CN111933706B - 一种基于导电凝胶的GaN基HEMT传感器及其制备方法 - Google Patents

一种基于导电凝胶的GaN基HEMT传感器及其制备方法 Download PDF

Info

Publication number
CN111933706B
CN111933706B CN202010547831.6A CN202010547831A CN111933706B CN 111933706 B CN111933706 B CN 111933706B CN 202010547831 A CN202010547831 A CN 202010547831A CN 111933706 B CN111933706 B CN 111933706B
Authority
CN
China
Prior art keywords
gan
layer
conductive gel
aln
hemt sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010547831.6A
Other languages
English (en)
Other versions
CN111933706A (zh
Inventor
杨紫琪
卢星
陈荣盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010547831.6A priority Critical patent/CN111933706B/zh
Publication of CN111933706A publication Critical patent/CN111933706A/zh
Application granted granted Critical
Publication of CN111933706B publication Critical patent/CN111933706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种基于导电凝胶的GaN基HEMT传感器及其制备方法。本发明的GaN基HEMT传感器包括由下而上依次设置的衬底、AlN成核层、AlGaN渐变层或AlN/GaN超晶格缓冲层、GaN:C高阻层、GaN沟道层、AlN隔离层、非掺杂Al0.24Ga0.76N势垒层和帽层,还包括设置在帽层上的源极、栅极和漏极;所述栅极由导电凝胶制成。本发明的GaN基HEMT传感器中的栅极由导电凝胶制成,和传统的GaN基HEMT传感器相比,灵敏度更高、成本更低、制备工艺更加简单,可以极大地扩展HEMT传感器的应用领域。

Description

一种基于导电凝胶的GaN基HEMT传感器及其制备方法
技术领域
本发明涉及一种基于导电凝胶的GaN基HEMT传感器及其制备方法,属于半导体器件技术领域。
背景技术
传感器技术是现代科学发展的基础技术,而半导体材料是传感器中的关键材料。随着科技的高速发展,人们对半导体器件的性能要求也越来越高。GaN基材料是宽禁带半导体材料的典型代表,具有抗高温、抗辐射、耐腐蚀、耐压、禁带宽度大、高饱和电子迁移率、临界击穿场强高、热导率高、稳定性好等特点,可以用于制作高温、高频及大功率电子器件。
高电子迁移率晶体管(HEMT)是场效应晶体管的一种,其使用两种具有不同能隙的材料形成异质结,为载流子提供沟道。GaN基HEMT传感器是常见的GaN传感器之一,具有AlGaN/GaN异质结结构,该异质结的导带偏移大,且具有很强的自发极化和压电极化效应,即使不进行掺杂也可以形成高浓度的二维电子气(2DEG)。在GaN基HEMT传感器中,2DEG的浓度除了会受到栅极电压的控制外,还易受到表面态的影响而改变,所以GaN基HEMT传感器具有灵敏度高、响应速度快、适用于恶劣环境等优点,近些年来成为了探测器领域的研究热点。
HEMT传感器按照栅极来划分主要有无栅、金属栅、生物分子膜等。无栅是指直接使用GaN帽层作为栅极,同过对栅极区域进行表面处理实现对特定分子、离子进行反应从而影响导电沟道,表面处理的步骤复杂,反应时间漫长;金属栅是指在帽层上镀合金作为栅极,主要使用Au、Pt、Pd等贵重金属以及具有催化作用的金属材料,不仅成本高昂,而且在潮湿环境或水存在时,敏感度会显著下降,此外,某些金属在200℃以上的环境中相位会发生变化,导致器件性能严重受损;生物分子膜是指在金属或氧化物门电极的基础上固定识别原件制成生物分子膜门电极,不仅器件的制备、封装以及测试难度高,同时制作成本高。
因此,亟需开发一种灵敏度高、制备简单、成本低廉的GaN基HEMT传感器。
发明内容
本发明的目的之一在于提供一种基于导电凝胶的GaN基HEMT传感器。
本发明的另一目的在于提供一种基于导电凝胶的GaN基HEMT传感器的制备方法。
本发明所采取的技术方案是:
一种基于导电凝胶的GaN基HEMT传感器,包括由下而上依次设置的衬底、AlN成核层、AlGaN渐变层或AlN/GaN超晶格缓冲层、GaN:C高阻层、GaN沟道层、AlN隔离层、非掺杂Al0.24Ga0.76N势垒层和帽层,还包括设置在帽层上的源极、栅极和漏极;所述栅极由导电凝胶制成。
优选的,所述衬底的材质为Si、SiC、GaN、蓝宝石或金刚石。
优选的,所述AlN/GaN超晶格缓冲层中Al的梯度变化范围为0~100%。
优选的,所述GaN:C高阻层中C的掺杂浓度为5×1017~1.2×1019cm-3
优选的,所述帽层的材质为GaN、AlN或Si3N4
优选的,所述导电凝胶由单体、胶凝剂、电解质、引发剂、交联剂和溶剂制备而成。
优选的,所述单体、胶凝剂的质量比为(1.3~16):1。
进一步优选的,所述单体、胶凝剂的质量比为(3~7):1。
优选的,所述单体为丙烯酰胺、乙烯胺、苯胺中的至少一种。
优选的,所述胶凝剂为卡拉胶、明胶、海藻酸盐中的至少一种。
优选的,所述电解质为NaCl、KCl、CaCl2中至少一种。
优选的,所述的引发剂为光引发剂或热引发剂。
优选的,所述光引发剂为2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮。
优选的,所述热引发剂为过硫酸铵、过硫酸钾中的至少一种。
优选的,所述交联剂为N,N-亚甲基双丙烯酰胺。
优选的,所述溶剂为水、乙二醇、甘油中的至少一种。
优选的,所述AlN成核层的厚度为0.1~0.3μm。
优选的,所述AlGaN渐变层的厚度为1~2μm。
优选的,所述AlN/GaN超晶格缓冲层的厚度为1~2μm。
优选的,所述GaN:C高阻层的厚度为0.1~5μm。
优选的,所述GaN沟道层的厚度为0.4~0.6μm。
优选的,所述AlN隔离层的厚度为1~2nm。
优选的,所述非掺杂Al0.24Ga0.76N势垒层的厚度为20~30nm。
优选的,所述本征GaN帽层的厚度为1~3nm。
上述基于导电凝胶的GaN基HEMT传感器的制备方法,包括以下步骤:
1)制备衬底,并对衬底进行清洗;
2)通过化学气相沉积技术在衬底上依次外延生长AlN成核层、AlGaN渐变层或AlN/GaN超晶格缓冲层、GaN:C高阻层、GaN沟道层、AlN隔离层、非掺杂Al0.24Ga0.76N势垒层和帽层;
3)通过光刻技术在帽层上制作源极和漏极图形,并用电子束蒸镀的方法制作电极;
4)将导电凝胶涂覆在帽层上的栅极区域,固化作为栅极,得到基于导电凝胶的GaN基HEMT传感器。
本发明的有益效果是:本发明的GaN基HEMT传感器中的栅极由导电凝胶制成,和传统的GaN基HEMT传感器相比,灵敏度更高、成本更低、制备工艺更加简单,可以极大地扩展HEMT传感器的应用领域。
具体来说:
1)本发明的基于导电凝胶的GaN基HEMT传感器中的栅极由导电凝胶制成,导电凝胶具有比表面积大、导电率高、制备简单等优点,且可以根据传感环境以及工作需求通过调节导电凝胶的组分和合成条件实现对导电凝胶机械性能及化学物理性质的灵活调控,配合HEMT传感器本身的优势,可以极大的拓展HEMT的应用领域;
2)本发明的基于导电凝胶的GaN基HEMT传感器中的栅极由导电凝胶制成,利用二维电子气的敏感性可以更准确地对探测物质进行反应,能够提高灵敏度;
3)本发明的基于导电凝胶的GaN基HEMT传感器中的栅极由导电凝胶制成,导电凝胶的材料来源广泛,价格比一般的HMET栅极材料(例如:Pt、Au、高分子生物材料等)低,且合成方法简单,能够极大的简化器件的制备流程;
4)本发明的基于导电凝胶的GaN基HEMT传感器的迁移率高、增益高、噪声低、耐高温、击穿场强高,可对NO2、NO、H2等气体以及水分进行探测,且由于导电凝胶生物化学性能稳定、无毒、吸附细胞退化效应低,可应用于生物探测领域,此外,还可以根据特定应用对导电凝胶进行修饰,实现对其形态、强度、生物可降解性等的调整。
附图说明
图1为本发明的基于导电凝胶的GaN基HEMT传感器的结构示意图。
附图标示说明:101、衬底;102、AlN成核层;103、AlGaN渐变层或AlN/GaN超晶格缓冲层;104、GaN:C高阻层;105、GaN沟道层;106、AlN隔离层;107、非掺杂Al0.24Ga0.76N势垒层;108、帽层;109、源极;110、栅极;111、漏极。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种基于导电凝胶的GaN基HEMT传感器,其制备方法包括以下步骤:
1)选取厚度950μm的Si片作为衬底,将衬底放入丙酮中浸泡3min,再更换丙酮进行第2次浸泡,共浸泡3次,再将衬底放入异丙醇中浸泡2min,浸泡的同时进行超声,再更换异丙醇进行第2次浸泡,再用去离子水对衬底进行清洗,用氮气吹干,再将衬底放入浓硫酸-双氧水混合溶液(浓硫酸和双氧水的体积比为3:1)中浸泡2min,再用去离子水对衬底进行清洗,用氮气吹干;
2)通过化学气相沉积技术在衬底上依次外延生长AlN成核层(厚度0.2μm)、AlGaN渐变层(厚度1μm)、GaN:C高阻层(厚度2μm,C的掺杂浓度为6×1018cm-3)、GaN沟道层(厚度0.5μm)、AlN隔离层(厚度1nm)、非掺杂Al0.24Ga0.76N势垒层(厚度20nm)和GaN帽层(厚度2nm);
3)通过光刻技术在GaN帽层上制作源极和漏极图形,并用电子束蒸镀的方法制作电极,电极为Ti/Al/Ni/Au(20/130/50/100nm)的多层金属,再置于氮气氛围中850℃退火50s,形成欧姆接触;
4)按照质量比5:1:0.06:0.025:0.003:27.3称取丙烯酰胺、卡拉胶、NaCl、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮、N,N-亚甲基双丙烯酰胺和去离子水,再将所有原料混合,80℃搅拌4h,得到混合溶液,通过匀胶机将混合溶液涂覆在GaN帽层上的栅极区域,再将器件置于紫外光下辐照固化1h,得到基于导电凝胶的GaN基HEMT传感器(结构示意图如图1所示)。
实施例2:
一种基于导电凝胶的GaN基HEMT传感器,其制备方法包括以下步骤:
1)选取厚度800μm的GaN片作为衬底,将衬底放入丙酮中浸泡3min,再更换丙酮进行第2次浸泡,共浸泡3次,再将衬底放入异丙醇中浸泡2min,浸泡的同时进行超声,再更换异丙醇进行第2次浸泡,再用去离子水对衬底进行清洗,用氮气吹干,再将衬底放入浓硫酸-双氧水混合溶液(浓硫酸和双氧水的体积比为3:1)中浸泡2min,再用去离子水对衬底进行清洗,用氮气吹干;
2)通过化学气相沉积技术在衬底上依次外延生长AlN成核层(厚度0.3μm)、AlGaN渐变层(厚度1μm)、GaN:C高阻层(厚度3μm,C的掺杂浓度为1×1019cm-3)、GaN沟道层(厚度0.5μm)、AlN隔离层(厚度1nm)、非掺杂Al0.24Ga0.76N势垒层(厚度20nm)和GaN帽层(厚度2nm);
3)通过光刻技术在GaN帽层上制作源极和漏极图形,并用电子束蒸镀的方法制作电极,电极为Ti/Al/Ni/Au(20/130/50/100nm)的多层金属,再置于氮气氛围中850℃退火50s,形成欧姆接触;
4)按照质量比4:1:0.05:0.025:0.003:25称取丙烯酰胺、明胶、KCl、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮、N,N-亚甲基双丙烯酰胺和去离子水,再将所有原料混合,80℃搅拌4h,得到混合溶液,通过匀胶机将混合溶液涂覆在GaN帽层上的栅极区域,再将器件置于紫外光下辐照固化1h,得到基于导电凝胶的GaN基HEMT传感器(结构示意图如图1所示)。
实施例3:
一种基于导电凝胶的GaN基HEMT传感器,其制备方法包括以下步骤:
1)选取厚度900μm的Si片作为衬底,将衬底放入丙酮中浸泡3min,再更换丙酮进行第2次浸泡,共浸泡3次,再将衬底放入异丙醇中浸泡2min,浸泡的同时进行超声,再更换异丙醇进行第2次浸泡,再用去离子水对衬底进行清洗,用氮气吹干,再将衬底放入浓硫酸-双氧水混合溶液(浓硫酸和双氧水的体积比为3:1)中浸泡2min,再用去离子水对衬底进行清洗,用氮气吹干;
2)通过化学气相沉积技术在衬底上依次外延生长AlN成核层(厚度0.2μm)、AlN/GaN超晶格缓冲层(厚度1μm,Al的梯度变化范围为0~100%)、GaN:C高阻层(厚度2μm,C的掺杂浓度为6×1018cm-3)、GaN沟道层(厚度0.5μm)、AlN隔离层(厚度1nm)、非掺杂Al0.24Ga0.76N势垒层(厚度20nm)和GaN帽层(厚度2nm);
3)通过光刻技术在GaN帽层上制作源极和漏极图形,并用电子束蒸镀的方法制作电极,电极为Ti/Al/Ni/Au(20/130/50/100nm)的多层金属,再置于氮气氛围中850℃退火50s,形成欧姆接触;
4)按照质量比5:1:0.06:0.025:0.003:27.3称取丙烯酰胺、卡拉胶、KCl、过硫酸铵、N,N-亚甲基双丙烯酰胺和去离子水,将除过硫酸铵以外的所有原料混合,80℃搅拌4h,再加入过硫酸铵,搅拌5min,得到混合溶液,通过匀胶机将混合溶液涂覆在GaN帽层上的栅极区域,再将器件置于烘箱中95℃加热固化1h,得到基于导电凝胶的GaN基HEMT传感器(结构示意图如图1所示)。
实施例1~3的基于导电凝胶的GaN基HEMT传感器可以实现对NO2、NO等有害气体以及水分的探测,且导电凝胶本身易制备、可替换,能够适用在潮湿幽暗的环境中进行探测,进而可以延长器件的使用寿命。
探测原理:
导电凝胶制成的栅极的聚合物网络中含有可以与NO2、NO、水分子等结合的功能基团(例如:-NH2、-OH等),且其具有的多孔结构有利于气体的吸收。导电凝胶吸附待测气体与功能基团结合,阻碍导电凝胶内导电离子的自由移动,当气体浓度降低,气体脱离导电凝胶,对导电离子的阻碍减小;环境湿度增加时,水分子可以与亲水基团形成氢键吸附并溶解在导电凝胶中,影响到聚合物的浓度,阻碍导电离子的迁移;导电离子的分布受到待测气体的影响,使得HEMT表面的电荷分布发生变化从而引起二维电子气浓度的变化,进而导致源电流和漏电流发生变化,实现对气体以及水分的探测。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种基于导电凝胶的GaN基HEMT传感器,其特征在于:包括由下而上依次设置的衬底、AlN成核层、AlGaN渐变层或AlN/GaN超晶格缓冲层、GaN:C高阻层、GaN沟道层、AlN隔离层、非掺杂Al0.24Ga0.76N势垒层和帽层,还包括设置在帽层上的源极、栅极和漏极;所述栅极由导电凝胶制成;所述导电凝胶由单体、胶凝剂、电解质、引发剂、交联剂和溶剂制备而成,所述单体、胶凝剂的质量比为(1.3~16):1;所述单体为丙烯酰胺、乙烯胺、苯胺中的至少一种;所述胶凝剂为卡拉胶、明胶、海藻酸盐中的至少一种;所述电解质为NaCl、KCl、CaCl2中至少一种。
2.根据权利要求1所述的基于导电凝胶的GaN基HEMT传感器,其特征在于:所述衬底的材质为Si、SiC、GaN、蓝宝石或金刚石。
3.根据权利要求1所述的基于导电凝胶的GaN基HEMT传感器,其特征在于:所述AlN/GaN超晶格缓冲层中Al的梯度变化范围为0~100%。
4.根据权利要求1~3中任意一项所述的基于导电凝胶的GaN基HEMT传感器,其特征在于:所述GaN:C高阻层中C的掺杂浓度为5×1017~1.2×1019cm-3
5.根据权利要求1~3中任意一项所述的基于导电凝胶的GaN基HEMT传感器,其特征在于:所述帽层的材质为GaN、AlN或Si3N4
6.根据权利要求1~3中任意一项所述的基于导电凝胶的GaN基HEMT传感器,其特征在于:
所述AlN成核层的厚度为0.1~0.3μm;
所述AlGaN渐变层的厚度为1~2μm;
所述AlN/GaN超晶格缓冲层的厚度为1~2μm;
所述GaN:C高阻层的厚度为0.1~5μm;
所述GaN沟道层的厚度为0.4~0.6μm;
所述AlN隔离层的厚度为1~2nm;
所述非掺杂Al0.24Ga0.76N势垒层的厚度为20~30nm;
所述帽层的厚度为1~3nm。
7.权利要求1~6中任意一项所述的基于导电凝胶的GaN基HEMT传感器的制备方法,其特征在于:包括以下步骤:
1)制备衬底,并对衬底进行清洗;
2)通过化学气相沉积技术在衬底上依次外延生长AlN成核层、AlGaN渐变层或AlN/GaN超晶格缓冲层、GaN:C高阻层、GaN沟道层、AlN隔离层、非掺杂Al0.24Ga0.76N势垒层和帽层;
3)通过光刻技术在帽层上制作源极和漏极图形,并用电子束蒸镀的方法制作电极;
4)将导电凝胶涂覆在帽层上的栅极区域,固化作为栅极,得到基于导电凝胶的GaN基HEMT传感器。
CN202010547831.6A 2020-06-16 2020-06-16 一种基于导电凝胶的GaN基HEMT传感器及其制备方法 Active CN111933706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010547831.6A CN111933706B (zh) 2020-06-16 2020-06-16 一种基于导电凝胶的GaN基HEMT传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010547831.6A CN111933706B (zh) 2020-06-16 2020-06-16 一种基于导电凝胶的GaN基HEMT传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN111933706A CN111933706A (zh) 2020-11-13
CN111933706B true CN111933706B (zh) 2022-07-26

Family

ID=73316223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010547831.6A Active CN111933706B (zh) 2020-06-16 2020-06-16 一种基于导电凝胶的GaN基HEMT传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN111933706B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233972B (zh) * 2020-12-17 2021-03-02 中电化合物半导体有限公司 一种氮化镓基外延结构及其制备方法
TWI773090B (zh) * 2021-01-18 2022-08-01 合晶科技股份有限公司 具有改良的崩潰電壓之晶片及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842273A (en) * 1996-01-26 1998-12-01 Hewlett-Packard Company Method of forming electrical interconnects using isotropic conductive adhesives and connections formed thereby
CN103928525A (zh) * 2014-04-25 2014-07-16 中国科学院微电子研究所 场效应晶体管液体传感器及其制备方法
CN205193005U (zh) * 2015-11-26 2016-04-27 北京代尔夫特电子科技有限公司 一种氮化镓传感器和多传感器系统
JP2017122737A (ja) * 2017-03-13 2017-07-13 国立大学法人信州大学 高分子ゲルを用いたセンサ
CN107064260A (zh) * 2017-04-28 2017-08-18 中国科学院半导体研究所 用于肿瘤标志物检测的核酸适配子传感器及其制备方法
CN109414175A (zh) * 2016-03-10 2019-03-01 艾皮乔尼克控股有限公司 用于生理参数的非侵入式监测的微电子传感器
CN110715969A (zh) * 2019-10-18 2020-01-21 广东省半导体产业技术研究院 一种生物传感器及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880558A (zh) * 2014-02-28 2015-09-02 中国科学院半导体研究所 InP基HEMT肿瘤标志物传感器及制作方法
JP2016217929A (ja) * 2015-05-22 2016-12-22 セイコーエプソン株式会社 センサー用ゲルおよびセンサー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842273A (en) * 1996-01-26 1998-12-01 Hewlett-Packard Company Method of forming electrical interconnects using isotropic conductive adhesives and connections formed thereby
CN103928525A (zh) * 2014-04-25 2014-07-16 中国科学院微电子研究所 场效应晶体管液体传感器及其制备方法
CN205193005U (zh) * 2015-11-26 2016-04-27 北京代尔夫特电子科技有限公司 一种氮化镓传感器和多传感器系统
CN109414175A (zh) * 2016-03-10 2019-03-01 艾皮乔尼克控股有限公司 用于生理参数的非侵入式监测的微电子传感器
JP2017122737A (ja) * 2017-03-13 2017-07-13 国立大学法人信州大学 高分子ゲルを用いたセンサ
CN107064260A (zh) * 2017-04-28 2017-08-18 中国科学院半导体研究所 用于肿瘤标志物检测的核酸适配子传感器及其制备方法
CN110715969A (zh) * 2019-10-18 2020-01-21 广东省半导体产业技术研究院 一种生物传感器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究;李加东等;《物理学报》;20140408;第63卷(第7期);070204-1页至070204-6页 *

Also Published As

Publication number Publication date
CN111933706A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN111933706B (zh) 一种基于导电凝胶的GaN基HEMT传感器及其制备方法
US9157888B2 (en) Field effect transistor for chemical sensing using graphene, chemical sensor using the transistor and method for producing the transistor
WO2017088560A1 (zh) 传感器、制备方法和多传感器系统
Bishop et al. Experimental study and device design of NO, NO 2, and NH 3 gas detection for a wide dynamic and large temperature range using Pt/AlGaN/GaN HEMT
US10488364B2 (en) Thermally stable ammonia gas sensor using ZnO-functionalized AlGaN/GaN heterostructure transistor
WO2006085611A1 (ja) n型トランジスタ、n型トランジスタセンサ及びn型トランジスタ用チャネルの製造方法、並びにn型半導体的な特性を示すナノチューブ状構造体の製造方法
Varghese et al. Linear and circular AlGaN/AlN/GaN MOS-HEMT-based pH sensor on Si substrate: A comparative analysis
CN103760336A (zh) 一种线阵ZnO纳米线异质结LED生物传感器及制备方法
CN112525954A (zh) 一种多孔氮化镓基室温气体传感器的制备方法
CN112345615A (zh) 一种氮化镓基高电子迁移率晶体管的氢气传感器
Gao et al. Towards understanding the interaction between hydrogen poisoning and bias stress in AlGaN/GaN MIS-HEMTs with SiNx gate dielectric
Porwal et al. Fabrication and ph sensing characteristics measurement of back gate zno thin film planar fet
CN110470713B (zh) 一种氮化镓基高电子迁移率晶体管的葡萄糖传感器
Zhao et al. Recent Progress in Ohmic/Schottky‐Contacted ZnO Nanowire Sensors
Jha et al. Integrated nanorods and heterostructure field effect transistors for gas sensing
Hu et al. Self-assembled nanotube field-effect transistors for label-free protein biosensors
CN109540988A (zh) 基于叉指凹槽结构的无参比电极GaN基pH传感器及其制备方法
Sun et al. Enhanced Sensitivity Pt/AlGaN/GaN Heterostructure NO₂ Sensor Using a Two-Step Gate Recess Technique
Liu et al. Ammonia sensing performance of a GaN-based semiconductor diode with a solution-processed Pt/GaO x Schottky contact
Yang et al. Enhanced response speed of ZnO nanowire photodetector by coating with photoresist
KR102287480B1 (ko) 질화갈륨 기반의 히터 일체형 반도체 가스센서 및 그 제조방법
Zhang et al. Extended gate field effect transistor using GaN/Si hybrids nanostructures for pH sensor
Chahdi et al. Sensors based on AlGaN/GaN HEMT for fast H 2 and O 2 detection and measurement at high temperature
Casanova-Chafer et al. Graphene-based gas sensors, working principles and sensing parameters
Masoumi et al. Fabrication of field-effect transistor based on RGO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant