CN108514862A - 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用 - Google Patents

一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用 Download PDF

Info

Publication number
CN108514862A
CN108514862A CN201810384966.8A CN201810384966A CN108514862A CN 108514862 A CN108514862 A CN 108514862A CN 201810384966 A CN201810384966 A CN 201810384966A CN 108514862 A CN108514862 A CN 108514862A
Authority
CN
China
Prior art keywords
biobr
znal
catalyst
znalfe
cldh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810384966.8A
Other languages
English (en)
Other versions
CN108514862B (zh
Inventor
邴兴美
李嘉
楚景慧
刘君
见欣颖
崔新岭
冀菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810384966.8A priority Critical patent/CN108514862B/zh
Publication of CN108514862A publication Critical patent/CN108514862A/zh
Application granted granted Critical
Publication of CN108514862B publication Critical patent/CN108514862B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用,属于光催化材料领域。本发明所制备的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,其分级多孔的微纳结构有效提高了吸附及催化活性位的有效暴露,从而带来优异的吸附及光催化性能。BiOBr和ZnAl1.8Fe0.2O4形成异质结,提高了光生电子空穴的分离效率。这两种效应共同作用,得到了较高的可见光催化活性。本发明操作简便、工艺简单,反应条件温和,获得的催化剂形貌结构新颖独特,其在模拟太阳光照射下可高效的降解污水中的染料和抗生素等有机污染物。

Description

一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用
技术领域
本发明涉及一种染料和抗生素废水处理方面的催化剂,具体涉及一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用。
背景技术
水是万物生存的基础。然而,随着工业化和城市化的快速发展,水污染越来越严重。其中由纺织工业,印刷工业,化妆品工厂和制药厂产生的染料废水和抗生素废水严重威胁人体健康。因此,探索高效和环保的方法来净化污水已成为迫在眉睫的问题。半导体光催化技术提供了一种环保有效的方法,可以利用太阳能,将污染物彻底分解成水和CO2等小分子,且无二次污染,但通常的光催化剂容易存在催化活性低、催化效果差的问题。因而如何开发一种光催化性能好的催化剂成为光催化领域的研究热点。
铋卤氧化物BiOX(X=I,Br,Cl)因其独特的层状结构和良好的可见光响应而备受瞩目。在BiOX光催化剂中,氧化铋(BiOBr)具有Eg=2.54-2.91eV的带隙能,能够很好的响应可见光。然而,单相BiOBr光催化剂由于较高的光生电子空穴的复合率,具有较低的光催化活性。因此,BiOBr基的异质结光催化被广泛研究。
发明内容
针对现有技术中存在的问题,本发明提供了一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂。该催化剂将BiOBr与ZnAlFe-CLDH有机结合,以纸巾为模板,制备BiOBr/ZnAl1.8Fe0.2O4复合光催化剂。分级多孔的微纳结构有效提高了吸附及催化活性位的有效暴露,从而带来优异的吸附及光催化性能。BiOBr和ZnAl1.8Fe0.2O4形成异质结,提高了光生电子空穴的分离效率。这两种效应共同作用,使材料的光催化活性得以明显提高。
本发明还提供了上述BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的应用。
本发明采用以下技术方案:
一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,它是由ZnAlFe-CLDH纳米片形成相互交织的二维微米纤维结构,ZnAlFe-CLDH纳米片由ZnAl1.8Fe0.2O4纳米晶组成。由层片状BiOBr组成的微米花球均匀生长在ZnAlFe-CLDH上所构建的一种独特的微纳多层次结构。
所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,它是采用下述方法制备得到的:
(1)无定形氧化铝纤维的制备:配置100mL硝酸铝的乙醇溶液,将纸巾浸渍到上述硝酸铝的乙醇溶液中,超声分散0.5h,浸渍24h,取出后烘干备用,烘干后的纸巾经马弗炉煅烧,制得活性氧化铝纤维,记为AlOOH/C;
(2)ZnAlFe-CLDH的制备:将1.6mmol的Zn(NO3)2·6H2O,0.8mmol的Al(NO3)3·9H2O和0.4mmol的Fe(NO3)3·9H2O溶于100mL蒸馏水中,加入步骤(1)中所制得的0.5g AlOOH/C,再加入19mmol尿素,用NaOH溶液调节pH至8.5,然后于反应釜中保温反应,反应结束冷却后用蒸馏水洗涤数次,得到ZnAlFe-LDH/C,干燥后于马弗炉中煅烧,制得ZnAlFe-CLDH;
(3)BiOBr/ZnAlFe-CLDH的制备:称取0.5g步骤(2)中所得的ZnAlFe-CLDH,0.12gKBr,加入50mL蒸馏水中,将混合物超声分散,得到悬浮液A;称取0.5g Bi(NO3)3·5H2O溶解于20mL冰醋酸中,得到澄清溶液B;将B溶液快速倒入A中,磁力搅拌30min,室温下静置3h,将沉淀物过滤分离,干燥,即制得BiOBr/ZnAl1.8Fe0.2O4
所述步骤(1)中硝酸铝的乙醇溶液的浓度为0.5M,纸巾的质量为4g,马弗炉煅烧温度为400℃,煅烧时间为1h。
所述步骤(2)中NaOH溶液的浓度为2M,反应釜中保温反应温度为120℃,时间为10h;马弗炉煅烧温度为500℃,煅烧时间为1h。
所述步骤(3)中超声分散时间为30min,干燥温度为80℃。
本发明的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的应用,可以用于处理染料废水和抗生素废水。具体的是:将BiOBr/ZnAl1.8Fe0.2O4复合光催化剂分别放入染料废水和抗生素废水中,在模拟太阳光照射下催化降解废水。光催化时,废水中有机物浓度小于等于20mg/L,BiOBr/ZnAl1.8Fe0.2O4复合催化剂的用量为50mg,模拟太阳光照射时间为0-60min。
生物模板法是运用天然模板制备具有独特孔结构的三维微纳分级结构的新型功能材料。利用生物模板法制备的纳米材料保留生物体天然的微观形貌,能够按照人们的意愿有效的控制纳米材料的尺寸,结构和性质。利用生物模板法制备具有微纳复合结构的光催化剂,往往具有较高的活性位暴露面,催化活性也随之增大。
LDHs(layered double hydroxides),又称层状双羟基复合金属氢氧化物,是一类阴离子型层状结构材料。其由层板和层间阴离子构成,层板由两种金属的氢氧化物组成。LDHs经煅烧后,脱掉羟基,得到原子尺度分散、纳米复合金属氧化物(CLDH),煅烧后的产物比表面积明显增大,可有效改善其吸附和催化性能。
本发明以纸巾为模板,首先通过尿素水热法合成ZnAlFe-LDH/C,其保留了纸巾的交织中空纤维形貌,LDH纳米片生长在碳化纤维的内外表面,形成一种微纳多层次结构,然后煅烧ZnAlFe-LDH/C,去除C的同时,生成复合金属氧化物ZnAlFe-CLDH。ZnAlFe-CLDH为由高度分散ZnAl1.8Fe0.2O4纳米颗粒组成的纳米片。最后,利用水热法在ZnAl1.8Fe0.2O4上生长窄带隙可见光响应、由层片状BiOBr组装而成的微米球,最终得到BiOBr/ZnAl1.8Fe0.2O4复合光催化剂。分级多孔的微纳结构有效提高了吸附及催化活性位的有效暴露,从而带来优异的吸附及光催化性能。BiOBr和ZnAl1.8Fe0.2O4形成异质结,提高了光生电子空穴的分离效率。这两种效应共同作用,得到了较高的可见光催化活性。
本发明具有以下优点:
本发明以纸巾为生物模板制备生物分级多孔的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,所需原料易得,成本低廉,制备工艺简单、易操作、效率高,获得的复合催化剂形貌结构特异。由于制备的BiOBr/ZnAl1.8Fe0.2O4复合催化剂具有特殊的微纳多孔形貌及能带匹配合理的异质结结构,因此表现出优异的吸附和光催化性能。该复合催化剂在可见光照射下对有机污染物具有较好的降解效率。
附图说明
图1为本发明所制光催化剂的XRD曲线。
图2为本发明所制光催化剂的SEM图和EDS谱图;图中,(a)和(b)为纸巾模板的SEM图;(c)为AlOOH/C的SEM图,(c)插图为AlOOH/C的EDS谱图;(d)和(e)为ZnAlFe-LDH/C的SEM图;(f)为ZnAlFe-CLDH的SEM图;(g)和(h)为BiOBr/ZnAl1.8Fe0.2O4的SEM图;(e)为BiOBr/ZnAl1.8Fe0.2O4的EDS谱图。
图3为本发明所制光催化剂的TEM图、HRTEM图和EDS谱图;图中,(a)、(d)、(f)为制得的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的TEM图;(b)和(c)为BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的EDS谱图;(e)和(g)为BiOBr/ZnAlFe-CLDH复合光催化剂的HRTEM图。
图4为本发明所制光催化剂的氮气吸附脱附曲线及孔径分布图;图中,(a)是BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的氮气吸附脱附曲线;(b)是BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的孔径分布图。
图5为本发明所制光催化剂对刚果红和多西环素的吸附量随吸附时间的关系曲线;图中,(a)是对刚果红的吸附;(b)是对多西环素的吸附。
图6为本发明所制光催化剂在模拟可见光下对刚果红和多西环素的降解图;图中,(a)是对刚果红的降解;(b)是对多西环素的降解。
图7为本发明所制光催化剂在模拟可见光下对刚果红和多西环素的光催化降解机理图。
具体实施方式
下面结合具体实施方式对本发明做进一步的详细说明。
实施例1
本发明BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的制备
(1)无定形氧化铝纤维的制备:将硝酸铝溶解到100mL无水乙醇中配制成0.5M的溶液。将4g纸巾浸渍到100mL硝酸铝的醇溶液中,超声分散0.5h,浸渍24h,取出后烘干备用。烘干后的纸巾经马弗炉400℃煅烧1h,制得活性氧化铝纤维,记为AlOOH/C。
(2)ZnAlFe-CLDH的制备:将Zn(NO3)2·6H2O(1.6mmol),Al(NO3)3·9H2O(0.8mmol)和Fe(NO3)3·9H2O(0.4mmol)溶于100mL蒸馏水中,加入步骤(1)中所制得的0.5g AlOOH/C,加入19mmol尿素,用NaOH(2M)调节pH至8.5。于反应釜120℃保温10h,冷却后用蒸馏水洗涤数次,得到ZnAlFe-LDH/C。干燥后于马弗炉中500℃煅烧1h,制得ZnAlFe-CLDH。
(3)BiOBr/ZnAlFe-CLDH的制备:称取0.5g步骤(2)中所得的ZnAlFe-CLDH,0.12gKBr,加入50mL蒸馏水中,将混合物超声分散30min,得到悬浮液A;称取0.5g Bi(NO3)3·5H2O溶解于20mL冰醋酸中,得到澄清溶液B。将B溶液快速导入A中,磁力搅拌30min,室温下静置3h,将沉淀物过滤分离,在80℃下干燥,制得BiOBr/ZnAlFe-CLDH。ZnAlFe-CLDH的主要成分为ZnAl1.8Fe0.2O4,即制得BiOBr/ZnAl1.8Fe0.2O4。具体表征结果如图1-图3所示。
图1是所制备试样ZnAlFe-LDH/C、ZnAlFe-CLDH及BiOBr/ZnAl1.8Fe0.2O4的XRD谱图。由XRD谱图可以看出,复合光催化剂BiOBr/ZnAl1.8Fe0.2O4由BiOBr、ZnAl1.8Fe0.2O4这两相组成且没有其他杂质相,说明制备的试样纯度高,结晶良好。
图2是纸巾模板及试样AlOOH/C、ZnAlFe-LDH/C、ZnAlFe-CLDH和BiOBr/ZnAl1.8Fe0.2O4的SEM图和EDS谱图。(a)和(b)是纸巾的SEM图,由图中可以看出纸巾中的纤维呈现扁平状,纤维直径约为10~20μm,纤维相互交织,纵横交错;(c)是AlOOH/C的扫描图,从图中可以看出AlOOH/C在微观上保留了纸巾的扁平状纤维形貌,纤维表面光滑;(c)插图为AlOOH/C的EDS谱图,从图中看出AlOOH/C主要由C,O和Al组成;(d)和(e)为ZnAlFe-LDH/C的SEM图,可以看到,ZnAlFe-LDH纳米片均匀生长在部分碳化的纸巾纤维上;图(f)是ZnAlFe-CLDH的SEM图,可以看出,ZnAlFe-LDH/C在煅烧后保持层片状形态,ZnAlFe-LDH/C转变为含有Zn,Al,Fe和O的金属氧化物ZnAl1.8Fe0.2O4,同时C得以完全脱除;(g)和(h)为复合BiOBr/ZnAl1.8Fe0.2O4光催化剂的SEM图。由图可见,由纳米片组成的BiOBr纳米花球长在了ZnAlFe-CLDH纳米片上,形成微纳多孔结构;(i)是复合BiOBr/ZnAl1.8Fe0.2O4光催化剂的EDS谱图,表明最终样品主要由C,O,Zn,Al,Br和Bi组成,进一步表明由BiOBr和ZnAlFe-CLDH复合的BiOBr/ZnAl1.8Fe0.2O4光催化剂合成了。
图3是复合BiOBr/ZnAl1.8Fe0.2O4光催化剂的TEM图、HRTEM图和EDS谱图。图(a)为BiOBr/ZnAl1.8Fe0.2O4的TEM图,从图中可以看出BiOBr/ZnAl1.8Fe0.2O4中存在两种形貌的物质,(b)和(c)EDS结果表明,红圈区域为ZnAl1.8Fe0.2O4纳米粒子,蓝圈区域为BiOBr花状结构;(d)为ZnAl1.8Fe0.2O4的TEM图,(e)为相对应的ZnAl1.8Fe0.2O4的HRTEM图,测得平面间距离为2.472nm,这可归因于ZnAl1.8Fe0.2O4的(311)面;(f)为BiOBr的TEM图,(g)为相对应的BiOBr的HRTEM图,测得平面间距离为2.730nm,这可归因于BiOBr的(110)面。证明复合BiOBr/ZnAl1.8Fe0.2O4光催化剂由BiOBr和ZnAl1.8Fe0.2O4两部分复合而成。
实施例2
本发明BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的吸附性能
以刚果红溶液和多西环素溶液分别模拟污水中的染料污染物和抗生素污染物,测试本发明中BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的吸附性能。其方法为:分别取50mg步骤(3)中所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,分别放入50mL 200mg/L的刚果红溶液和50mL200mg/L的多西环素溶液中,分别于10min、30min、60min、2h、3h、5h、10h、24h、36h、60h、72h取样,在4000r/min下离心分离5min,用分光光度计测试不同吸附时间下刚果红溶液和多西环素溶液的吸光度并换算成浓度,以表征吸附效果。具体结果如图4-5所示。
图4是复合BiOBr/ZnAl1.8Fe0.2O4光催化剂的氮气吸附脱附曲线及孔径分布图。从图(a)氮气吸附脱附曲线可以看出,复合BiOBr/ZnAl1.8Fe0.2O4光催化剂的等温线属于IV型等温线,具有明显的磁滞回线,表明BiOBr/ZnAl1.8Fe0.2O4中有介孔形成。图(b)BiOBr/ZnAl1.8Fe0.2O4的孔径分布图表明BiOBr/ZnAl1.8Fe0.2O4中的孔主要是微孔和介孔,由此说明制备的复合BiOBr/ZnAl1.8Fe0.2O4光催化剂是具有分级多孔结构的材料。由于介孔和微孔的存在,复合BiOBr/ZnAl1.8Fe0.2O4光催化剂具有较大的比表面积,达到157.4m2g-1
图5是试样AlOOH/C、ZnAlFe-LDH/C、ZnAlFe-CLDH及BiOBr/ZnAl1.8Fe0.2O4对刚果红和多西环素的吸附时间与吸附量的关系曲线。(a)是对刚果红的吸附,(b)是对多西环素的吸附。由图(a)可见,本发明所制备的光催化剂BiOBr/ZnAl1.8Fe0.2O4对刚果红在达到吸附平衡时的吸附量为210.5mg g-1,高于ZnAlFe-CLDH(197.6mg g-1)和ZnAlFe-LDH/C(86.0mg g-1)的吸附量;由图(b)可见,本发明所制备的光催化剂BiOBr/ZnAl1.8Fe0.2O4对多西环素在达到吸附平衡时的吸附量为227.4mg g-1,高于ZnAlFe-CLDH(200mg g-1)和ZnAlFe-LDH/C(166.7mg g-1)的吸附量。该结果表明该复合催化剂对刚果红和多西环素都具有较好的吸附性能,有利于光催化过程中对有机污染物的富集,从而提高光催化效率。
实施例3
本发明BiOBr/ZnAl1.8Fe0.2O4复合光催化剂在可见光下的催化效果
以刚果红溶液和多西环素溶液分别模拟污水中的染料污染物和抗生素污染物,测试本发明中BiOBr/ZnAl1.8Fe0.2O4复合光催化剂在可见光下的催化效果。其方法为:分别取50mg步骤(3)中所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,分别放入80mL 20mg/L的刚果红溶液和80mL 20mg/L的多西环素溶液中,于黑暗环境中静置0.5h后,在500W氙灯照射下进行光催化反应,光催化过程中,每隔10min取出6mL刚果红溶液和多西环素溶液作为样品,在4000r/min下离心分离5min,用分光光度计测试不同催化时间下刚果红溶液和多西环素溶液的吸光度并换算成浓度,以表征降解效果。具体结果如图6所示。
图6是试样AlOOH/C、BiOBr、ZnAlFe-LDH/C、ZnAlFe-CLDH及BiOBr/ZnAl1.8Fe0.2O4在模拟太阳光照射下,对刚果红和多西环素的降解图。(a)图是对刚果红的降解,(b)图是对多西环素的降解。由(a)图可以看出,本发明所制备的光催化剂BiOBr/ZnAl1.8Fe0.2O4在60min内对刚果红的降解率达到68.2%,高于ZnAlFe-LDH/C(32.6%)和ZnAlFe-CLDH(62.5%)的降解率;由(b)图可以看出,本发明所制备的光催化剂BiOBr/ZnAl1.8Fe0.2O4在60min内对多西环素的降解率达到30%,高于ZnAlFe-LDH/C(17.9%)和ZnAlFe-CLDH(27.5%)的降解率。结果表明该光催化剂对刚果红和多西环素都具有高效的催化降解效果,可用于处理染料废水和抗生素废水。
图7为试样BiOBr/ZnAl1.8Fe0.2O4在模拟可见光下对刚果红和多西环素的光催化降解机理图。首先,BiOBr/ZnAl1.8Fe0.2O4片片复合结构可以大大提高材料的比表面积,并且暴露出更多的吸附位点,提高光催化能力。其次,BiOBr和ZnAlFe-CLDH之间能够形成异质结,使得光生电子空穴对得到有效的分离。在模拟可见光的照射下,BiOBr(ECB=0.34eV,EVB=3.01eV)和ZnAl1.8Fe0.2O4(ECB=-0.94eV,EVB=2.91eV)均能产生电子空穴对。在初始吸附过程中,由于生物分级多孔BiOBr/ZnAl1.8Fe0.2O4复合材料的高吸附能力,刚果红和多西环素分子被吸附在BiOBr/ZnAl1.8Fe0.2O4的表面上。然后,当BiOBr/ZnAl1.8Fe0.2O4复合材料被可见光照射时,BiOBr和ZnAl1.8Fe0.2O4上的电子受到激发而跃迁,从价带跃迁至导带,在价带上留下空穴。由于BiOBr和ZnAl1.8Fe0.2O4在价带和导带之间的能级差异,ZnAl1.8Fe0.2O4导带上的光生电子将转移到BiOBr的导带上,而BiOBr的价带上的空穴将转移到ZnAl1.8Fe0.2O4的价带,这有效地防止了电子和空穴的复合。随后,BiOBr导带上的电子很容易被O2分子捕获,产生·O2-自由基。同时,ZnAl1.8Fe0.2O4中的光生空穴也可能被内水H2O分子捕获以产生·OH自由基。这些活性物质可以将有机化学物质氧化成无机小分子,如CO2和H2O。其中很重要的一点,该试样较好的吸附能力会和光催化降解染料表现出协同作用,增加了催化剂周围的污染物分子浓度,加快污染物的催化降解。

Claims (8)

1.一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,其特征在于,它是由ZnAlFe-CLDH纳米片形成相互交织的二维微米纤维结构,由层片状BiOBr组成的微米花球均匀生长在ZnAlFe-CLDH上所构建的一种独特的微纳多层次结构,其中ZnAlFe-CLDH纳米片由ZnAl1.8Fe0.2O4纳米晶组成。
2.根据权利要求1所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,其特征在于,它是采用下述方法制备得到的:
(1)无定形氧化铝纤维的制备:配置100mL硝酸铝的乙醇溶液,将纸巾浸渍到上述硝酸铝的乙醇溶液中,超声分散0.5h,浸渍24h,取出后烘干备用,烘干后的纸巾经马弗炉煅烧,制得活性氧化铝纤维,记为AlOOH/C;
(2)ZnAlFe-CLDH的制备:将1.6mmol的Zn(NO3)2·6H2O,0.8mmol的Al(NO3)3·9H2O和0.4mmol的Fe(NO3)3·9H2O溶于100mL蒸馏水中,加入步骤(1)中所制得的0.5g AlOOH/C,再加入19mmol尿素,用NaOH溶液调节pH至8.5,然后于反应釜中保温反应,反应结束冷却后用蒸馏水洗涤数次,得到ZnAlFe-LDH/C,干燥后于马弗炉中煅烧,制得ZnAlFe-CLDH;
(3)BiOBr/ZnAlFe-CLDH的制备:称取0.5g步骤(2)中所得的ZnAlFe-CLDH,0.12g KBr,加入50mL蒸馏水中,将混合物超声分散,得到悬浮液A;称取0.5g Bi(NO3)3·5H2O溶解于20mL冰醋酸中,得到澄清溶液B;将B溶液快速倒入A中,磁力搅拌30min,室温下静置3h,将沉淀物过滤分离,干燥,即制得BiOBr/ZnAl1.8Fe0.2O4
3.根据权利要求2所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,其特征在于,所述步骤(1)中硝酸铝的乙醇溶液的浓度为0.5M,纸巾的质量为4g,马弗炉煅烧温度为400℃,煅烧时间为1h。
4.根据权利要求2所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,其特征在于,所述步骤(2)中NaOH溶液的浓度为2M,反应釜中保温反应温度为120℃,时间为10h;马弗炉煅烧温度为500℃,煅烧时间为1h。
5.根据权利要求2所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂,其特征在于,所述步骤(3)中超声分散时间为30min,干燥温度为80℃。
6.一种权利要求1所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的应用,其特征在于,该催化剂用于处理染料废水和抗生素废水。
7.根据权利要求6所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的应用,其特征在于,所述应用具体的是:将BiOBr/ZnAl1.8Fe0.2O4复合光催化剂分别放入染料废水和抗生素废水中,在模拟太阳光照射下催化降解废水。
8.根据权利要求7所述的BiOBr/ZnAl1.8Fe0.2O4复合光催化剂的应用,其特征在于,光催化时,废水中有机物浓度小于等于20mg/L,BiOBr/ZnAl1.8Fe0.2O4复合催化剂的用量为50mg,模拟太阳光照射时间为0-60min。
CN201810384966.8A 2018-04-26 2018-04-26 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用 Expired - Fee Related CN108514862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810384966.8A CN108514862B (zh) 2018-04-26 2018-04-26 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810384966.8A CN108514862B (zh) 2018-04-26 2018-04-26 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用

Publications (2)

Publication Number Publication Date
CN108514862A true CN108514862A (zh) 2018-09-11
CN108514862B CN108514862B (zh) 2020-08-11

Family

ID=63429107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384966.8A Expired - Fee Related CN108514862B (zh) 2018-04-26 2018-04-26 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用

Country Status (1)

Country Link
CN (1) CN108514862B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112337424A (zh) * 2020-09-30 2021-02-09 成都理工大学 一种Bi5O7I/煅烧水滑石复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743205A (zh) * 2007-07-16 2010-06-16 荷兰联合利华有限公司 水纯化组合物和方法
CN105217720A (zh) * 2015-09-18 2016-01-06 河海大学 钴镍水滑石表面负载溴氧化铋纳米材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743205A (zh) * 2007-07-16 2010-06-16 荷兰联合利华有限公司 水纯化组合物和方法
CN105217720A (zh) * 2015-09-18 2016-01-06 河海大学 钴镍水滑石表面负载溴氧化铋纳米材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112337424A (zh) * 2020-09-30 2021-02-09 成都理工大学 一种Bi5O7I/煅烧水滑石复合材料及其制备方法
CN112337424B (zh) * 2020-09-30 2022-04-22 成都理工大学 一种Bi5O7I/煅烧水滑石复合材料及其制备方法

Also Published As

Publication number Publication date
CN108514862B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Yang et al. Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation
Zhang et al. Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application
Bai et al. High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods
Tan et al. Ternary structural assembly of BiOCl/TiO2/clinoptilolite composite: study of coupled mechanism and photocatalytic performance
Chen et al. Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability
Zhu et al. Novel methods of sewage sludge utilization for photocatalytic degradation of tetracycline-containing wastewater
Hou et al. Preparation of Cu 2 O@ TiOF 2/TiO 2 and its photocatalytic degradation of tetracycline hydrochloride wastewater
Chen et al. Facile template-free fabrication of mesoporous ZnCo2O4 fibers with enhanced photocatalytic activity under visible-light irradiation
Bai et al. Study on the controlled synthesis of Zr/TiO2/SBA-15 nanophotocatalyst and its photocatalytic performance for industrial dye reactive red X–3B
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
CN111644190A (zh) 一种可磁分离TiO2/BN/Fe3O4复合材料及其制备方法
Lin et al. Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye
Mohamed et al. Synthesis and Characterization of CeO2‐SiO2 Nanoparticles by Microwave‐Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye
Sun et al. Facile preparation of hierarchical heterostructured TiO2/Bi/Bi2MoO6 photocatalyst for phocatalytic degradation of toluene gas
Wang et al. Photocatalytic performance of Gd ion modified titania porous hollow spheres under visible light
Yang et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: design, fabrication and characterization
Koohestani et al. Photocatalytic activity of immobilized geometries of TiO 2
Guo et al. Study on the microstructural evolution and photocatalytic mechanism of (Au)/PCN photocatalyst
Zhang et al. Enhanced photocatalytic degradation of ofloxacin by Sm2Ti2O7 supported on quartz sand
Mou et al. Enhanced visible light induced photocatalytic degradation of oxytetracycline hydrochloride by n-ZnO/p-NiO composite
Lu et al. Ultrastable photodegradation of formaldehyde under fluorescent lamp irradiation by anti-reflection structure SnS2/TiO2 composite
Shi et al. In situ synthesis of donut-like Fe-doped-BiOCl@ Fe-MOF composites using for excellent performance photodegradation of dyes and tetracycline
Jing et al. Surfactant-induced photocatalytic performance enhancement of europium oxide nanoparticles
CN108514862A (zh) 一种BiOBr/ZnAl1.8Fe0.2O4复合光催化剂及其应用
Chen et al. Preparation of magnetically supported chromium and sulfur co-doped TiO 2 and use for photocatalysis under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200811

Termination date: 20210426

CF01 Termination of patent right due to non-payment of annual fee