CN106513021A - 层状氢氧化物/BiOCl光催化材料及其制备方法 - Google Patents
层状氢氧化物/BiOCl光催化材料及其制备方法 Download PDFInfo
- Publication number
- CN106513021A CN106513021A CN201610966910.4A CN201610966910A CN106513021A CN 106513021 A CN106513021 A CN 106513021A CN 201610966910 A CN201610966910 A CN 201610966910A CN 106513021 A CN106513021 A CN 106513021A
- Authority
- CN
- China
- Prior art keywords
- biocl
- ldh
- hydroxide
- layered
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 239000000463 material Substances 0.000 title claims abstract description 30
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 title abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 13
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 10
- 238000007789 sealing Methods 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000001338 self-assembly Methods 0.000 claims description 11
- 239000007790 solid phase Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 150000001450 anions Chemical class 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 230000009881 electrostatic interaction Effects 0.000 claims description 2
- 239000011229 interlayer Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 239000002131 composite material Substances 0.000 abstract description 16
- 238000000975 co-precipitation Methods 0.000 abstract description 4
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000000593 degrading effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 9
- 238000007146 photocatalysis Methods 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002351 wastewater Substances 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000643 oven drying Methods 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/132—Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/138—Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/306—Pesticides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
Abstract
本发明涉及层状氢氧化物/BiOCl光催化材料及其制备方法。用水热法制备BiOCl,共沉淀法制备LDH;将LDH用甲酰胺剥离得带正电LDH,再将剥离的LDH与带负电BiOCl溶液混合,密封搅拌一天,两种材料通过自组装得到BiOCl/LDH层层复合材料。通过BiOCl、LDH形貌、剥离LDH与层状BiOCl表面电荷性质控制复合材料形貌,制备LDH/BiOCl层层自组装复合的异质结复合材料,从而提供一种制备可见光光催化性能优良BiOCl/LDH层层复合材料的方法,可高效催化去除TOC。本发明涉及的这种层层BiOCl/LDH复合可见光光催化材料具有良好的可见光光催化降解有机物性能,能耗低。
Description
技术领域
本发明涉及一种层状氢氧化物/BiOCl光催化材料及其制备方法,该材料用于可见光光催化降解罗丹明B等有机污染物。
背景技术
生活工业废水中存在大量有机物,其对经济发展和人们健康造成极大的危害。目前关于污水治理方法的研究引起了人们的广泛重视,开发高效、低能耗、适用范围广和有深度氧化能力的化学污染物清除技术一直是此领域的研究热点。
光催化技术是指在含有污染物的水溶液中加入一定量的半导体光催化剂,在光照射的条件下,半导体材料被光激发出具有强氧化能力的电子一空穴对,从而发生一系列的氧化还原反应,使有毒的污染物得以降解的一种水处理方法。此技术在环境和能源开发领域具有广泛前景。它最大的优势在于降解反应一般在常温常压下进行,在催化剂存在的条件下能将水体中的有机污染物彻底分解,使其矿化为一些无机小分子物质、CO2和H2O。此外,光催化技术是利用光能,与其它传统污染治理技术相比,可节省其它能源的使用,缓解日益严重的能源危机。
BiOCl作为一种新型光催化剂,具有独特的电子结构、适合的禁带宽度以及优异的催化性能。而且,其具有开放层状结构有利于电子-空穴的有效分离及电荷转移,具有很高的催化活性。但由于BiOCl的禁带带宽较宽(Eg=3.3eV)无可见光响应,只能被太阳光中的紫外光激发,且重复性较差,对其应用领域和实际应用有限制。层状双氢氧化物(LDHs)因其特殊的层状结构及物理化学性质,可用来制备兼具吸附和光催化能力的复合催化剂(其中ZnCr、NiCr、ZnAl-LDHs在降解污染物方面有很好的催化活性)。但由于光生电子空穴复合速率较快,限制了实用效果。
复合半导体可以实现不同半导体性质上的互补,拓展对光的吸收范围,促进光生电子与空穴的分离,从而有效改善单一半导体的光催化性能。2D纳米片具有大比表面积、大自由度、多晶体取向的优点。
通过文献检索,未发现花状BiOCl/ LDH层层自组装复合的可见光催化材料的制备方法的专利申请和文献报道。
发明内容
本发明的目的之一在于提供一种本发明的目的层状氢氧化物/BiOCl光催化材料。
本发明的目的之二在于提供该光催化材料的制备方法。
本发明的技术构思是:通过BiOCl、LDH形貌、剥离LDH与层状BiOCl表面电荷性质控制复合材料形貌,制备LDH/BiOCl层层自组装复合的异质结复合材料,从而提供一种制备可见光光催化性能优良BiOCl/LDH层层复合材料的方法。
根据上述构思,本发明采用下述技术的方案:
一种层状双氢氧化物/BiOCl光催化材料,其特征在于所述的光催化材料是由带正电的层状双氢氧化物LDH纳米片与带负电BiOCl纳米片通过静电作用自组装形成层层交替堆叠的层状结构,每层的厚度在0.5~5nm,总层数为:6~20层 。
上述的层状双氢氧化物为:二价、三价过渡金属组成层板,水分子、阴离子在层间共同组成的具有层状结构的氧化物。
上述的层状双氢氧化物为:ZnCrLDH、NiCrLDH或ZnFeLDH。
一种制备上述的层状双氢氧化物/BiOCl光催化材料的方法,其特征在于该方法的具体步骤为:
a. 将BiOCl溶于二次水中配制成浓度为1~2g/L,分散均匀得到分散液A;
b. 将层状双氢氧化物LDH溶于甲酰胺中配制成浓度为1~2g/L的溶液,在惰性气氛保护下,搅拌12~24h,离心去除的未剥离LDH,制得带正电LDH 纳米片溶液,即溶液B;
c. 将步骤a所得溶液A缓慢加入步骤b所得溶液B中,密封下搅拌12~24h,经离心分离,水洗,取固相烘干得层状双氢氧化物/BiOCl光催化材料;所述的溶液A与溶液B的体积比为:1:(1~2)。
本发明BiOCl/LDH层层复合可见光催化剂能够高效催化去除罗丹明B染料废水,所制备的复合催化剂以带正电LDH纳米片与带负电BiOCl纳米片自组装形成,两种纳米片复合形成多孔堆叠结构,增强光催化性能,拓展对光的吸收范围,实现不同半导体性质上的互补,有效改善单一半导体的光催化性能,形成光催化性能增强、稳定性、重复性良好的复合材料。通过BiOCl、LDH形貌特征、两种材料表面电荷特性,形成异质结,增强光催化活性。
本发明BiOCl/LDH复合可见光催化剂催化降解罗丹明B染料废水的机理如下:光激发下,半导体价带上的e-跃迁至导带,从而在价带上产生光生空穴,导带上产生光生电子。因两者的禁带宽度不同,价带、导带位置有偏差,光生电子从导带位置较负的半导体的导带流向导带位置较正的半导体的导带,而空穴则由价带位置较正的半导体移向价带位置较负的半导体的价带,实现光生电子、空穴有效分离;光生电子被O2捕获,光生空穴与OH-反应生成·OH,与反应物反应,使其矿化为一些无机小分子物质、CO2和H2O。
具体实施方式
实施例一 :在本实施例中,以处理浓度为2000mg/L TOC为例,BiOCl/ZnCrLDH层层自组装复合可见光光催化材料的制备方法,步骤如下:
(1)用水热法制备BiOCl,共沉淀法制备ZnCrLDH;
(2)将步骤(1)制得BiOCl以1g/L溶于二次水中,超声6h;
(3)将步骤(1)制得LDH以1g/L溶于甲酰胺中,在氮气下搅拌24h,以3000 rpm离心10分钟去除部分未剥离LDH,制得带正电LDH 纳米片;
(4)将按步骤(2)溶液缓慢加入步骤(3)中,两种溶液混合,再在密封胶密封下搅拌24h;
(5)将按步骤(4)溶液用二次水离心洗涤,取固相在60℃烘箱干燥10h,得ZnCrLDH/BiOCl自组装产物。
在本实施例中,对于2000mg/L TOC进行可见光催化,所制备的催化剂能够达到90%的去除率。
实施例二:在本实施例中,以处理浓度为2000mg/L TOC为例,BiOCl/NiCrLDH层层自组装复合可见光光催化材料的制备方法,步骤如下:
(1)用水热法制备BiOCl,共沉淀法制备NiCrLDH;
(2)将步骤(1)制得BiOCl以1g/L溶于二次水中,超声6h;
(3)将步骤(1)制得NiCrLDH以1g/L溶于甲酰胺中,在氮气下搅拌24h,以3000 rpm离心10分钟去除部分未剥离LDH,制得带正电LDH 纳米片;
(4)将按步骤(2)溶液缓慢加入步骤(3)中,两种溶液混合,再在密封胶密封下搅拌24h;
(5)将按步骤(4)溶液用二次水离心洗涤,取固相在60℃烘箱干燥10h,得NiCrLDH/BiOCl自组装产物。
在本实施例中,对于2000mg/L TOC进行可见光催化,所制备的催化剂能够达到85%的去除率。
实施例三:在本实施例中,以处理浓度为2000mg/L TOC为例,BiOCl/ZnFeLDH层层自组装复合可见光光催化材料的制备方法,步骤如下:
(1)用水热法制备BiOCl,共沉淀法制备ZnFeLDH;
(2)将步骤(1)制得BiOCl以1g/L溶于二次水中,超声6h;
(3)将步骤(1)制得ZnFeLDH以1g/L溶于甲酰胺中,在氮气下搅拌24h,以3000 rpm离心10分钟去除部分未剥离LDH,制得带正电LDH 纳米片;
(4)将按步骤(2)溶液缓慢加入步骤(3)中,两种溶液混合,再在密封胶密封下搅拌24h;
(5)将按步骤(4)溶液用二次水离心洗涤,取固相在60℃烘箱干燥10h,得ZnFeLDH/BiOCl自组装产物。
在本实施例中,对于2000mg/L TOC进行可见光催化,所制备的催化剂能够达到82%的去除率。
上面对本发明实施例进行了说明,但本发明不限于上述实施例。只要符合本发明的发明目的,只要不背离本发明层层BiOCl/LDH材料的制备方法及处理废水中有机污染物的方法的技术原理和发明构思,应用于环境污染治理和光催化材料制备等领域,都属于本发明的保护范围。
Claims (4)
1.一种层状双氢氧化物/BiOCl光催化材料,其特征在于所述的光催化材料是由带正电的层状双氢氧化物LDH纳米片与带负电BiOCl纳米片通过静电作用自组装形成层层交替堆叠的层状结构,每层的厚度在0.5~5nm,总层数为:6~20层 。
2.根据权利要求1所述的层状双氢氧化物/BiOCl光催化材料,其特征在于所述的层状双氢氧化物为:二价、三价过渡金属组成层板,水分子、阴离子在层间共同组成的具有层状结构的氧化物。
3.根据权利要求2所述的层状双氢氧化物/BiOCl光催化材料,其特征在于所述的层状双氢氧化物为:ZnCrLDH、NiCrLDH或ZnFeLDH。
4.一种制备根据权利要求1、2或3所述的层状双氢氧化物/BiOCl光催化材料的方法,其特征在于该方法的具体步骤为:
a. 将BiOCl溶于二次水中配制成浓度为1~2g/L,分散均匀得到分散液A;
b. 将层状双氢氧化物LDH溶于甲酰胺中配制成浓度为1~2g/L的溶液,在惰性气氛保护下,搅拌12~24h,离心去除的未剥离LDH,制得带正电LDH 纳米片溶液,即溶液B;
c. 将步骤a所得溶液A缓慢加入步骤b所得溶液B中,密封下搅拌12~24h,经离心分离,水洗,取固相烘干得层状双氢氧化物/BiOCl光催化材料;所述的溶液A与溶液B的体积比为:1:(1~2)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610966910.4A CN106513021B (zh) | 2016-11-05 | 2016-11-05 | 层状氢氧化物/BiOCl光催化材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610966910.4A CN106513021B (zh) | 2016-11-05 | 2016-11-05 | 层状氢氧化物/BiOCl光催化材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106513021A true CN106513021A (zh) | 2017-03-22 |
CN106513021B CN106513021B (zh) | 2019-06-04 |
Family
ID=58326502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610966910.4A Active CN106513021B (zh) | 2016-11-05 | 2016-11-05 | 层状氢氧化物/BiOCl光催化材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106513021B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108031481A (zh) * | 2017-12-20 | 2018-05-15 | 福州大学 | 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法 |
CN112337424A (zh) * | 2020-09-30 | 2021-02-09 | 成都理工大学 | 一种Bi5O7I/煅烧水滑石复合材料及其制备方法 |
CN113976149A (zh) * | 2021-11-05 | 2022-01-28 | 湖南大学 | 钴铝水滑石/富铋氯氧化铋复合光催化剂及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102583631A (zh) * | 2012-03-02 | 2012-07-18 | 北京化工大学 | 一种采用层状双金属氢氧化物回收利用污水中重金属离子的方法 |
CN104941672A (zh) * | 2015-04-27 | 2015-09-30 | 西北师范大学 | 一种单层六边Ag3PO4/Fe3O4/Co-Ni LDH复合材料的制备方法 |
CN105126896A (zh) * | 2015-09-18 | 2015-12-09 | 河海大学 | 一种花状镁铝水滑石负载碳酸银纳米材料的制备方法 |
CN105217720A (zh) * | 2015-09-18 | 2016-01-06 | 河海大学 | 钴镍水滑石表面负载溴氧化铋纳米材料的制备方法 |
-
2016
- 2016-11-05 CN CN201610966910.4A patent/CN106513021B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102583631A (zh) * | 2012-03-02 | 2012-07-18 | 北京化工大学 | 一种采用层状双金属氢氧化物回收利用污水中重金属离子的方法 |
CN104941672A (zh) * | 2015-04-27 | 2015-09-30 | 西北师范大学 | 一种单层六边Ag3PO4/Fe3O4/Co-Ni LDH复合材料的制备方法 |
CN105126896A (zh) * | 2015-09-18 | 2015-12-09 | 河海大学 | 一种花状镁铝水滑石负载碳酸银纳米材料的制备方法 |
CN105217720A (zh) * | 2015-09-18 | 2016-01-06 | 河海大学 | 钴镍水滑石表面负载溴氧化铋纳米材料的制备方法 |
Non-Patent Citations (3)
Title |
---|
DAIQIN HUANG ET AL: "AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of Rhodamine B", 《SEPARATION AND PURIFICATION TECHNOLOGY》 * |
JIANFENG MA ET AL: "BiOCl dispersed on NiFe–LDH leads to enhanced photo-degradation of Rhodamine B dye", 《APPLIED CLAY SCIENCE》 * |
YANHUI AO ET AL: "A BiOBr/Co–Ni layered double hydroxide nanocomposite with excellent adsorption and photocatalytic properties", 《RSC ADV.》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108031481A (zh) * | 2017-12-20 | 2018-05-15 | 福州大学 | 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法 |
CN108031481B (zh) * | 2017-12-20 | 2019-12-31 | 福州大学 | 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法 |
CN112337424A (zh) * | 2020-09-30 | 2021-02-09 | 成都理工大学 | 一种Bi5O7I/煅烧水滑石复合材料及其制备方法 |
CN112337424B (zh) * | 2020-09-30 | 2022-04-22 | 成都理工大学 | 一种Bi5O7I/煅烧水滑石复合材料及其制备方法 |
CN113976149A (zh) * | 2021-11-05 | 2022-01-28 | 湖南大学 | 钴铝水滑石/富铋氯氧化铋复合光催化剂及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106513021B (zh) | 2019-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Madkhali et al. | Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials | |
He et al. | Distinctive binary g-C3N4/MoS2 heterojunctions with highly efficient ultrasonic catalytic degradation for levofloxacin and methylene blue | |
Jiang et al. | A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation | |
Jo et al. | Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation | |
Mohamed et al. | A novel design of porous Cr2O3@ ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: a case study of ciprofloxacin | |
Augugliaro et al. | Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals | |
Suhan et al. | Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review | |
Gholami et al. | Sonophotocatalytic degradation of sulfadiazine by integration of microfibrillated carboxymethyl cellulose with Zn-Cu-Mg mixed metal hydroxide/g-C3N4 composite | |
Min et al. | Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation | |
Han et al. | Chapter green nanotechnology: development of nanomaterials for environmental and energy applications | |
Li et al. | Self-cleaning photocatalytic PVDF membrane loaded with NH2-MIL-88B/CDs and Graphene oxide for MB separation and degradation | |
Mariappan et al. | Interfacial oxygen vacancy modulated ZIF-8-derived ZnO/CuS for the photocatalytic degradation of antibiotic and organic pollutants: DFT calculation and degradation pathways | |
Deng et al. | Nanohybrid photocatalysts for heavy metal pollutant control | |
Chegeni et al. | Photocatalytic bauxite and red mud/graphitic carbon nitride composites for Rhodamine B removal | |
CN106513021A (zh) | 层状氢氧化物/BiOCl光催化材料及其制备方法 | |
Liu et al. | S-scheme heterojunction ZnO/g-C3N4 shielding polyester fiber composites for the degradation of MB | |
Ma et al. | Electrochemical fabrication of NZVI/TiO2 nano-tube arrays photoelectrode and its enhanced visible light photocatalytic performance and mechanism for degradation of 4-chlorphenol | |
Shi et al. | One-step hydrothermal synthesis of BiVO4/TiO2/RGO composite with effective photocatalytic performance for the degradation of ciprofloxacin | |
Gao et al. | The synthesis of novel FeS 2/gC 3 N 4 nanocomposites for the removal of tetracycline under visible-light irradiation | |
Bhuvaneswari et al. | r-GO supported g-C3N4/NiMgAl layered triple hydroxide hybrid as a Visible Light photocatalyst for organic dye removal | |
CN107020073A (zh) | 一种基于石墨烯的光催化剂材料的制备方法 | |
CN112742419A (zh) | 一种可见光响应的新型纳米催化剂及其制备方法和应用 | |
Huang et al. | Z-scheme ZnM-LDHs/g-C3N4 (M= Al, Cr) photocatalysts: their desulfurization performance and mechanism for model oil with air | |
Sin et al. | WO3/Nb2O5 nanoparticles-decorated hierarchical porous ZnO microspheres for enhanced photocatalytic degradation of palm oil mill effluent and simultaneous production of biogas | |
Yuan et al. | Relationship of structure and enhanced photocatalytic activity of S-scheme BiOCl/g-C3N4 heterojunction for xanthate removal under visible light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |