氢气分子很小,在实际的生产、运输过程中很容易泄漏且加上氢气分子无色无味,不易被察觉,其潜在的安全隐患比其他的气体更高,所以对氢气的检测有着迫切的需求和研究价值。
目前常用的是通过氢气传感器来检测空气中的氢气的浓度,可以有效监测氢气的泄漏。而传统的氢气传感器主要是电阻型,其灵敏度虽高,但其输出信号微弱,需要设计额外的后端电路。而且工作的条件比较苛刻,不能普遍的应用于各种环境之中。近年来,AlGaN/GaN高电子迁移率晶体管(HEMT)技术的发展,能够使气体传感器具有了极其优异的物理和化学稳定性、热稳定性、无毒等特性使其能在各种复杂环境中应用。此外,基于HEMT的氢气传感器具有小型化、并行传感、快速响应时间和与电子制造工艺无缝集成的潜力。因此,发展AlGaN/GaN HEMT氢气传感器,对于推动我国能源事业的发展具有重要的战略意义与实用价值。
发明内容
针对现有技术存在的问题,本发明旨在用简单的工艺流程来制备能在室温下工作的氢气传感器。且该氢气传感器能在各种复杂环境下稳定工作,其具有输出响应大、反应恢复速率较快、检测精度较高等特点。
为了达到上述目的,本发明的氢气传感器采用的技术方案为:
一种氮化镓基高电子迁移率晶体管的氢气传感器的制备方法,首先,通过热蒸发或电子束在蒸发的方法在HEMT片上生长四层金属电极,之后,一定比例的Pd/Pt金属通过热蒸发或者电子束蒸发的方法生长在HEMT的敏感区域内由此可以制备出能在室温下工作的氢气传感器。具体步骤如下:
步骤一:HEMT外延片的表面预处理:将切割好的外延片放入丙酮溶液中超声清洗10min,取出外延片,放入无水乙醇中超声清洗10min,然后将外延片放入去离子水中超声清洗10min,去除外延片表面的胶和表面附着的有机物;之后取出外延片放入体积比为1:10的稀盐酸溶液中浸泡3min除去外延片表面的氧化膜,最后将外延片放入去离子水中超声10min,去除残留的试剂。用氮气枪将外延片表面吹干待用。
步骤二:将清洗的外延片放入掩膜版下面,采用热蒸发或电子束蒸发依次蒸发Ti/Al/Ni/Au,然后将外延片取出快速退火,形成欧姆接触。
步骤三:将一定比例的Pd/Pt金属通过热蒸或者电子束蒸发的形式生长在HEMT的敏感区域。
步骤四:将电极用金属引线接出。
本发明的有益效果:
(1)通过将一定比例的Pd/Pt通过热蒸发或电子束蒸发生长在传感区表面,当氢气吸附在Pd/Pt层上分解为氢原子传递到界面处,氢原子在界面极化吸附以后所产生的电场将引起表面纵向电荷的变化,进而调制异质结界面处二维电子气浓度,改变源漏电极的输出电流,输出电流正比于氢气的浓度。该传感器在室温的条件下具有响应度大,线性度好等特点,且该氢气传感器的响应时间<2min,恢复时间<1min。
(2)此方法具有操作简单,所制备的氢气传感器稳定性好和成本低等优势,所制备的氢气传感器质量好,能够保持良好的性能且该氢气传感器可以在较为宽松的湿度环境中进行测试,不会影响其输出。制备环境条件要求简单,可稳定制备。
附图说明
图1为本发明所述氢气传感器的一种实施方式的结构示意图。
图2为本发明所述氢气传感器在不同氢气浓度时氢气传感器的响应电流输出的示意图。
图3为本发明所述氢气传感器线性度的示意图。
图4为本发明所述氢气传感器与敏感层为单一Pd和Pt在室温1000ppm氢气氛围中的瞬态曲线。
图中:101衬底;102未掺杂氮化镓层;103铝氮插入层;104铝镓氮层;105氮化镓帽层;106源电极;107漏电极;108电极保护层;109空栅修饰层。
具体实施方式
为了使本发明的技术方案和有益效果更加清楚、明显,下面将结合本发明的较佳的实施例进行详细说明。显然,以下实施例并不是本发明的全部内容。
实施例1
本发明所用的HEMT结构如图1所示,包括衬底101为Al2O3层、3μm的未掺杂氮化镓层102、2nm的铝氮插入层103、铝含量为25%、25nm厚的铝镓氮层104、2nm厚的氮化镓帽层105、Ti/Al/Ni/Au的源电极106和漏电极107、SiO2的电极保护层108;
具体步骤如下:
步骤一:HEMT外延片的表面预处理:将切割好的外延片放入丙酮溶液中超声清洗10min,取出外延片,放入无水乙醇中超声清10min,然后将外延片放入去离子水中超声清洗10min,去除外延片表面的胶和表面附着的有机物;之后取出外延片放入体积比为1:10的稀盐酸溶液中浸泡3min除去外延片表面的氧化膜,最后将外延片放入去离子水中超声10min,去除残留的试剂。用氮气枪将外延片表面吹干待用。
步骤二:将清洗的外延片放入掩膜版下面,采用热蒸发依次蒸发Ti/Al/Ni/Au,然后将外延片取出快速退火,形成欧姆接触。
步骤三:将比例为1:2的Pd/Pt金属通过热蒸发或者是电子束蒸发的形式生长在HEMT的敏感区域。控制Pd/Pt层的厚度<4nm。
步骤四:将电极用金属引线接出,在环境湿度>80时,通入不同浓度的氢气进行测试。
实施例2
本发明所用的HEMT结构如如图1所示,包括衬底101为Al2O3层、3μm的未掺杂氮化镓层102、2nm的铝氮插入层103、铝含量为25%、25nm厚的铝镓氮层104、2nm厚的氮化镓帽层105、Ti/Al/Ni/Au的源电极106和漏电极107、SiO2的电极保护层108;
具体步骤如下:
步骤一:HEMT外延片的表面预处理:将切割好的外延片放入丙酮溶液中超声清洗10min,取出外延片,放入无水乙醇中超声清10min,然后将外延片放入去离子水中超声清洗10min,去除外延片表面的胶和表面附着的有机物;之后取出外延片放入体积比为1:10的稀盐酸溶液中浸泡3min除去外延片表面的氧化膜,最后将外延片放入去离子水中超声10min,去除残留的试剂。用氮气枪将外延片表面吹干待用。
步骤二:将清洗的外延片放入掩膜版下面,采用热蒸发依次蒸发Ti/Al/Ni/Au,然后将外延片取出快速退火,形成欧姆接触。
步骤三:将比例为1:1的Pd/Pt金属通过热蒸发或者是电子束蒸发的形式生长在HEMT的敏感区域。控制Pd/Pt层的厚度<4nm
步骤四:将电极用金属引线接出,。在环境湿度>80时,通入不同浓度的氢气进行测试。
实施例3
本发明所用的HEMT结构如如图1所示,包括衬底101为Al2O3层、3μm的未掺杂氮化镓层102、2nm的铝氮插入层103、铝含量为25%、25nm厚的铝镓氮层104、2nm厚的氮化镓帽层105、Ti/Al/Ni/Au的源电极106和漏电极107、SiO2的电极保护层108;
具体步骤如下:
步骤一:HEMT外延片的表面预处理:将切割好的外延片放入丙酮溶液中超声清洗10min,取出外延片,放入无水乙醇中超声清10min,然后将外延片放入去离子水中超声清洗10min,去除外延片表面的胶和表面附着的有机物;之后取出外延片放入体积比为1:10的稀盐酸溶液中浸泡3min除去外延片表面的氧化膜,最后将外延片放入去离子水中超声10min,去除残留的试剂。用氮气枪将外延片表面吹干待用。
步骤二:将清洗的外延片放入掩膜版下面,采用热蒸发依次蒸发Ti/Al/Ni/Au,然后将外延片取出快速退火,形成欧姆接触。
步骤三:将比例为2:1的Pd/Pt金属通过热蒸发或者是电子束蒸发的形式生长在HEMT的敏感区域。控制Pd/Pt层的厚度<4nm
步骤四:将电极用金属引线接出,在环境湿度>80时,通入不同浓度的氢气进行测试。
实施例4
本发明所用的HEMT结构如如图1所示,包括衬底101为Al2O3层、未3μm的掺杂氮化镓层102、2nm的铝氮插入层103、铝含量为25%、25nm厚的铝镓氮层104、2nm厚的氮化镓帽层105、Ti/Al/Ni/Au的源电极106和漏电极107、SiO2的电极保护层108;
具体步骤如下:
步骤一:HEMT外延片的表面预处理:将切割好的外延片放入丙酮溶液中超声清洗10min,取出外延片,放入无水乙醇中超声清10min,然后将外延片放入去离子水中超声清洗10min,去除外延片表面的胶和表面附着的有机物;之后取出外延片放入体积比为1:10的稀盐酸溶液中浸泡3min除去外延片表面的氧化膜,最后将外延片放入去离子水中超声10min,去除残留的试剂。用氮气枪将外延片表面吹干待用。
步骤二:将清洗的外延片放入掩膜版下面,采用热蒸发依次蒸发Ti/Al/Ni/Au,然后将外延片取出快速退火,形成欧姆接触。
步骤三:将比例为1:1的Pd/Pt金属通过热蒸发或者是电子束蒸发的形式生长在HEMT的敏感区域,控制Pd/Pt层的厚度<4nm。在200度的氮气氛围中退火10min。
步骤四:将电极用金属引线接出,在环境湿度>80时,通入不同浓度的氢气进行测试。
按照相同步骤将敏感层的Pd/Pt换成单一的Pd和Pt放在上述相同的氢气氛围中测试,其结果如图4所示。我们可以清楚的看到:
(1)从氢气的响应度来看,在1000ppm的氢气氛围中,长有Pd/Pt(2:1)的传感器的电流改变量为0.25mA,远大于单独长Pd(0.086mA)和Pt(0.063mA)的传感器的电流改变量。
(2)从响应和恢复特性看,单独长Pd的传感器不能恢复到原有的基准线,且恢复时间长,而长Pt的传感器也不能完全恢复,Pd/Pt(2:1)则能很好的工作其响应(恢复)时间分别为41s和42s远快于上述两个传感器在室温时,1000ppm的氢气氛围中。

Claims (2)

1.一种氮化镓基高电子迁移率晶体管的氢气传感器,包括衬底(101)上表面为未掺杂氮化镓层(102),在未掺杂氮化镓层(102)表面全部或部分覆盖铝氮插入层(103),在铝氮插入层(103)上表面覆盖有铝镓氮层(104),铝镓氮层(104)上表面覆盖有氮化镓帽层(105);在氮化镓帽层(105)表面或在氮化镓帽层(105)表面及铝氮插入层(103)、铝镓氮层(104)和氮化镓帽层(105)侧面生长有源电极(106)和漏电极(107);在源电极(106)和漏电极(107)表面和侧面生长电极保护层(108);栅电极不在源电极(106)和漏电极(107)之间;源电极(106)和漏电极(107)间为空栅修饰层(109);
其特征在于,所述的空栅修饰层(109)的厚度不大于10nm,由Pd/Pt金属通过热蒸发或电子束蒸发的形式,在室温到400度的氮气氛围中退火1-30min生长在源电极(106)和漏电极(107)之间的敏感区域,空栅修饰层(109);其中金属Pd和Pt的质量比为1:5-5:1。
2.根据权利要求1所述的氮化镓基高电子迁移率晶体管的氢气传感器,其特征在于,所述的空栅修饰层(109)的厚度为2-6nm,其中金属Pd和Pt的质量比为2:1。
CN202011213032.1A 2020-11-03 2020-11-03 一种氮化镓基高电子迁移率晶体管的氢气传感器 Withdrawn CN112345615A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011213032.1A CN112345615A (zh) 2020-11-03 2020-11-03 一种氮化镓基高电子迁移率晶体管的氢气传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011213032.1A CN112345615A (zh) 2020-11-03 2020-11-03 一种氮化镓基高电子迁移率晶体管的氢气传感器

Publications (1)

Publication Number Publication Date
CN112345615A true CN112345615A (zh) 2021-02-09

Family

ID=74356005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011213032.1A Withdrawn CN112345615A (zh) 2020-11-03 2020-11-03 一种氮化镓基高电子迁移率晶体管的氢气传感器

Country Status (1)

Country Link
CN (1) CN112345615A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903755A (zh) * 2021-02-24 2021-06-04 太原理工大学 一种二氧化碳传感器及其制备方法
CN114577863A (zh) * 2022-03-01 2022-06-03 国网电力科学研究院武汉南瑞有限责任公司 氧化镓薄膜氢气传感器制备方法及氧化镓薄膜氢气传感器
CN114646675A (zh) * 2022-04-02 2022-06-21 西安电子科技大学杭州研究院 一种基于薄膜晶体管的氢气传感器/制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017126A1 (en) * 1999-01-15 2002-02-14 Dimeo Frank Micro-machined thin film sensor arrays for the detection of H2, NH3, and sulfur containing gases, and method of making and using the same
US20050074970A1 (en) * 2000-03-17 2005-04-07 Flaminia Serina Mis hydrogen sensors
US20050258051A1 (en) * 2004-04-28 2005-11-24 Alps Electric Co., Ltd. Hydrogen sensor and method for detecting hydrogen
US20060006414A1 (en) * 2004-06-30 2006-01-12 Marianne Germain AlGaN/GaN high electron mobility transistor devices
CN110470713A (zh) * 2019-07-03 2019-11-19 大连理工大学 一种氮化镓基高电子迁移率晶体管的葡萄糖传感器
CN110579526A (zh) * 2019-09-03 2019-12-17 华中科技大学 一种场效应晶体管气体传感器及其阵列制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017126A1 (en) * 1999-01-15 2002-02-14 Dimeo Frank Micro-machined thin film sensor arrays for the detection of H2, NH3, and sulfur containing gases, and method of making and using the same
US20050074970A1 (en) * 2000-03-17 2005-04-07 Flaminia Serina Mis hydrogen sensors
US20050258051A1 (en) * 2004-04-28 2005-11-24 Alps Electric Co., Ltd. Hydrogen sensor and method for detecting hydrogen
US20060006414A1 (en) * 2004-06-30 2006-01-12 Marianne Germain AlGaN/GaN high electron mobility transistor devices
CN110470713A (zh) * 2019-07-03 2019-11-19 大连理工大学 一种氮化镓基高电子迁移率晶体管的葡萄糖传感器
CN110579526A (zh) * 2019-09-03 2019-12-17 华中科技大学 一种场效应晶体管气体传感器及其阵列制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903755A (zh) * 2021-02-24 2021-06-04 太原理工大学 一种二氧化碳传感器及其制备方法
CN112903755B (zh) * 2021-02-24 2023-06-02 太原理工大学 一种二氧化碳传感器及其制备方法
CN114577863A (zh) * 2022-03-01 2022-06-03 国网电力科学研究院武汉南瑞有限责任公司 氧化镓薄膜氢气传感器制备方法及氧化镓薄膜氢气传感器
CN114646675A (zh) * 2022-04-02 2022-06-21 西安电子科技大学杭州研究院 一种基于薄膜晶体管的氢气传感器/制备方法及其应用

Similar Documents

Publication Publication Date Title
CN112345615A (zh) 一种氮化镓基高电子迁移率晶体管的氢气传感器
CN111307876B (zh) 一种用于检测二氧化氮的气体传感器及其制备方法
CN103630572A (zh) 用于气敏材料的多孔硅/氧化钨纳米线复合结构的制备方法
CN103512928A (zh) 一种基于三氧化钨薄膜的室温气体传感器元件的制备方法
Lee et al. Performance enhancement mechanisms of passivated InN/GaN-heterostructured ion-selective field-effect-transistor pH sensors
Du et al. Hydrogen gas sensing properties of Pd/aC: Pd/SiO2/Si structure at room temperature
CN112525954A (zh) 一种多孔氮化镓基室温气体传感器的制备方法
CN204177762U (zh) 一种掺氮二氧化钛纳米管氢气传感器
CN110470713B (zh) 一种氮化镓基高电子迁移率晶体管的葡萄糖传感器
Weng et al. AlInN resistive ammonia gas sensors
CN112420871B (zh) 台面型铟镓砷探测器芯片及其制备方法
Jiang et al. A comprehensive review of gallium nitride (GaN)-based gas sensors and their dynamic responses
CN111755576A (zh) 非晶氧化镓刻蚀方法及在三端器件和阵列成像系统的应用
Popa et al. A GaN-based two-sensor array for methane detection in an ethanol environment
Zhang et al. Extended gate field effect transistor using GaN/Si hybrids nanostructures for pH sensor
CN117191885B (zh) 超快响应室温石墨烯基二氧化氮传感器
Tsai et al. Investigation on a Pd–AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses
CN103048362B (zh) 一种对氢气敏感的钯/碳/二氧化硅/硅异质结材料
Ren et al. Recent advances in wide bandgap semiconductor-based gas sensors
Xing et al. Response enhancement of Pt nanoparticles decorated AlGaN/GaN HEMTs treated by photo-electrochemical method for ammonia gas sensing at room temperature
CN111579608B (zh) 带有参考器件的GaN基pH传感器
TW201741659A (zh) 基於二維電子氣的低功耗氫氣感測器及其製造方法
CN111398362A (zh) 一种纳米机电氢气传感器及制备方法
CN113109402B (zh) 电容式氢气传感器芯体及其制备方法、电容式氢气传感器
CN104374817A (zh) 一种宽带隙肖特基二极管氢气传感器芯体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210209