CN112337424B - 一种Bi5O7I/煅烧水滑石复合材料及其制备方法 - Google Patents

一种Bi5O7I/煅烧水滑石复合材料及其制备方法 Download PDF

Info

Publication number
CN112337424B
CN112337424B CN202011054683.0A CN202011054683A CN112337424B CN 112337424 B CN112337424 B CN 112337424B CN 202011054683 A CN202011054683 A CN 202011054683A CN 112337424 B CN112337424 B CN 112337424B
Authority
CN
China
Prior art keywords
composite material
calcined hydrotalcite
solution
znalbi
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011054683.0A
Other languages
English (en)
Other versions
CN112337424A (zh
Inventor
张文涛
张继勇
张佩聪
黄艺
黄雪
王晓萌
许心茹
王特深
肖江国
于鑫淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202011054683.0A priority Critical patent/CN112337424B/zh
Publication of CN112337424A publication Critical patent/CN112337424A/zh
Application granted granted Critical
Publication of CN112337424B publication Critical patent/CN112337424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/027Compounds of F, Cl, Br, I
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Bi5O7I/煅烧水滑石复合材料及其制备方法,属于化学化工与功能材料技术领域。Bi5O7I/煅烧水滑石复合材料为在煅烧水滑石基底上负载Bi5O7I;其中煅烧水滑石为锌铝铋煅烧水滑石(ZnAlBi‑LDO),其中Zn:Al:Bi的摩尔比为3:1‑x:x,0.01≤x≤0.1;复合材料中,Bi5O7I与锌铝铋水滑石(ZnAlBi‑LDHs)的质量比为1:5~1:15。本发明借助水滑石的“记忆效应”,当混合金属氧化物在水溶液中恢复层状结构时,可大幅提高对Cr(Ⅵ)的吸附,同时负载的Bi5O7I会扩宽复合材料的光吸收范围,使复合材料在可见光下具有光催化降解Cr(Ⅵ)的效果,使Cr(Ⅵ)被还原为无毒的Cr(Ⅲ)。本发明制备的Bi5O7I/煅烧水滑石复合型吸附催化材料,可实现产品性能更高、工艺简单,彻底解决变价重金属环境污染问题。

Description

一种Bi5O7I/煅烧水滑石复合材料及其制备方法
技术领域
本发明涉及一种Bi5O7I/煅烧水滑石复合材料及其制备方法和应用,属于化学化工与功能材料技术领域。
背景技术
随着工业的迅速发展,环境污染情况加剧,水体污染成为急需解决的重要问题之一,而重金属铬(Cr)污染是其中一种比较严重的水体污染。在废水中重金属Cr主要以Cr(Ⅲ)和Cr(Ⅵ) 两种价态形式存在,其中Cr(Ⅵ)的毒性约为Cr(Ⅲ)的100倍,并且在自然条件下不易降解,非常容易被人体吸收,对人体健康有着严重的威胁。
目前对Cr(Ⅵ)常见的去除手段有膜分离法、吸附法、化学沉淀法、电解法、光催化降解法等。在这些方法中,吸附法由于其成本低廉、效率高等优点而被广泛使用。常用的吸附剂为层状双金属氢氧化物—水滑石,是一类结构类似于水镁石的二维阴离子黏土,其层板是由可调控的二价和三价金属阳离子构成,层间由可交换的阴离子来平衡电荷。水滑石由于其较大的比表面积、较好的离子交换性能和较好的热稳定性而备受关注。当水滑石在低温下煅烧后,会形成混合金属氧化物,由于水滑石的“记忆效应”,这种混合金属氧化物会在水溶液中恢复其层状结构,这种特性经常被用来吸附去除一些阴离子型污染物。
但吸附法也存在吸附剂吸附位点有限不能完全去除六价铬等缺点,并且吸附剂吸附后只是将Cr(Ⅵ)从水中转移,Cr(Ⅵ)仍然存在,后续仍需要对吸附剂进行一系列的处理,这使其也难以成为有效的去除Cr(Ⅵ)的方法。近年来,通过光催化将Cr(Ⅵ)还原为无毒的Cr(Ⅲ)的方法也引起了人们的广泛关注。Bi元素对可见光具有一定活性,近年来一系列的Bi基半导体在光催化领域引起了广泛关注,Bi3+的掺杂会在一定程度上提高光催化活性,降低电子空穴复合率。碘氧化铋是一种新型光催化剂,具有合适的禁带宽度,对可见光具有一定的响应,其中Bi5O7I型碘氧化铋由于其富铋富氧型结构,使其具有合适的导带位置,而引起了人们的广泛关注。为了提高光催化效果和Cr(Ⅵ)的去除率,研究者们选择将光催化剂负载在具有吸附效果的吸附剂载体上,以此来实现吸附和光催化共同去除Cr(Ⅵ)。
现有技术中报道了一些将光催化半导体与水滑石复合用于Cr(Ⅵ)去除的材料,例如,公开号为CN109529793A的中国专利文献报道先制备磁性ZnAl-LDHs后,再将磁性水滑石与二氧化钛(TiO2)复合得到复合材料,该方法制得的复合材料仅对紫外光具有吸收,无法利用可见光进行光催化降解Cr(Ⅵ);公开号为CN109569561A的中国专利文献报道将石墨烯与 ZnAlTi-LDHs复合,后再空气中煅烧得到复合材料,该方法制得的复合材料在可见光下降解Cr(Ⅵ)浓度较低,效果有限;Bin等人将g-C3N4与CoFe-LDHs复合,然后在空气中煅烧得到复合材料,该方法制得的复合材料具有较好的吸附和光催化去除Cr(Ⅵ)的效果,但是光催化降解时使用的是300W的氙灯,运行设备功率大,耗能高。
因此,如何制备一种对可见光有吸收,吸附光催化效果好,降解时耗能低的材料用于废水处理变得尤为重要。
发明内容
本发明解决的第一个技术问题是提供一种既可以吸附,又能在自然光下具有光催化性能去除Cr(Ⅵ)的材料。
Bi5O7I/煅烧水滑石复合材料:煅烧水滑石为锌铝铋煅烧水滑石(ZnAlBi-LDO),其中Zn: Al:Bi的摩尔比为3:1-x:x,0.01≤x≤0.1;复合材料中,Bi5O7I与锌铝铋水滑石(ZnAlBi-LDHs) 的质量比为1:5~1:15。
本发明Bi5O7I/煅烧水滑石复合结构不仅可以提供丰富的吸附位点,同时在可见光下具有光催化还原能力,可以将Cr(Ⅵ)还原为无毒的Cr(Ⅲ),显著提升了Cr(Ⅵ)去除能力。本发明的Cr(Ⅵ)去除能力优于单独的Bi5O7I和煅烧水滑石。
本发明解决的第二个技术问题是提供一种Bi5O7I/煅烧水滑石复合材料的制备方法。
Bi5O7I/煅烧水滑石复合材料的制备方法,包括以下步骤:
a、取Zn(NO3)2·6H2O和Al(NO3)3·9H2O溶解于水,Bi(NO3)3·5H2O溶解于HNO3,得到混合金属盐溶液,取NaOH和Na2CO3溶解于水,得到混合碱溶液,将混合金属盐溶液和混合碱溶液同时缓慢滴加搅拌混合,滴加过程中控制反应液的pH值为8~9,滴加结束后将反应液置于干燥箱内晶化,将晶化后的产物离心洗涤干燥,研磨后得到ZnAlBi-LDHs;
b、取Bi(NO3)3·5H2O溶解于乙二醇中,得到Bi(NO3)3溶液,将KI溶解于水中,得到KI溶液,将KI溶液缓慢滴加进Bi(NO3)3溶液中并搅拌,滴加完毕后,调节反应液的pH值,将反应液转移至内有聚四氟乙烯衬套的高压反应釜中,置于干燥箱内水热生长;
c、将步骤b中水热反应后的产物离心洗涤至上清液为中性,干燥研磨后得到Bi5O7I,将 Bi5O7I与步骤a中所得的ZnAlBi-LDHs置于水中,搅拌并超声复合1h后,即得到Bi5O7I/ZnAlBi-LDHs复合材料前体;
d、将步骤c所得的Bi5O7I/ZnAlBi-LDHs复合材料前体离心干燥研磨后,在空气中煅烧,即得到所述的Bi5O7I/煅烧水滑石复合材料。
在一种实施方式中,步骤a中,混合金属盐溶液中,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比为1%~10%;如果Bi(NO3)3浓度过大,则难以形成水滑石结构,影响吸附效果。
优选的,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比值为1%~5%;更优选的,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比值为3%,在该比值下,产品的综合效果最好。
在一种实施方式中,步骤a中,反应液的晶化温度为50~130℃;优选的,反应液的晶化温度为50℃。
在一种实施方式中,步骤b中,反应液的pH值为10~14;优选的,反应液的pH值为12~13。
在一种实施方式中,步骤b中,水热温度为120~180℃;优选的,水热温度为150℃。
在一种实施方式中,步骤c中,Bi5O7I与ZnAlBi-LDHs的质量比为1:5~1:15;优选的, Bi5O7I与ZnAlBi-LDHs的质量比为1:10。
在一种实施方式中,步骤d中,煅烧温度为200~500℃;
如果煅烧温度>500℃,煅烧水滑石形成尖晶石结构,失去“记忆效应”,煅烧温度< 200℃,层间阴离子和层间水无法完全去除,吸附效果无明显提升。
在一种具体的实施方式中,煅烧温度为300℃。当煅烧温度为300℃时,在空气中煅烧后的水滑石未出现尖晶石相,且具有最好的吸附效果。
在一种实施方式中,步骤d中,煅烧时间为2~5h;优选的,煅烧时间为4h。
本发明解决的第三个技术问题是提供了一种所述的Bi5O7I/煅烧水滑石复合材料的应用,将其用作Cr(Ⅵ)的去除。
本发明的有益效果:
1、本发明所述的Bi5O7I/煅烧水滑石复合材料,借助水滑石的“记忆效应”,当混合金属氧化物在水溶液中恢复层状结构时,可大幅提高对Cr(Ⅵ)的吸附,同时负载的Bi5O7I会扩宽复合材料的光吸收范围,使复合材料在可见光下具有光催化降解Cr(Ⅵ)的效果,使Cr(Ⅵ)被还原为无毒的Cr(Ⅲ),进一步的提升了Cr(Ⅵ)的去除能力。
3、本发明的制备方法中所用原材料来源广泛,光催化降解Cr(Ⅵ)时使用低功率的白炽灯,能耗低,操作简便。
附图说明
图1为实施例1所得的Bi5O7I/煅烧水滑石复合材料的XRD图。
图2为实施例1所得的Bi5O7I/煅烧水滑石复合材料的UV-Vis光谱图。
图3为实施例1所得的Bi5O7I/煅烧水滑石复合材料的Cr(Ⅵ)去除效率图。
图4为实施例1所得的Bi5O7I/煅烧水滑石复合材料随光照时间延长的Cr高分辨率XPS 光谱。
图5为实施例2所得的Bi5O7I/煅烧水滑石复合材料的Cr(Ⅵ)去除效率图。
图6为实施例3所得的Bi5O7I/煅烧水滑石复合材料的Cr(Ⅵ)去除效率图。
具体实施方式
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
光催化活性测试
降解对象是100mL浓度为15mg/L的Cr(Ⅵ)溶液,在反应器中加入Bi5O7I/煅烧水滑石复合材料,于黑暗中磁力搅拌90min,使溶液中反应体系达到吸附-脱附平衡,随后打开功率为 40W白炽灯进行光催化降解,整个实验过程每隔15~30min取样,每次取样6ml,将样品离心取上清液,用二苯碳酰二肼分光光度法对Cr(Ⅵ)含量进行测定,用紫外-可见分光光度计测定在540nm波长处的吸光度值,并计算Cr(Ⅵ)的去除率。
实施例1
合成过程:
1)按化学计量比称取Zn(NO3)2·6H2O共3.5698g和Al(NO3)3·9H2O共1.4555g溶解于去离子水中,称取Bi(NO3)3·5H2O共0.0582g溶解于硝酸中,将Bi(NO3)3溶液与Zn(NO3)2和Al(NO3)3溶液混合得到混合金属盐溶液,称取NaOH共1.6798g和Na2CO3共0.84792g溶解于去离子水中得到混合碱溶液,将混合金属盐溶液和混合碱溶液同时缓慢滴加搅拌混合,滴加过程中控制反应液的pH值为8~9,滴加结束后将反应液置于干燥箱内50℃晶化,将晶化后的产物离心洗涤干燥,研磨后得到ZnAlBi-LDHs;其中,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比值为3%;
2)称取Bi(NO3)3·5H2O共1.2126g溶解于乙二醇中得到澄清溶液,称取KI共0.083g溶解于去离子水中得到KI溶液,将KI溶液缓慢滴加进Bi(NO3)3溶液中并搅拌,滴加完毕后,调节反应液的pH值为13,将反应液转移至内有聚四氟乙烯衬套的高压反应釜中,置于干燥箱内150℃水热生长;
3)将步骤2)中水热反应后的产物离心洗涤至上清液为中性,干燥研磨后得到Bi5O7I,称取Bi5O7I共0.1g与步骤1)中所得的ZnAlBi-LDHs共1g置于水中,使Bi5O7I与ZnAlBi-LDHs 的质量比为1:10,搅拌30min后超声复合1h后,即得到Bi5O7I/ZnAlBi-LDHs复合材料前体;
4)将步骤3)所得的Bi5O7I/ZnAlBi-LDHs复合材料前体离心干燥研磨后,在空气中300℃煅烧4h,即得到所述的既具有吸附效果又具有光催化能力的Bi5O7I/煅烧水滑石复合材料。
图1为本发明实施例1所得Bi5O7I/煅烧水滑石复合材料的XRD图,由图1可知:实施例1所制得的Bi5O7I的XRD结果与标准衍射峰相符,未出现其他杂质峰,水滑石经煅烧后,层状结构被破坏,形成混合金属氧化物,XRD结果显示为ZnO,Al2O3未在XRD图谱中显示,主要是由于Al2O3以无定形态形式存在,Bi5O7I/煅烧水滑石复合材料的XRD图谱中既有 Bi5O7I的衍射峰又有ZnO的衍射峰,表明两者很好的复合在了一起。
图2为本发明实施例1所制得的Bi5O7I/煅烧水滑石复合材料的Uv-vis光谱,由图2可知:实施例1所制得的Bi5O7I/煅烧水滑石复合材料相较单独的煅烧水滑石其吸收波长发生红移,增强了对可见光的吸收。
图3为本发明实施例1所得的Bi5O7I/煅烧水滑石复合材料的Cr(Ⅵ)去除效率图,由图3 可知:实施例1在120min内去除浓度为15mg/L的Cr(Ⅵ)溶液的去除率为99.15%;在90min 内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为96.41%;在60min内去除浓度为15mg/L 的Cr(Ⅵ)溶液的吸附去除率为90.41%;在30min内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为79.80%;在15min内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为53.65%。
图4为本发明实施例1所得的Bi5O7I/煅烧水滑石复合材料随光照时间延长的Cr高分辨率XPS光谱,约在578和587eV处的峰属于Cr(Ⅵ),约在576和586eV处的峰属于Cr(Ⅲ),由图4可知:随着光照时间的延长,Cr(Ⅵ)的面积逐渐减小,Cr(Ⅲ)的面积逐渐增大,说明随着光照时间的延长越来越多的Cr(Ⅵ)被还原为无毒的Cr(Ⅲ)。
实施例2
合成过程:
1)按化学计量比称取Zn(NO3)2·6H2O共3.5698g和Al(NO3)3·9H2O共1.4555g溶解于去离子水中,称取Bi(NO3)3·5H2O共0.0582g溶解于硝酸中,将Bi(NO3)3溶液与Zn(NO3)2和Al(NO3)3溶液混合得到混合金属盐溶液,称取NaOH共1.6798g和Na2CO3共0.84792g溶解于去离子水中得到混合碱溶液,将混合金属盐溶液和混合碱溶液同时缓慢滴加搅拌混合,滴加过程中控制反应液的pH值为8~9,滴加结束后将反应液置于干燥箱内50℃晶化,将晶化后的产物离心洗涤干燥,研磨后得到ZnAlBi-LDHs;其中,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比值为3%;
2)称取Bi(NO3)3·5H2O共1.2126g溶解于乙二醇中得到澄清溶液,称取KI共0.083g溶解于水中得到KI溶液,将KI溶液缓慢滴加进Bi(NO3)3溶液中并搅拌,滴加完毕后,调节反应液的pH值为13,将反应液转移至内有聚四氟乙烯衬套的高压反应釜中,置于干燥箱内150℃水热生长;
3)将步骤2)中水热反应后的产物离心洗涤至上清液为中性,干燥研磨后得到Bi5O7I,称取Bi5O7I共0.2g与步骤1)中所得的ZnAlBi-LDHs共1g置于水中,使Bi5O7I与ZnAlBi-LDHs 的质量比为1:5,搅拌30min后超声复合1h后,即得到Bi5O7I/ZnAlBi-LDHs复合材料前体;
4)将步骤3)所得的Bi5O7I/ZnAlBi-LDHs复合材料前体离心干燥研磨后,在空气中300℃煅烧4h,即得到所述的既具有吸附效果又具有光催化能力的Bi5O7I/煅烧水滑石复合材料。
图5为本发明实施例2所得的Bi5O7I/煅烧水滑石复合材料的Cr(Ⅵ)去除效率图,由图5 可知:实施例2在120min内去除浓度为15mg/L的Cr(Ⅵ)溶液的去除率为97.35%;在90min 内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为92%;在60min内去除浓度为15mg/L的 Cr(Ⅵ)溶液的吸附去除率为88.03%;在30min内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为78.34%;在15min内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为50.18%。
实施例3
合成过程:
1)按化学计量比称取Zn(NO3)2·6H2O共3.5698g和Al(NO3)3·9H2O共1.4555g溶解于去离子水中,称取硝酸铋(Bi(NO3)3·5H2O)0.0582g溶解于硝酸中,将Bi(NO3)3溶液与Zn(NO3)2和Al(NO3)3溶液混合得到混合金属盐溶液,称取NaOH共1.6798g和Na2CO3共0.84792g溶解于去离子水中得到混合碱溶液,将混合金属盐溶液和混合碱溶液同时缓慢滴加搅拌混合,滴加过程中控制反应液的pH值为8~9,滴加结束后将反应液置于干燥箱内50℃晶化,将晶化后的产物离心洗涤干燥,研磨后得到ZnAlBi-LDHs;其中,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比值为3%;
2)称取Bi(NO3)3·5H2O共1.2126g溶解于乙二醇中得到澄清溶液,称取KI共0.083g溶解于水中得到KI溶液,将KI溶液缓慢滴加进Bi(NO3)3溶液中并搅拌,滴加完毕后,调节反应液的pH值为13,将反应液转移至内有聚四氟乙烯衬套的高压反应釜中,置于干燥箱内150℃水热生长;
3)将步骤2)中水热反应后的产物离心洗涤至上清液为中性,干燥研磨后得到Bi5O7I,称取Bi5O7I共0.06g与步骤1)中所得的ZnAlBi-LDHs共0.9g置于水中,使Bi5O7I与ZnAlBi-LDHs的质量比为1:15,搅拌30min后超声复合1h后,即得到Bi5O7I/ZnAlBi-LDHs 复合材料前体;
4)将步骤3)所得的Bi5O7I/ZnAlBi-LDHs复合材料前体离心干燥研磨后,在空气中300℃煅烧4h,即得到所述的既具有吸附效果又具有光催化能力的Bi5O7I/煅烧水滑石复合材料。
图6为本发明实施例3所得的Bi5O7I/煅烧水滑石复合材料的Cr(Ⅵ)去除效率图,由图6 可知:实施例3在120min内去除浓度为15mg/L的Cr(Ⅵ)溶液的去除率为94.79%;在90min 内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为93.26%;在60min内去除浓度为15mg/L 的Cr(Ⅵ)溶液的吸附去除率为80.91%;在30min内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为74.54%;在15min内去除浓度为15mg/L的Cr(Ⅵ)溶液的吸附去除率为50.43%。

Claims (10)

1.一种Bi5O7I/煅烧水滑石复合材料,其特征在于:煅烧水滑石为锌铝铋煅烧水滑石ZnAlBi-LDO,其中Zn:Al:Bi的摩尔比为3:1-x:x,0.01≤x≤0.1;复合材料中,Bi5O7I与锌铝铋水滑石ZnAlBi-LDHs的质量比为1:5~1:15。
2.如权利要求1所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于,包括以下步骤:
a、取Zn(NO3)2·6H2O和Al(NO3)3·9H2O溶解于水,Bi(NO3)3·5H2O溶解于HNO3,得到混合金属盐溶液,取NaOH和Na2CO3溶解于水,得到混合碱溶液,将混合金属盐溶液和混合碱溶液同时缓慢滴加搅拌混合,滴加过程中控制反应液的pH值为8~9,滴加结束后将反应液置于干燥箱内晶化,将晶化后的产物离心洗涤干燥,研磨后得到ZnAlBi-LDHs;
b、取Bi(NO3)3·5H2O溶解于乙二醇中,得到Bi(NO3)3溶液,将KI溶解于水中,得到KI溶液,将KI溶液缓慢滴加进Bi(NO3)3溶液中并搅拌,滴加完毕后,调节反应液的pH值,将反应液转移至内有聚四氟乙烯衬套的高压反应釜中,置于干燥箱内水热生长;
c、将步骤b中水热反应后的产物离心洗涤至上清液为中性,干燥研磨后得到Bi5O7I,将Bi5O7I与步骤a中所得的ZnAlBi-LDHs置于水中,搅拌并超声复合1h后,即得到Bi5O7I/ZnAlBi-LDHs复合材料前体;
d、将步骤c所得的Bi5O7I/ZnAlBi-LDHs复合材料前体离心干燥研磨后,在空气中煅烧,即得到所述的Bi5O7I/煅烧水滑石复合材料。
3.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于,步骤a所述混合金属盐溶液中,Bi(NO3)3在总的三价金属硝酸盐中所占摩尔比为1%~10%。
4.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于,步骤a中,反应液的晶化温度为50~130℃。
5.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于:步骤b中,反应液的pH值为10~14。
6.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于:步骤b中,水热温度为120~180℃。
7.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于:步骤c中,Bi5O7I与ZnAlBi-LDHs的质量比为1:5~1:15。
8.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于:步骤d中,煅烧温度为200~500℃。
9.根据权利要求2所述的Bi5O7I/煅烧水滑石复合材料的制备方法,其特征在于:步骤d中,煅烧时间为2~5h。
10.一种权利要求1所述的Bi5O7I/煅烧水滑石复合材料或者权利要求2~9任一项所述制备方法制得的Bi5O7I/煅烧水滑石复合材料的应用,其特征在于,将其用作吸附和可见光下降解去除Cr(Ⅵ)。
CN202011054683.0A 2020-09-30 2020-09-30 一种Bi5O7I/煅烧水滑石复合材料及其制备方法 Active CN112337424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011054683.0A CN112337424B (zh) 2020-09-30 2020-09-30 一种Bi5O7I/煅烧水滑石复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011054683.0A CN112337424B (zh) 2020-09-30 2020-09-30 一种Bi5O7I/煅烧水滑石复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112337424A CN112337424A (zh) 2021-02-09
CN112337424B true CN112337424B (zh) 2022-04-22

Family

ID=74361339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011054683.0A Active CN112337424B (zh) 2020-09-30 2020-09-30 一种Bi5O7I/煅烧水滑石复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112337424B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917947B (zh) * 2022-05-18 2023-10-27 成都理工大学 一种C3N5/CLDHs复合光催化材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970172A1 (fr) * 2011-01-11 2012-07-13 Oreal Composition cosmetique anti-uv
CN106513021A (zh) * 2016-11-05 2017-03-22 上海大学 层状氢氧化物/BiOCl光催化材料及其制备方法
CN108514862A (zh) * 2018-04-26 2018-09-11 济南大学 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用
CN110227504A (zh) * 2019-06-26 2019-09-13 成都理工大学 一种低温液相沉淀法碘氧化铋可见光光催化剂的制备方法
CN110270356A (zh) * 2019-07-10 2019-09-24 成都理工大学 一种低温液相沉淀法碘氧化铋/氧化石墨烯可见光光催化剂的制备方法
CN110449171A (zh) * 2019-08-09 2019-11-15 济南大学 磁性水滑石/溴氧化铋复合物的制备方法和应用
CN111085187A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种具有脱硫作用的规整载体催化剂及其制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970172A1 (fr) * 2011-01-11 2012-07-13 Oreal Composition cosmetique anti-uv
CN106513021A (zh) * 2016-11-05 2017-03-22 上海大学 层状氢氧化物/BiOCl光催化材料及其制备方法
CN108514862A (zh) * 2018-04-26 2018-09-11 济南大学 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用
CN111085187A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种具有脱硫作用的规整载体催化剂及其制备和应用
CN110227504A (zh) * 2019-06-26 2019-09-13 成都理工大学 一种低温液相沉淀法碘氧化铋可见光光催化剂的制备方法
CN110270356A (zh) * 2019-07-10 2019-09-24 成都理工大学 一种低温液相沉淀法碘氧化铋/氧化石墨烯可见光光催化剂的制备方法
CN110449171A (zh) * 2019-08-09 2019-11-15 济南大学 磁性水滑石/溴氧化铋复合物的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"焙烧型锌铝水滑石杂化材料的制备与光催化性能研究";宋健;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》;20150315(第03期);全文 *

Also Published As

Publication number Publication date
CN112337424A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Wang et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light
Sun et al. Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation
Chen et al. Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability
CN101947454B (zh) 具有可见光催化活性的过渡金属掺杂氧化锌介孔材料及其制备方法
Huang et al. Co-Mn-Fe complex oxide catalysts from layered double hydroxides for decomposition of methylene blue: Role of Mn
CN113731430B (zh) 双Z型CuO/CuBi2O4/Bi2O3复合光催化剂及其制备方法和应用
Wu The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline
Peng et al. Rapid microwave-assisted solvothermal synthesis and visible-light-induced photocatalytic activity of Er3+-doped BiOI nanosheets
Zhou et al. Porous TiO 2 with large surface area is an efficient catalyst carrier for the recovery of wastewater containing an ultrahigh concentration of dye
CN108786808B (zh) 一种Ag/BiO2-x/Bi2O3/Bi2O2.75复合光催化剂及制备方法和应用
CN105664988B (zh) 一种(BiO)2CO3/C复合光催化剂及其应用
Nayan et al. Comparative study on the effects of surface area, conduction band and valence band positions on the photocatalytic activity of ZnO-M x O y heterostructures
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
Liu et al. Mesocrystalline TiO 2/sepiolite composites for the effective degradation of methyl orange and methylene blue
Wang et al. Synthesis and photocatalytic properties of new ternary Ni–Fe–Cr hydrotalcite-like compounds
Ishfaq et al. Synthesis of binary metal doped CeO2 via the subcritical hydrothermal method for photo-mineralizing methyl orange dye
CN112337424B (zh) 一种Bi5O7I/煅烧水滑石复合材料及其制备方法
CN102698727A (zh) 一种制备高热稳定性的负载型TiO2光催化剂的方法
Hou et al. Fabrication and photocatalytic activity of floating type Ag3PO4/ZnFe2O4/FACs photocatalyst
CN113578313B (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN114917947B (zh) 一种C3N5/CLDHs复合光催化材料及其制备方法
CN110694650B (zh) 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法
Yu et al. Synergistic effects of oxygen vacancies and the chelation of tetracycline with metallic ions for enhanced degradation of tetracycline over photocatalysts La 2− x K x NiMnO 6
Hu et al. Synthesis of a BiOIO3/Bi2O4 heterojunction that can efficiently degrade rhodamine B and ciprofloxacin under visible light
CN102500298A (zh) 一种金属氧化物及其复合物微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant