CN112315941A - 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品 - Google Patents

一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品 Download PDF

Info

Publication number
CN112315941A
CN112315941A CN202011293756.1A CN202011293756A CN112315941A CN 112315941 A CN112315941 A CN 112315941A CN 202011293756 A CN202011293756 A CN 202011293756A CN 112315941 A CN112315941 A CN 112315941A
Authority
CN
China
Prior art keywords
mesoporous silica
antigen
ova
pei
pmsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011293756.1A
Other languages
English (en)
Inventor
杨永
苏乾洪
符钊铭
马荣英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202011293756.1A priority Critical patent/CN112315941A/zh
Publication of CN112315941A publication Critical patent/CN112315941A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品,本发明以PEI修饰的介孔二氧化硅纳米球为原料,通过静电作用吸附模型抗原,然后再外层包裹具有还原敏感二硫键的金属酚醛网络作为保护网络,得到纳米疫苗。本发明制备方法操作简便,能耗低,环境友好,易于扩大生产,所得纳米疫苗具有很好的体内长期稳定性和生物相容性,并对肿瘤具有显著的治疗和预防效果。

Description

一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品
技术领域
本发明涉及一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品,属于纳米材料制备技术领域。
背景技术
在用作递送肿瘤特异性抗原的载体的多种纳米材料中,介孔二氧化硅纳米粒子(MSN)由于其高负载能力,易于表面性质改善和良好的生物相容性而有望成为首选。然而,由于抗原交叉呈递效率低下,一般的MSN无法满足引起有效的抗癌细胞免疫应答的要求。考虑到这一点,可以用通过质子海绵效应促进溶酶体逃逸,并由此诱导强烈的细胞免疫的聚乙烯亚胺(PEI)来修饰MSN,以改善纳米载体的佐剂作用。然而,暴露的PEI在一定程度上对正常组织细胞有毒和有害,并且负载的抗原可能易于从组织液中的MSN上解离。因此,有必要在抗原-载体复合物周围附加生物安全和保护性网络以解决这些问题。
发明内容
针对现有技术的不足,本发明提供了一种具有pH和还原双敏感的纳米疫苗的制备方法及所得纳米疫苗,该方法对负载抗原的PEI修饰MSN进行包裹,使其同时具有pH和还原双敏感性,以提高疫苗蛋白的靶向递送效率和交叉递呈,促进免疫应答。
金属酚网络(MPN)是由金属离子与多酚之间的配位相互作用建立的一系列超分子网络结构。MPN由于具有一些独特的优势,例如简单的合成以及与人体组织的良性生物相容性,因此可以用作生物材料。本发明以聚乙烯亚胺修饰介孔二氧化硅纳米颗粒为原料,通过静电作用吸附模型抗原,形成负载抗原的PEI修饰MSN,然后通过简单的络合反应在负载抗原的PEI修饰MSN周围包裹上含有大量还原敏感性二硫键的MPN,形成纳米疫苗。该纳米疫苗以具有还原敏感二硫键的金属酚醛网络作为保护网络,生物安全性提高,抗原不易解离,抗原的靶向递送效率和交叉递呈效率提高,能够引发有效的细胞免疫反应,提高癌症免疫疗法的疗效。
本发明技术方案如下:
一种具有pH和还原双敏感的纳米疫苗的制备方法,该方法包括以下步骤:
(1)将PEI修饰的介孔二氧化硅纳米球悬浮在水中,然后将抗原溶液加入上述悬浮液中,充分振摇,通过静电吸附实现PEI修饰的介孔二氧化硅纳米球对抗原的负载;
(2)将4-(2-氨基乙基)-1,2-苯二酚盐酸盐、二甲基氨基吡啶和N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯溶解在溶剂中,在气体保护下搅拌反应,然后再加入具有巯基末端的八臂聚乙二醇继续反应,得到邻苯二酚封端的八臂聚乙二醇;
(3)将步骤(1)得到的负载有抗原的PEI修饰的介孔二氧化硅纳米球分散在水中,然后加入邻苯二酚封端的八臂聚乙二醇、FeCl3溶液和Tris-HCl缓冲液进行反应,得具有pH和还原双敏感的纳米疫苗。
进一步的,所述PEI修饰的介孔二氧化硅纳米球可以采用现有技术中公开的方法进行制备。本发明某一具体实施方式中,提供了一种制备方法,如下:将介孔二氧化硅纳米球超声分散在水中,然后加入聚乙烯亚胺溶液,充分搅拌混合,离心、洗涤,得到PEI修饰的介孔二氧化硅纳米球。该方法中,优选的,聚乙烯亚胺与介孔二氧化硅纳米球的质量比为2-3:1。优选的,搅拌混合时间为1.5~2.5 h。
进一步的,步骤(1)中,所述抗原为卵清蛋白(OVA)。
进一步的,步骤(1)中,PEI修饰的介孔二氧化硅纳米球(简称PMSN)与抗原的质量比为1:0.8-1。一般的,PMSN悬浮在水中的浓度为1.8~2 mg/mL,抗原溶液的浓度为1.6~2.0mg/mL。
进一步的,步骤(1)中,振摇通过磁力搅拌器实现,即通过振动使混合物混合均匀,振摇的时间为1~2 h。
进一步的,步骤(1)中,振摇后离心、洗涤,得到负载有抗原的PEI修饰的介孔二氧化硅纳米球。离心的转速和时间可以为10000~12000 rpm和10~15 min。洗涤用纯水进行,一般洗涤3-5次。
进一步的,步骤(2)中,4-(2-氨基乙基)-1,2-苯二酚盐酸盐、二甲基氨基吡啶、N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯、具有巯基末端的八臂聚乙二醇的质量比为22~25 :23~25 :23~26 :75~85。
进一步的,步骤(2)中,所述溶剂为有机溶剂,例如DMF等。4-(2-氨基乙基)-1,2-苯二酚盐酸盐在有机溶剂中的浓度为4-9mg/ml。
进一步的,步骤(2)中, 4-(2-氨基乙基)-1,2-苯二酚盐酸盐、二甲基氨基吡啶和N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯在气体保护下搅拌反应40~50 min,加入具有巯基末端的八臂聚乙二醇后继续在气体保护下搅拌反应3~4 h。所述保护气体可以是氮气或惰性气体。
进一步的,步骤(2)中,所述具有巯基末端的八臂聚乙二醇能从市场上购买得到,其中,具有巯基末端的八臂聚乙二醇的分子量为8000-20000。
进一步的,步骤(2)中,反应后的产物经透析、冻干后得到邻苯二酚封端的八臂聚乙二醇。采用pH 4-5的水进行透析,透析时间一般为48~60 h,以除去小分子杂质,透析后溶液然后冻干,得邻苯二酚封端的八臂聚乙二醇。
进一步的,步骤(3)中,负载有抗原的PEI修饰的介孔二氧化硅纳米球、邻苯二酚封端的八臂聚乙二醇、FeCl3的质量比为4.5~5:1:0.2-0.3。
进一步的,步骤(3)中,Tris-HCl缓冲液的pH为8-9,水与Tris-HCl缓冲液的体积比为4-5:3。
进一步的,步骤(3)中,为了将负载有抗原的PEI修饰的介孔二氧化硅纳米球更好的分散在水中,可以采用超声分散、涡旋分散等辅助分散方式。分散均匀后,将负载有抗原的PEI修饰的介孔二氧化硅纳米球、FeCl3溶液和Tris-HCl缓冲液依次加入,进行络合反应。反应后离心、洗涤,得到最终产物。离心的转速和时间为10000~12000 rpm和10~15 min。洗涤采用纯水进行,洗涤次数一般为3~5次。
进一步的,步骤(3)中,反应20-40min。
本发明所得纳米疫苗具有pH和还原双敏感性,具有很好的体内长期稳定性和生物相容性,能够改善抗原靶向递送效率和交叉呈递效率低下的问题,能够引起有效的免疫应答,对肿瘤具有显著的治疗和预防效果。因此,该纳米疫苗也在本发明保护范围之内。
本技术方案的工作原理及有益效果在于:
1、本发明将PEI修饰的MSN作为纳米载体,通过静电吸附负载模型抗原,然后通过简单的络合反应将负载抗原的纳米载体用含有大量还原敏感性二硫键的MPN包裹,MPN具有还原敏感性,在细胞质中能被还原性谷胱甘肽还原,释放出其内含的抗原。
2、本发明本发明制备方法操作简便,能耗低,环境友好,易于扩大生产。
3、本发明制备所得的纳米疫苗具有良好的体内长期稳定性、生物相容性、靶向性,能够促进交叉递呈刺激细胞免疫和体液免疫,能够有效治疗和预防癌症,对肿瘤具有显著的治疗和预防效果。
附图说明
图1是实施例1制备的具有pH和还原双敏感的纳米疫苗的制备过程;
图2是实施例1中MSN的透射电子显微镜图片;
图3为实施例1制备的PMSN@OVA-MPN的扫描电子显微镜图片;
图4为实施例1制备的PMSN@OVA-MPN的透射电子显微镜图片;
图5为实施例2中不同样品的FT-IR光谱,其中(1)MSN,(2)PMSN,(3)OVA,(4)PMSN@OVA,(5)PMSN@OVA-MPN;
图6为实施例2制备的PMSN@OVA-MPN的动态激光散射结果;
图7为实施例3制备的PMSN@OVA-MPN在PBS(pH=7.4),PBS(pH=5.0)和谷胱甘肽溶液中的累积释放OVA结果;
图8为实施例4中通过CCK-8测定PMSN,PMSN@OVA和PMSN@OVA-MPN对DC2.4细胞的体外细胞毒性评估结果。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步的详细说明。
下述实施例中,所用带有巯基末端的八臂聚乙二醇购自瑞西生物科技有限公司(西安),分子量为10000。
实施例1
具有pH和还原双敏感的纳米疫苗的制备过程如图1所示,具体步骤如下:
PEI修饰介孔二氧化硅纳米球(PMSN)的合成:通过超声将20 mg冻干的MSN分散在10mL的超纯水中。将PEI溶液(2 mL,20 mg/mL)加入上述MSN悬浮液中。磁力搅拌2小时后,离心(12000 rpm,15 min)收集PEI修饰的介孔二氧化硅纳米球,并用纯水洗涤3次以除去游离的PEI。最后,通过冻干获得纯的PEI修饰的介孔二氧化硅纳米球,记为PMSN。
卵清蛋白在PMSN上的负载:将PMSN(1 mg)悬浮在0.5 mL的纯水中,然后将0.5mL2.0 mg/mL的卵清蛋白(OVA)溶液悬浮于悬浮液中。将混合物在室温下快速振摇1小时,然后离心(12000 rpm,15min)。底部固体用纯水洗涤三次,以除去游离的OVA,得到负载有OVA的PEI修饰的介孔二氧化硅纳米球,记为PMSN@OVA。
邻苯二酚封端的八臂PEG(CPEG)的合成:将4-(2-氨基乙基)-1,2-苯二酚盐酸盐(23 mg,0.12 mmol),二甲基氨基吡啶(24 mg,0.2 mmol)和N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯(SPDP,25 mg,0.08 mmol)溶解在3mL DMF中,所得溶液在氮气保护下搅拌45min,然后加入带有巯基末端的八臂聚乙二醇(80 mg,8μmol,分子量10000),在氮气保护下再反应3 h。反应后,将混合物在pH为4-5的水中透析48h,以将未反应的小分子除去,透析后冻干,获得CPEG。
金属酚醛网络封装PMSN@OVA(PMSN@OVA-MPN)的制备:通过超声将PMSN@OVA纳米颗粒(5 mg)分散在5 mL纯水中。涡旋30秒后,依次加入CPEG(250μL,4 mg/mL),FeCl3溶液(250μL,1 mg/mL)和Tris-HCl缓冲液(pH=8.5,3 mL,50 mM),磁力搅拌反应20min。反应后,离心(12000 rpm,15分钟)得到沉淀物,将沉淀物用纯水洗涤三次,以除去过量的CPEG和FeCl3,得PMSN@OVA-MPN,即为具有pH和还原双敏感的纳米疫苗。
图2为MSN的透射电子显微镜图片,从图中可以看出,MSN表面有许多介孔,可用于携带卵清蛋白。图3为PMSN@OVA-MPN的扫描电子显微镜图片,从图中可以看出,纳米疫苗PMSN@OVA-MPN的粒径约为90 nm。图4为PMSN@OVA-MPN的透射电子显微镜图片,从图中可以看出,有薄薄的一层MPN壳覆盖了PMSN@OVA纳米颗粒。
实施例2
PEI修饰介孔二氧化硅纳米球(PMSN)的合成:通过超声将18 mg冻干的MSN分散在10 mL的超纯水中。将PEI溶液(2mL,20mg/mL)加入上述MSN悬浮液中。磁力搅拌2.5 h后,离心(12000 rpm,15 min)收集PEI修饰的纳米颗粒,并用纯水洗涤3次以除去游离的PEI。最后,通过冻干获得纯的PEI修饰的介孔二氧化硅纳米球,记为PMSN。
卵清蛋白在PMSN上的负载:将PMSN(1 mg)悬浮在0.5 mL的纯水中,然后将0.5 mL1.6 mg/mL的卵清蛋白(OVA)溶液悬浮于悬浮液中。将混合物在室温下快速振摇1 h,然后离心(12000 rpm,15min)。离心后的底部固体用纯水洗涤三次,以除去游离的OVA,得到PMSN@OVA。
邻苯二酚封端的八臂PEG(CPEG)的合成:将4-(2-氨基乙基)-1,2-苯二酚盐酸盐(23 mg,0.12 mmol),二甲基氨基吡啶(24 mg,0.2 mmol)和N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯(SPDP,25 mg,0.08 mmol)溶解在3 mLDMF中,将所得溶液在氮气保护下搅拌45min,然后加入带有巯基末端的八臂聚乙二醇(80 mg,8μmol,分子量10000),在氮气保护下再反应3.5 h。反应后,将混合物在pH为4-5的水中透析48h,以将未反应的小分子除去,透析后冻干,获得CPEG。
金属酚醛网络封装PMSN@OVA(PMSN@OVA-MPN)的制备:通过超声将PMSN@OVA纳米颗粒(5 mg)分散在5 mL纯水中。涡旋30秒后,依次加入CPEG(250μL,4 mg/mL),FeCl3溶液(250μL,1 mg/mL)和Tris-HCl缓冲液(pH=8.5,3 mL,50 mM),磁力搅拌反应20min。反应后,离心(12000 rpm,15 min)得到沉淀物,将沉淀物用纯水洗涤三次,以除去过量的CPEG和FeCl3,得PMSN@OVA-MPN。
图5为(1)MSN,(2)PMSN,(3)OVA,(4)PMSN@OVA和(5)PMSN@OVA-MPN的FT-IR光谱,从图中可以看出,O-H在3294 cm-1处的拉伸振动峰,C-H在2967 cm-1处的拉伸振动峰和1651cm-1处的C=O的拉伸振动峰证明了OVA被成功负载。图6为PMSN@OVA-MPN的动态激光散射结果,从图中可以看出,PMSN@OVA-MPN具有平均150.4 nm的流体动力学粒径和相对窄的粒径分布。
实施例3
PMSN@OVA-MPN体外OVA释放行为研究
为了研究PMSN@OVA-MPN在不同介质中的OVA释放行为,取适量实施例1制备的PMSN@OVA-MPN(其中OVA标记有FITC),将其平均分为三份,分别将它们分散在A:4 mLPBS(pH=7.4)、B:4mL PBS(pH=7.4)和C:4 mLPBS(pH=5)三份PBS中, 并在37°C下搅拌。 在搅拌第7小时时,将还原性谷胱甘肽添加到一种pH=7.4的中性PBS悬浮液中以达到10 mM的浓度,但是另一种中性PBS和弱酸性PBS悬浮液在整个过程中均不加入谷胱甘肽。在不同时间点进行离心(12000 rpm,5 min),然后从这些悬浮液中提取800μL上清液进行检测,剩余的悬浮液中补充相应的800μL谷胱甘肽溶液(10 mM),中性PBS或弱酸性PBS,然后继续搅拌。其中,加入谷胱甘肽的悬浮液中补充谷胱甘肽溶液,不加谷胱甘肽溶液中性PBS的悬浮液中补充中性PBS,不加谷胱甘肽溶液弱酸性PBS的悬浮液中补充弱酸性PBS,每次离心均采用相同的操作。通过荧光分光光度计分析不同时间所得上清液,以对释放的OVA进行定量。
图7为PMSN@OVA-MPN在PBS(pH=7.4),PBS(pH=5.0)和谷胱甘肽溶液中的体外累积释放OVA能力图。如图7所示,由于OVA被封装在金属酚醛网络中并在中性条件下具有一定的稳定性,因此在PBS(pH=7.4)中只有少量的OVA释放。35小时后,仅约23.9%的OVA从PBS(pH=7.4)中的载体中排出。然而,当在第七小时将还原性谷胱甘肽添加到PBS(pH=7.4)中时,在第8小时内释放约70%的OVA。这是因为通过硫醇与二硫键的快速交换反应可以还原和分解作为MPN关键成分的二硫键,从而导致MPN的分解。另一方面,在弱酸性PBS(pH=5.0)中,释放的OVA在8小时内达到80.5%,这可能是由于在酸性条件下,MPN中酚羟基与铁离子之间的配位容易分解。由此可以看出,本发明PMSN@OVA-MPN具有pH和还原的双敏感性。
实施例4
PMSN@OVA-MPN体外细胞毒性评估
首先,将DC2.4细胞以每孔7000个细胞的密度在96孔板中孵育24小时。然后将以各种SiO2浓度(15.6μg/ mL、31.3μg/ mL、62.5μg/ mL、125μg/ mL和250μg/ mL)分散在1640基础培养基中的PMSN、PMSN@OVA和PMSN@OVA-MPN添加到相关孔中。将96孔板在细胞培养箱中放置24小时后,使用标准CCK-8分析法测定细胞活力。
图8为通过CCK-8测定PMSN,PMSN@OVA和PMSN@OVA-MPN对DC2.4细胞的体外细胞毒性评估结果。如图8所示,纯PEI由于其高正电荷导致对细胞膜的强亲和力,甚至导致细胞膜变性,因此对正常细胞是恶性的。因此,PEI修饰的介孔二氧化硅纳米球PMSN表现出更高的细胞毒性,即当浓度从31.3μg/mL增加到62.5μg/mL时,DC2.4细胞的活力从103.5%下降到约86.4%。从PMSN@OVA看,生物学上无害的OVA的负载一定程度上降低了PMSN的毒性并增强了细胞活力。从PMSN@OVA-MPN看,PMSN@OVA-MPN的外壳由无毒的多酚和三价铁离子组成,极大地改善了PMSN纳米颗粒的生物相容性。结果,PMSN@OVA-MPN组的DC2.4细胞直到浓度增加到250μg/mL才显示出明显的死亡率。证明PMSN@OVA-MPN具有良好的生物相容性和生物安全性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种具有pH和还原双敏感的纳米疫苗的制备方法,其特征是包括以下步骤:
(1)将PEI修饰的介孔二氧化硅纳米球悬浮在水中,然后将抗原溶液加入上述悬浮液中,充分振摇,通过静电吸附实现PEI修饰的介孔二氧化硅纳米球对抗原的负载;
(2)将4-(2-氨基乙基)-1,2-苯二酚盐酸盐、二甲基氨基吡啶和N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯溶解在溶剂中,在气体保护下搅拌反应,然后再加入具有巯基末端的八臂聚乙二醇继续反应,得到邻苯二酚封端的八臂聚乙二醇;
(3)将步骤(1)得到的负载有抗原的PEI修饰的介孔二氧化硅纳米球分散在水中,然后加入邻苯二酚封端的八臂聚乙二醇、FeCl3溶液和Tris-HCl缓冲液进行反应,得具有pH和还原双敏感的纳米疫苗。
2.根据权利要求1所述的制备方法,其特征是:所述抗原为卵清蛋白。
3.根据权利要求1所述的制备方法,其特征是:PEI修饰的介孔二氧化硅纳米球按照以下方法得到:将介孔二氧化硅纳米球超声分散在水中,然后加入聚乙烯亚胺溶液,充分搅拌混合,离心、洗涤,得到PEI修饰的介孔二氧化硅纳米球;优选的,聚乙烯亚胺与介孔二氧化硅纳米球的质量比为2-3:1;优选的,搅拌混合时间为1.5~2.5 h。
4.根据权利要求1、2或3所述的制备方法,其特征是:步骤(1)中,PEI修饰的介孔二氧化硅纳米球与抗原的质量比为1:0.8-1。
5.根据权利要求1、2或3所述的制备方法,其特征是:步骤(1)中,振摇的时间为1~2 h。
6.根据权利要求1所述的制备方法,其特征是:步骤(2)中,4-(2-氨基乙基)-1,2-苯二酚盐酸盐、二甲基氨基吡啶、N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯、具有巯基末端的八臂聚乙二醇的质量比为22~25 :23~25 :23~26 :75~85。
7.根据权利要求1或6所述的制备方法,其特征是:步骤(2)中,4-(2-氨基乙基)-1,2-苯二酚盐酸盐、二甲基氨基吡啶和N-琥珀酰亚胺基3-(2-吡啶基二硫代)丙酸酯在气体保护下搅拌反应40~50 min,加入具有巯基末端的八臂聚乙二醇后继续在气体保护下搅拌反应3~4h。
8.根据权利要求1所述的制备方法,其特征是:步骤(3)中,负载有抗原的PEI修饰的介孔二氧化硅纳米球、邻苯二酚封端的八臂聚乙二醇、FeCl3的质量比为4.5~5:1:0.2-0.3。
9.根据权利要求8所述的制备方法,其特征是:步骤(3)中,Tris-HCl缓冲液的pH为8-9,水与Tris-HCl缓冲液的体积比为4-5:3。
10.按照权利要求1-9中任一项所述的具有pH和还原双敏感的纳米疫苗的制备方法制得的具有pH和还原双敏感的纳米疫苗。
CN202011293756.1A 2020-11-18 2020-11-18 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品 Pending CN112315941A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011293756.1A CN112315941A (zh) 2020-11-18 2020-11-18 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011293756.1A CN112315941A (zh) 2020-11-18 2020-11-18 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品

Publications (1)

Publication Number Publication Date
CN112315941A true CN112315941A (zh) 2021-02-05

Family

ID=74322504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011293756.1A Pending CN112315941A (zh) 2020-11-18 2020-11-18 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品

Country Status (1)

Country Link
CN (1) CN112315941A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521302A (zh) * 2021-06-21 2021-10-22 厦门大学 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用
CN113663135A (zh) * 2021-07-17 2021-11-19 上海市伤骨科研究所 一种th2细胞活化的3d打印支架及其制备方法与应用
CN114469895A (zh) * 2022-03-14 2022-05-13 海南大学 递送抗原和免疫环境调节剂的金属多酚纳米疫苗的制备方法及所得产品
CN115252776A (zh) * 2022-05-26 2022-11-01 上海大学 上转换-金属酚醛网络复合纳米材料的制备及其在肿瘤治疗方面的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195963A1 (en) * 2011-12-07 2013-08-01 The Methodist Hospital Research Institute Mesoporous silicon particles for the presentation of tumor antigens and adjuvant for anti-cancer immunity
CN109549933A (zh) * 2018-11-30 2019-04-02 华中科技大学 一种pH响应的纳米载体及其制备方法与应用
CN110101869A (zh) * 2019-05-22 2019-08-09 上海大学 聚乙烯亚胺修饰的超小介孔二氧化硅其制备方法及应用
CN111870699A (zh) * 2019-05-03 2020-11-03 奈力生医股份有限公司 表面修饰的介孔二氧化硅纳米粒子、其制造方法及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195963A1 (en) * 2011-12-07 2013-08-01 The Methodist Hospital Research Institute Mesoporous silicon particles for the presentation of tumor antigens and adjuvant for anti-cancer immunity
CN109549933A (zh) * 2018-11-30 2019-04-02 华中科技大学 一种pH响应的纳米载体及其制备方法与应用
CN111870699A (zh) * 2019-05-03 2020-11-03 奈力生医股份有限公司 表面修饰的介孔二氧化硅纳米粒子、其制造方法及用途
US20200345649A1 (en) * 2019-05-03 2020-11-05 Nano Targeting & Therapy Biopharma Inc. Surface-modified mesoporous silica nanoparticle for blood-brain barrier penetration,tumor targeting and cancer metastasis treatment, methods of production and uses thereof
CN110101869A (zh) * 2019-05-22 2019-08-09 上海大学 聚乙烯亚胺修饰的超小介孔二氧化硅其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIN ZHOU ET AL: "Metal−Phenolic Network-Encapsulated Nanovaccine with pH and Reduction Dual Responsiveness for Enhanced Cancer Immunotherapy", 《MOLECULAR PHARMACEUTICS》 *
刘瑶等: "还原敏感型药物递送系统的应用研究现状", 《药学进展》 *
曾峰等: "有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用", 《化学进展》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521302A (zh) * 2021-06-21 2021-10-22 厦门大学 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用
CN113521302B (zh) * 2021-06-21 2024-04-12 厦门大学 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用
CN113663135A (zh) * 2021-07-17 2021-11-19 上海市伤骨科研究所 一种th2细胞活化的3d打印支架及其制备方法与应用
CN114469895A (zh) * 2022-03-14 2022-05-13 海南大学 递送抗原和免疫环境调节剂的金属多酚纳米疫苗的制备方法及所得产品
CN115252776A (zh) * 2022-05-26 2022-11-01 上海大学 上转换-金属酚醛网络复合纳米材料的制备及其在肿瘤治疗方面的应用
CN115252776B (zh) * 2022-05-26 2024-04-09 上海大学 上转换-金属酚醛网络复合纳米材料的制备及其在肿瘤治疗方面的应用

Similar Documents

Publication Publication Date Title
CN112315941A (zh) 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品
Cui et al. Templated assembly of pH‐labile polymer‐drug particles for intracellular drug delivery
Kommareddy et al. Poly (ethylene glycol)–modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery
Knežević et al. Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles
Prabha et al. Preparation and characterization of chitosan—Polyethylene glycol‐polyvinylpyrrolidone‐coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study
CN107865972B (zh) 一种兼有示踪和靶向药物输送作用的多功能膜控型靶向纳米载体的制备方法和应用
Yu et al. Poly (ethylene glycol)-mediated mineralization of metal–organic frameworks
CN110575545B (zh) 具有电荷翻转能力的氧化应激性药物系统及其制备方法
Shao et al. Cascade catalytic nanoplatform based on “butterfly effect” for enhanced immunotherapy
Kim et al. Polyethyleneimine‐associated polycaprolactone—Superparamagnetic iron oxide nanoparticles as a gene delivery vector
Cao et al. Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721
Chu et al. NIR Responsive Doxorubicin‐Loaded Hollow Copper Ferrite@ Polydopamine for Synergistic Chemodynamic/Photothermal/Chemo‐Therapy
CN113101370B (zh) 一种二氧化锰靶向纳米药物载体及其制备方法、应用
CN109172542B (zh) 一种多级pH响应介孔二氧化硅复合纳米粒子及其应用
Jang et al. Hyaluronic acid-siRNA conjugate/reducible polyethylenimine complexes for targeted siRNA delivery
Tayebee et al. Fe3O4@ SiO2-NH2 as an efficient nanomagnetic carrier for controlled loading and release of acyclovir
Wang et al. Protease-promoted drug delivery using peptide-functionalized gold nanoparticles
Aliabadi et al. Planar polymer-graphene oxide nanohybrid as a 5-fluorouacil carrier in pH-responsive controlled release
CN112694577A (zh) 一种印迹介孔材料及其制备方法和应用
Yalamandala et al. Programmed Catalytic Therapy and Antigen Capture‐Mediated Dendritic Cells Harnessing Cancer Immunotherapies by In Situ‐Forming Adhesive Nanoreservoirs
Xu et al. PEG modification enhances the in vivo stability of bioactive proteins immobilized on magnetic nanoparticles
Eskandani et al. Enzymatically crosslinked magnetic starch-grafted poly (tannic acid) hydrogel for “smart” cancer treatment: An in vitro chemo/hyperthermia therapy study
CN112741903B (zh) 一种dna/纳米复合物及其制备方法与应用
Chauhan et al. A facile strategy for the preparation of polypropylene sulfide nanoparticles for hydrophobic and base‐sensitive cargo
CN111135293B (zh) 一种基于ova蛋白修饰的氧化铁锰杂化纳米药物与制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210205