CN103928525A - 场效应晶体管液体传感器及其制备方法 - Google Patents

场效应晶体管液体传感器及其制备方法 Download PDF

Info

Publication number
CN103928525A
CN103928525A CN201410169651.3A CN201410169651A CN103928525A CN 103928525 A CN103928525 A CN 103928525A CN 201410169651 A CN201410169651 A CN 201410169651A CN 103928525 A CN103928525 A CN 103928525A
Authority
CN
China
Prior art keywords
electrode
heterojunction
layer
substrate
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410169651.3A
Other languages
English (en)
Inventor
罗卫军
陈晓娟
袁婷婷
庞磊
刘新宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201410169651.3A priority Critical patent/CN103928525A/zh
Publication of CN103928525A publication Critical patent/CN103928525A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Abstract

本发明提供了一种场效应晶体管液体传感器,该传感器为单栅指场效应晶体管结构,包括:衬底;衬底上的异质结,所述异质结为由GaN和AlGaN材料形成;所述异质结上的源电极、漏电极以及栅电极,栅电极为肖特基电极,源电极、漏电极为欧姆接触电极。本发明采用由GaN和AlGaN材料形成的异质结,可以形成高浓度、高迁移率的二维电子气,由此形成的传感器具有高化学稳定性和高电子迁移率,并易于集成。

Description

场效应晶体管液体传感器及其制备方法
技术领域
本发明涉及半导体器件及传感器领域,尤其涉及一种场效应晶体管液体传感器及其制备方法。
背景技术
液体传感器用于液体的检测和分析,在各个领域有着广泛的应用,如在军事医学中,在苛刻的战争条件下进行快速血液分析;在工农业生产中,可对高分子聚合物、pH值、蛋白分子和某种特定官能团等进行检测与分析;在环境保护中,可对水环境中的有害离子种类和浓度进行检测。
随着半导体和微电子技术的发展,半导体器件的液体传感器成为研究的热点。目前常采用的为Si、GaAS等半导体材料的器件,但其在化学稳定性、极化速度等方面都有待提高,以满足更多领域的性能要求。
发明内容
本发明旨在解决上述问题之一,提供了一种场效应晶体管液体传感器及其制备方法,具有高化学稳定性和高电子迁移率,并易于集成。
为实现上述目的,本发明实施例提供了如下技术方案:
一种场效应晶体管液体传感器,为单栅指场效应晶体管结构,包括:
衬底;
衬底上的异质结,所述异质结为由GaN和AlGaN材料形成;
所述异质结上的源电极、漏电极以及栅电极,栅电极为肖特基电极,源电极、漏电极为欧姆接触电极。
可选的,所述异质结包括GaN层、AlGaN层和他们之间的AlN的插入层。
可选的,所述GaN层、AlN的插入层和AlGaN层的厚度分别为3um、1nm、23nm。
可选的,所述AlGaN层中Al组分为25%。
此外,本发明还提供了上述传感器的制备方法,该传感器为单栅指场效应晶体管结构,包括:
提供衬底;
在所述衬底上形成异质结,所述异质结为由GaN和AlGaN材料形成;
在所述异质结上形成源电极、漏电极以及栅电极,栅电极为肖特基电极,源电极、漏电极为欧姆接触电极。
可选的,所述衬底为SiC衬底,采用金属有机物气相外延的方法在SiC衬底上依次外延生长GaN层、AlN的插入层和AlGaN层,以形成异质结。
可选的,所述GaN层、AlN的插入层和AlGaN层的厚度分别为3um、1nm、23nm。
可选的,所述AlGaN层中Al组分为25%。
本发明实施例提供的场效应晶体管液体传感器,采用由GaN和AlGaN材料形成的异质结,可以形成高浓度、高迁移率的二维电子气,由此形成的传感器具有高化学稳定性和高电子迁移率,并易于集成。
附图说明
图1为根据本发明实施例的场效应晶体管液体传感器的俯视图;
图2为根据本发明实施例的场效应晶体管液体传感器的截面示意图;
图3为根据本发明实施例的场效应晶体管液体传感器在乙醇和丙酮溶液中的响应曲线示意图;
图4为根据本发明实施例的场效应晶体管液体传感器在不同浓度的丙酮溶液中的时间响应曲线示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以下实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内,因此本发明不受下面公开的具体实施例的限制。
本发明提出了一种由GaN和AlGaN材料形成的异质结的液体传感器,参考图1和图2所示,该传感器采用单栅指场效应晶体管结构,包括:
衬底108;
衬底上的异质结(105,106,107),所述异质结为由GaN和AlGaN材料形成;
所述异质结上的源电极101、漏电极104以及栅电极102。
在本发明中,采用由GaN和AlGaN材料形成的异质结,可以形成高浓度、高迁移率的二维电子气,由此形成的传感器具有高化学稳定性和高电子迁移率,并易于集成。
为了更好的理解本发明,如图2所示,以下将结合制备方法对具体的液体传感器的实施例进行详细的描述。
首先,提供衬底108。
所述衬底为半导体材料衬底,可以根据需要选择合适的材料的衬底。在本实施例中,所述衬底为SiC衬底。
而后,在衬底上形成异质结,所述异质结为由GaN和AlGaN材料形成。
在本发明中,所述异质结为由GaN和AlGaN材料形成的异质结,该两种材料形成的异质结可以形成高浓度和高迁移率的二维电子气。
在本实施例中,采用金属有机气相外延(MOCVD)的方法在SiC衬底上依次外延GaN层107、AlN的插入层106和AlGaN层105,从而形成异质结,其厚度可以分别为3um、1nm、23nm,其中,AlN的插入层是为了促进二维电子气激发,AlGaN层Al组分为25%,即AlGaN层为Al0.25Ga0.75N。
而后,在所述异质结上形成源电极101、漏电极104以及栅电极102。
在本实施例中,所述栅电极102为肖特基电极,源电极101、漏电极104为欧姆接触电极。具体地,源电极101和漏电极104可以采用电子束蒸发工艺依次淀积为Ti、Al、Ti、Au的材料,厚度分别为20nm、200nm、20nm和40nm,并在氮气保护下快速退火来形成,退火的温度为870℃,时间为50s;栅电极102可以采用电子束蒸发工艺依次淀积Ni、Au的材料来形成,厚度分别为40nm、300nm。
最后,形成钝化层103。
在本实施例中,可以采用等离子体增强化学气相沉积(PECVD)的方法生长SiNx的钝化层,在电极之间形成钝化层,以保护器件的表面。
至此,形成了本实施例的传感器,该传感器为单栅指的场效应晶体管结构,如图1所示,源极101为T型,漏极和栅极分别位于源极T型的竖向的一字部的两侧,栅极102为单指型,其指部朝源极T型的竖向的一字部的端部延伸,漏极包括矩形部以及朝源极T型的竖向的一字部的端部延伸的带状部。在本实施例中,栅长为0.8um,栅宽为100um。
图3为本发明实施例的AlGaN/GaN单栅指的场效应晶体管液体传感器在乙醇和丙酮溶液中的响应曲线示意图。如图3所示,AlGaN/GaN场效应管型液体传感器在丙酮和乙醇溶液中源漏电流Ids均出现明显减小的现象。在Vgs=-+1VVds=-20V的偏置下,传感器在空气、乙醇和丙酮中的最大源漏电流分别为58.073,56.31和53.239mA,即该液体传感器在乙醇和丙酮溶液中分别表现出3.04%和8.44%的电流变化量。不同的电流变化量是由于待测溶液本身的极化偶极矩大小不同,对AlGaN/GaN液体传感器表面电势的改变也不同,使得传感器的电流响应不同。AlGaN/GaN场效应晶体管型液体传感器可以根据待测极性溶液的不同特性,精确地给出电流响应曲线,从而可以有效地进行极性分子溶液的辨别和检测。
图4为本发明实施例的AlGaN/GaN场效应晶体管的液体传感器在不同浓度丙酮溶液中的电流响应曲线示意图。由图4可见,AlGaN/GaN场效应管型液体传感器在Vgs=-+1V Vds=-20V的偏置下(300K),对不同浓度丙酮溶液做出不同响应,最大源漏电流Ids分别为40%浓度下56.98mA,80%浓度下54.086mA100%浓度下53.239mA,和空气中的最大源漏电流相比,改变量依次为1.9%,6.9%和8.3%。这说明该液体传感器具有非常好的浓度灵敏度,这是是因为AlGaN/GaN异质结由于极化效应所形成的二维电子气(2DEG),该2DEG具有高浓度、高迁移率的特性,能够迅速对传感器表面不同浓度极性溶液,所导致的不同表面电势的变化做出响应,从而改变其电流的大小。
传统的Si、GaAs等半导体材料研制而成的传感器,化学稳定性较差、响应时间长,而且不能工作在高温、辐射等恶劣环境中,限制了半导体传感器的发展和应用。
本发明的AlGaN/GaN高电子迁移率场效应管液体传感器具有的高化学稳定性、高极化2DEG浓度、无毒环保、耐高温、便于系统集成等优点,使其非常适用于液体传感器的研制,能够有效弥补传统的半导体传感器的缺点和不足,在国家安全、环境保护、医疗卫生、食品安全等领域都具有广泛的应用前景。
本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

1.一种场效应晶体管液体传感器,其特征在于,该传感器为单栅指场效应晶体管结构,包括:
衬底;
衬底上的异质结,所述异质结为由GaN和AlGaN材料形成;
所述异质结上的源电极、漏电极以及栅电极,栅电极为肖特基电极,源电极、漏电极为欧姆接触电极。
2.根据权利要求1所述的传感器,其特征在于,所述异质结包括GaN层、AlGaN层和他们之间的AlN的插入层。
3.根据权利要求2所述的传感器,其特征在于,所述GaN层、AlN的插入层和AlGaN层的厚度分别为3um、1nm、23nm。
4.根据权利要求3所述的传感器,其特征在于,所述AlGaN层中Al组分为25%。
5.一种场效应晶体管液体传感器的制备方法,其特征在于,该传感器为单栅指场效应晶体管结构,包括步骤:
提供衬底;
在所述衬底上形成异质结,所述异质结为由GaN和AlGaN材料形成;
在所述异质结上形成源电极、漏电极以及栅电极,栅电极为肖特基电极,源电极、漏电极为欧姆接触电极。
6.根据权利要求5所述的制备方法,其特征在于,所述衬底为SiC衬底,采用金属有机物气相外延的方法在SiC衬底上依次外延生长GaN层、AlN的插入层和AlGaN层,以形成异质结。
7.根据权利要求6所述的制备方法,其特征在于,所述GaN层、AlN的插入层和AlGaN层的厚度分别为3um、1nm、23nm。
8.根据权利要求7所述的制备方法,其特征在于,所述AlGaN层中Al组分为25%。
CN201410169651.3A 2014-04-25 2014-04-25 场效应晶体管液体传感器及其制备方法 Pending CN103928525A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410169651.3A CN103928525A (zh) 2014-04-25 2014-04-25 场效应晶体管液体传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410169651.3A CN103928525A (zh) 2014-04-25 2014-04-25 场效应晶体管液体传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN103928525A true CN103928525A (zh) 2014-07-16

Family

ID=51146685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410169651.3A Pending CN103928525A (zh) 2014-04-25 2014-04-25 场效应晶体管液体传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN103928525A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645323A (zh) * 2016-11-30 2017-05-10 南京大学 基于氧化物异质结的极性溶剂化学传感器及制备方法
CN107306123A (zh) * 2016-04-20 2017-10-31 中国科学院微电子研究所 数字移相器
CN107407653A (zh) * 2014-11-07 2017-11-28 蛋白质感官公司 用于检测分析物的设备、系统和方法
CN110023536A (zh) * 2016-12-09 2019-07-16 应用材料公司 经由热丝化学气相沉积的沉积用于传感器应用的聚合物层的方法
CN111933706A (zh) * 2020-06-16 2020-11-13 华南理工大学 一种基于导电凝胶的GaN基HEMT传感器及其制备方法
CN112345614A (zh) * 2019-08-08 2021-02-09 中国科学院微电子研究所 基于氮化镓基增强型器件的探测器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118823A1 (en) * 2004-12-06 2006-06-08 Primit Parikh Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
US20120025188A1 (en) * 2010-07-27 2012-02-02 Sumitomo Electric Industries, Ltd. Semiconductor device integrated with monitoring device in center thereof
CN102830137A (zh) * 2012-08-31 2012-12-19 中国科学院微电子研究所 氮化镓基液体传感器及其制备方法
JP5127721B2 (ja) * 2006-11-02 2013-01-23 株式会社東芝 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118823A1 (en) * 2004-12-06 2006-06-08 Primit Parikh Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
JP5127721B2 (ja) * 2006-11-02 2013-01-23 株式会社東芝 半導体装置
US20120025188A1 (en) * 2010-07-27 2012-02-02 Sumitomo Electric Industries, Ltd. Semiconductor device integrated with monitoring device in center thereof
CN102830137A (zh) * 2012-08-31 2012-12-19 中国科学院微电子研究所 氮化镓基液体传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKUYA KOKAWA ET AL.: "Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure", 《JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B MICROELECTRONICS AND NANOMETER STRUCTURES》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407653A (zh) * 2014-11-07 2017-11-28 蛋白质感官公司 用于检测分析物的设备、系统和方法
CN107306123A (zh) * 2016-04-20 2017-10-31 中国科学院微电子研究所 数字移相器
CN106645323A (zh) * 2016-11-30 2017-05-10 南京大学 基于氧化物异质结的极性溶剂化学传感器及制备方法
CN110023536A (zh) * 2016-12-09 2019-07-16 应用材料公司 经由热丝化学气相沉积的沉积用于传感器应用的聚合物层的方法
CN112345614A (zh) * 2019-08-08 2021-02-09 中国科学院微电子研究所 基于氮化镓基增强型器件的探测器及其制作方法
CN111933706A (zh) * 2020-06-16 2020-11-13 华南理工大学 一种基于导电凝胶的GaN基HEMT传感器及其制备方法
CN111933706B (zh) * 2020-06-16 2022-07-26 华南理工大学 一种基于导电凝胶的GaN基HEMT传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN103928525A (zh) 场效应晶体管液体传感器及其制备方法
CN105424780B (zh) 一种氮化镓传感器、制备方法和多传感器系统
Dong et al. AlGaN/GaN heterostructure pH sensor with multi-sensing segments
CN102830137B (zh) 氮化镓基液体传感器及其制备方法
Podolska et al. Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices
US9207203B2 (en) Two-dimensional electron gas sensor and methods for making and using the sensor
CN109540987A (zh) 基于凹槽结构的无参比电极GaN基pH传感器及其制备方法
CN101521225A (zh) 异质结场效应晶体管
Parish et al. Role of GaN cap layer for reference electrode free AlGaN/GaN-based pH sensors
US8008691B2 (en) Ion sensitive field effect transistor and production method thereof
CN104897762A (zh) GaN基生物传感器及其制作方法
US9291594B2 (en) CO2 sensor based on a diamond field effect transistor
Podolska et al. Method to predict and optimize charge sensitivity of ungated AlGaN/GaN HEMT-based ion sensor without use of reference electrode
CN110459471B (zh) 一种双栅结构GaN基pH传感器的制备方法
CN104101626B (zh) 利用石墨烯修饰高电子迁移率晶体管测量dna杂化方法
Jha et al. Integrated nanorods and heterostructure field effect transistors for gas sensing
CN205193005U (zh) 一种氮化镓传感器和多传感器系统
Jia et al. Ultrasensitive detection of phosphate using ion-imprinted polymer functionalized AlInN/GaN high electron mobility transistors
Pletschen et al. CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors
Mao et al. InAlN/AlN/GaN field-plated MIS-HEMTs with a plasma-enhanced chemical vapor deposition SiN gate dielectric
CN104897741A (zh) GaN基生物传感器及其制作方法
Buchheim et al. Photoreflectance studies of (Al) Ga-and N-face AlGaN/GaN heterostructures
Kanrar et al. Sensitivity Analysis of HEMT Biosensor for Variation in Al x Ga 1-x N Layer Alloy Composition, Bulk Trap and Doping
Maeda et al. Surface dependence of pH sensors on AlGaN/GaN heterostructure
Ketteniss et al. Quaternary nitride enhancement mode HFET with 260 mS/mm and a threshold voltage of+ 0.5 V

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140716

RJ01 Rejection of invention patent application after publication