CN113521302A - 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用 - Google Patents

多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用 Download PDF

Info

Publication number
CN113521302A
CN113521302A CN202110685309.9A CN202110685309A CN113521302A CN 113521302 A CN113521302 A CN 113521302A CN 202110685309 A CN202110685309 A CN 202110685309A CN 113521302 A CN113521302 A CN 113521302A
Authority
CN
China
Prior art keywords
polyethylene glycol
peptide
arm polyethylene
macroporous silicon
release system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110685309.9A
Other languages
English (en)
Other versions
CN113521302B (zh
Inventor
谢静静
吴月煌
周敏
张晓坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202110685309.9A priority Critical patent/CN113521302B/zh
Publication of CN113521302A publication Critical patent/CN113521302A/zh
Application granted granted Critical
Publication of CN113521302B publication Critical patent/CN113521302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用,涉及纳米生物医药领域。大孔二氧化硅纳米粒子先进行顺式乌头酸酐功能化,简单物理包埋肽类抗癌药物,后与带有多个氨基的多臂聚乙二醇以静电吸附形式形成递药载体,构成多臂聚乙二醇封堵的大孔硅肽纳米控释系统,克服蛋白肽类药物在体内容易降解失活、无法穿透细胞膜、口服生物利用度低的缺陷;提高在体生物稳定性、增强胞膜通透性和提高患者用药的依从性;降低纳米粒子自身毒性、提高运输载体的生物安全性;延长大分子药物的体内血液循环时间、增强肿瘤部位的富集和滞留效应。该系统联合雷公藤红素可在Bcl‑2靶点丰富的癌症治疗药物中应用,或在制备克服耐药性癌症的治疗药物中应用。

Description

多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用
技术领域
本发明涉及纳米生物医药领域,具体是涉及一种多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用。
背景技术
癌症的高发病率和高死亡率使人们“谈癌色变”。目前癌症难以根治的主要原因是肿瘤多药耐药性的产生(Multi-drug Resistance,MDR)。肿瘤多药耐药产生耐药的作用机理十分复杂。研究表明B淋巴细胞瘤-2基因(Bcl-2)家族蛋白在多种疾病和肿瘤细胞凋亡中发挥关键作用,它在肿瘤细胞中过表达可能导致癌细胞凋亡受到持续抑制从而诱发耐药癌症(Artif Cells NanomedBiotechnol,44(2016)1212-1221)。因此,许多针对靶向Bcl-2的小分子被开发出来用于治疗耐药性癌症,如Apogossypol,HA-14,Antimycin A,Oblimersensodium,Gossypol(AT-101),ABT-737(ABT-263),GX15-070,VENCLEXTA已获得FDA的批准用于临床应用或试验(Clin.CancerRes.15(2009)1126–113)。与化疗药物相比,蛋白质多肽类药物在抗癌方面具有特异性高、功能复杂、对正常组织毒性小,不易产生耐药性等特点(Nature Reviews Drug Discovery,7(2008)23-39)。蛋白多肽类药物的抗癌作用主要通过直接或间接的途径实现:①通过特异性途径直接诱导肿瘤细胞凋亡;②通过刺激免疫应答或靶向肿瘤血管和间质而间接抑制肿瘤增殖。然而,将具有药理活性的蛋白多肽类药物递送到肿瘤组织或细胞会遇到各种挑战,如血液循环不稳定、酶降解、半衰期短、存在免疫原性和无法跨越细胞膜等。因此,许多研究致力于通过设计纳米载体递送系统突破蛋白多肽类药物临床应用屏障,防止蛋白多肽变性和降解,促进肿瘤靶向给药,提高跨膜效率,并在靶点控制蛋白质的释放和活性(Bioconjug Chem,30(2019)305-324)。
刺激响应型纳米药物在对抗耐药性癌症方面表现出许多优势。作为智能系统,刺激响应型纳米药物在病理条件下或在外源性刺激下,能够实现位点特异性积累并触发药物释放。由于蛋白肽类药物在血液循环中的不稳定性,将其装载进纳米载体后利用门控分子进行封堵,实现“零泄露、高保护”的效果,可大大提高抗癌疗效。常用的堵孔剂有无机金属纳米材料(如Fe3O4、Au)、特殊结构的大分子物质(如环糊精)、生物大分子(如DNA、蛋白质)、特定情况能够聚合和解聚的功能性聚合物(如多巴胺)等。Cui Y等(ACS Appl MaterInterfaces,4(2012)3177-3183)人报道一种以单臂聚乙二醇(PEG)作为分子开关的传统小孔径(~2.4nm)介孔二氧化硅纳米载药系统,在高浓度谷胱甘肽环境下能够实现染料分子的可控释放。在众多的堵孔材料中,基于PEG封堵的介孔二氧化硅纳米载体可以帮助纳米粒子降低毒性,提高生物安全性,规避体内清除作用并延长血液循环时间;还可以根据介孔二氧化硅孔径的大小选择不同分子量和结构的PEG分子,适用范围广。目前关于多臂聚乙二醇(mPEG)封堵大孔径(6~15nm)的介孔二氧化硅纳米粒子的研究未见其报道。
介孔二氧化硅纳米材料(Mesoporous Silica Nanoparticles,MSNs)是被FDA批准用于临床I期试验的安全无机纳米材料,易于修饰的表面常常连接不同的化学基团或者靶向分子赋予其主动靶向性,增强肿瘤的穿透能力,还可与多种纳米材料,如金属纳米粒子等结合制备复合材料,构建新型多功能纳米药物递送系统,具有十分广阔的前景。通过调节不同的反应条件,可以制备出适用于包载生物大分子的介孔二氧化硅纳米粒。本发明申请人曾在专利公开号CN 109224063 A中公开双重负载肽类及化疗药物的纳米复合载体及其制备与应用;其中纳米复合载体中所用的介孔二氧化硅纳米裸载体为本发明申请中所用同一种小尺寸(20~60nm)大孔径(6~15nm)的介孔二氧化硅纳米粒;所用肽类包含但不局限于Bcl-2-功能转换肽(NuBCP-9,简称N9)。
另外,研究表明,许多来源于传统中药的天然药用化合物为治疗耐药癌症及化疗增效和减毒提供新途径。现代药理研究表明雷公藤红素具有多种生物活性,例如抗炎、抗癌、抗血栓形成、抗风湿、抗过敏、抗肥胖和抗血管生成等作用。近期发明人所在团队在molecular cell期刊报告雷公藤红素作为孤儿核受体Nur77的直接靶点药物,可以促进Nur77从细胞核到线粒体的转运,与肿瘤坏死因子受体相关因子2(TRAF2)相互作用,以Nur77依赖的方式抑制癌症相关炎症并诱导癌细胞自噬(Mol Cell,66(2017)141-153e146),进一步证实雷公藤红素开发成为抗癌、抗炎天然药物明星分子的巨大潜能。但是雷公藤红素水溶性较低(37℃时为13.25~0.83μg/mL),肠道吸收较差,导致其口服生物利用度低,且毒副作用较大,阻碍其临床应用(Eur J Med Chem,189(2020)112081)。因此,除分子改造和纳米递送策略外,一种新的思路就是寻求利用低剂量的雷公藤红素作为辅助治疗剂,联合蛋白肽类药物达到最佳的协同治疗耐药性肿瘤的效果。Kim C S等就开发一种由凋亡诱导蛋白caspase-3、紫杉醇和金纳米粒子(AuNPs)自组装形成的纳米胶囊(Nanoparticle-Stabilized Nanocapsules,NPSCs),同时将抗有丝分裂小分子药物紫杉醇和促凋亡蛋白递送入肿瘤细胞中,大大增强抗癌疗效(Bioconjug Chem,26(2015)950-954)。与体外和体内同时输送单一药物相比,同时联合多种药物递送对抗同一肿瘤细胞,可以在不同的肿瘤胞内位点损伤或杀死肿瘤细胞,通过不同的作用机制抑制其生长周期的不同阶段,已被证实是一种有效的癌症耐药性治疗策略。
发明内容
本发明的目的在于针对蛋白肽类抗癌药物在体内的靶向递送和可控释放问题,如生物大分子抗癌肽N9,提供具有pH响应型的一种多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备方法。
本发明的另一目的在于提供多臂聚乙二醇封堵的大孔硅肽纳米控释系统的应用。多臂聚乙二醇封堵的大孔硅肽纳米控释系统联合低剂量雷公藤红素在治疗癌症药物和抗耐药性癌症药物中的应用。
所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统由经酸敏感性酸酐功能化的大孔二氧化硅纳米粒子和多臂聚乙二醇组成;在大孔二氧化硅纳米粒子的孔中物理包埋肽类抗癌药物,多臂聚乙二醇作为堵孔剂覆盖在酸敏感性酸酐功能化的大孔二氧化硅纳米粒子表面。
所述大孔二氧化硅纳米粒子为专利公开号CN 109224063 A中所用同种类型的介孔二氧化硅纳米粒子,所述大孔二氧化硅纳米粒子的表面反应官能团为氨基。
所述酸敏感性酸酐可采用顺式乌头酸酐。
所述多臂聚乙二醇可为8Arm-PEG-NH2、6Arm-PEG-NH2或4Arm-PEG-NH2;所述多臂聚乙二醇的分子量在5000~20000之间,其末端功能基团为氨基。
所述酸酐功能化的大孔二氧化硅纳米粒子和多臂聚乙二醇的连接方式为静电吸附。
所述肽类抗癌药物包含但不局限于Bcl-2功能转换肽,如FSRSLHSLL(NuBCP9)和GDWIDSILAFSRSLHSLLVD(NuBCP20)。
所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的形状为球形,粒径为30~100nm。
所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的制备方法,包括以下步骤:
1)氨基修饰的大孔二氧化硅纳米粒(M-NH2)溶于冷的N,N-二甲基甲酰胺(DMF),超声分散均匀,加入三乙胺(TEA),搅拌均匀,得混合溶液A;
在步骤1)中,所述大孔二氧化硅纳米粒(M-NH2)、N,N-二甲基甲酰胺(DMF)、三乙胺(TEA)的配比可为(10~100mg)︰(2.5~25mL)︰(25~250μL);其中,大孔二氧化硅纳米粒(M-NH2)以质量计算,N,N-二甲基甲酰胺(DMF)和三乙胺(TEA)以体积计算。
2)取顺式乌头酸酐(CA)粉末,用冷的N,N-二甲基甲酰胺(DMF)溶解后,在氮气保护下,于冰上加入步骤1)所得混合溶液A中,搅拌反应,离心、洗涤得酸敏感性酸酐功能化的大孔二氧化硅纳米粒(M-CA);
在步骤2)中,所述CA、DMF、混合溶液A的配比可为(30~300mg)︰(0.3~3mL)︰(2.2~22mL);其中,CA以质量计算,DMF和混合溶液A以体积计算;搅拌反应可于4℃下搅拌反应6~24h;所述离心的转速可为14000rpm,离心的时间可为30min。
3)取步骤2)所制备的M-CA溶于无菌PBS中,超声分散后加入N9肽,搅拌反应,洗涤得负载N9肽的M-CA(N9@M-CA);
在步骤3)中,所述M-CA与N9肽的质量比可为10︰1;搅拌反应的时间可为6~24h。
4)取步骤3)所制备的N9@M-CA溶于超纯水中,超声分散均匀后,加入(50~100)mg/mL多臂聚乙二醇水溶液,混合后搅拌反应,洗涤得负载N9肽的多臂聚乙二醇封堵大孔硅肽控制释放系统(N9@M-CA~8P)。
在步骤4)中,所述N9@M-CA︰多臂聚乙二醇的质量比为1︰(5~10);搅拌反应的时间可为6~24h;所述多臂聚乙二醇以静电吸附形式附于大孔二氧化硅表面。
所述负载N9肽的多臂聚乙二醇封堵大孔硅控制释放系统可以与雷公藤红素联合协同高效地在Bcl-2靶点丰富的癌症治疗药物中应用,或在克服耐药性癌症的治疗药物中应用。
所述应用的具体方法可为:体外细胞水平上,将多臂聚乙二醇封堵的大孔硅肽控释系统的磷酸盐缓冲液与用二甲基亚砜(含量低于0.1%)溶解的雷公藤红素直接混匀配制使用;体内动物水平上,将多臂聚乙二醇封堵的大孔硅肽控释系统的生理盐水溶液与用二甲基亚砜(含量低于0.1%)和吐温-80(含量为1%)溶解的雷公藤红素生理盐水溶液直接混匀注射使用。
所述应用中,负载肽类抗癌药物的介孔硅纳米控释系统的体外细胞用量是50~200ug/mL,对应N9肽的用量是4.07~16.28ug/mL;小鼠体内剂量为50~100mg/kg,对应N9肽的剂量为4.07~8.14mg/kg;所用雷公藤红素为低剂量的雷公藤红素,体外细胞用量为0.15~0.8μg/mL,小鼠体内剂量为0.4~0.8mg/kg。
本发明提供一种以尺寸较小(30~100nm)、孔径较大(6~15nm)的大孔二氧化硅纳米粒子为裸露载体,在此基础上进行顺式乌头酸酐修饰,并与多臂聚乙二醇进行组装,制备得到可用于控制肽类抗癌药物释放的大孔二氧化硅纳米材料。
本发明中,先通过顺式乌头酸酐修饰得到含有外部为羧基修饰的大孔二氧化硅纳米粒子;后带有氨基的多臂聚乙二醇通过静电吸附的方式与顺乌头酸所带羧基连接封堵在纳米粒子表面的孔道上,从而实现在弱酸性pH微环境中顺乌头酸键断裂、聚乙二醇脱落后药物的释放,可应用于药物控释领域。
本发明所用纳米材料生物相容性好,利用酸敏感的顺乌头酸键实现药物的可控释放:药物在正常细胞周围几乎不释放,而在肿瘤细胞的微酸性环境下快速释放,实现对肿瘤的靶向治疗。
本发明所设计的pH响应型基于包载蛋白肽类抗癌药物的大孔硅纳米粒的治疗耐药性肿瘤的制备方法,可有效包载抗癌肽N9,具有较高包封率,可保护游离N9肽,克服其在体内不稳定和易被清除的缺点。
本发明提供的pH响应型基于包载蛋白肽类抗癌药物的大孔硅纳米载药系统,可以较长时间(2周以上)冷藏,且制备过程简单,成本较低。
本发明以大孔二氧化硅纳米粒子作为药物载体,具有良好的药物包载能力与生物相容性;并且采用在pH环境中可断裂的顺乌头酸键连接堵孔剂和大孔二氧化硅赋予体系良好的pH响应释放性能,可以实现载药体系在特定pH范围内快速释放的要求;且堵孔剂采用多臂聚乙二醇,同时实现堵孔、增加载体表面的亲水性、抗蛋白能力和延长载体循环时间的多重功效,极大的简化制备过程。与低剂量的雷公藤红素联合抗耐药性,推动Bcl-2靶点抗癌小肽的临床应用及肽类药物和化疗药物的联合应用,降低化疗药物的使用剂量和毒副作用,提高癌症病人治疗的顺应性。
与现有技术相比,本发明的有益效果主要体现在:
本发明提供一种有pH响应性的多臂聚乙二醇堵孔的大孔硅纳米控释系统制备方法及联合抗癌应用,使用顺式乌头酸酐修饰的大孔硅纳米粒子和氨基修饰的多臂聚乙二醇通过静电吸附作用,组装到大孔硅纳米粒子表面上,制备过程简单,可在催化、生物化工、医药等领域大批量生产,且经过多臂聚乙二醇修饰后的大孔二氧化硅纳米载体,生物相容性和在体安全性较高。此外,通过物理封装的手段,可以简单地将抗癌肽N9装载在MSNs的孔径中,在温和条件下进行多臂聚乙二醇堵孔;制备的N9@M-CA~8P大孔硅肽纳米载药系统可以在酸性环境下控制释放N9肽,多臂聚乙二醇起到阻止药物从孔隙中释放的扩散屏障的作用,既有利于保护N9肽的活性,又减缓负载药物N9肽的释放速率,可以在体延长N9肽的血液循环时间、增强肿瘤部位药物富集程度和滞留能力,进而提高药效。该制备方法既增加肽类药物的生物利用度,又改变常规口服给药途径,提高癌症患者治疗的依从性。最后通过与低剂量的雷公藤红素联用,协同高效地治疗耐药性癌症,从而探讨具有多种药理活性的天然产物如雷公藤红素等与蛋白肽类药物联合治疗耐药性肿瘤的可行性,为癌症高效低毒治疗提供新方法。
附图说明
图1为实施例1所制得的pH响应大孔硅纳米控释系统的透射电镜图。其中,A为未负染M-CA~8P纳米粒子,B为经2%磷钨酸负染干燥后拍摄的M-CA~8P纳米粒子。
图2为实施例1所制得的pH响应大孔硅纳米控释系统制备过程的水合粒径分布变化图。
图3为实施例1中pH响应大孔硅纳米控释系统制备过程中的表面电势分布变化图。
图4为实施例3中pH响应大孔硅纳米控释系统体外释放图。
图5为实施例4所得的pH响应大孔硅纳米控释系统胞内释放图。
图6为实施例5所得的pH响应大孔硅肽纳米控释系统在Bcl-2过表达的HeLa肿瘤细胞内的分布图。
图7为实施例6所得的pH响应大孔硅纳米控释系统与雷公藤红素对Bcl-2过表达HeLa-Bcl2肿瘤细胞的联合增殖抑制研究。
图8为实施例7所得的pH响应大孔硅纳米控释系统与雷公藤红素对Bcl-2过表达LS174T肿瘤细胞的联合诱导凋亡能力。
图9为实施例8所得的pH响应大孔硅纳米控释系统与雷公藤红素联合应用的体内抑瘤能力。
具体实施方式
为使本发明所述内容更加便于理解,以下实施例将结合附图对本发明技术方案做进一步的说明,但是本发明不仅限于此。
以下给出具体实施例。
实施例1:制备可负载N9肽且具有pH响应性的多臂聚乙二醇封堵大孔硅纳米控释系统
(1)羟基修饰大孔二氧化硅纳米粒(M-OH)的制备
称取模板剂CTAC 0.8g和碱剂TEA 0.36g,加入160mL预热的超纯水,95℃恒温搅拌1h;然后滴加3mL的TEOS,继续搅拌2h;反应结束后,加入少量无水乙醇,12000rpm,18℃离心30min,沉淀用无水乙醇洗涤3次除去未反应试剂;接着用1%的氯化钠甲醇溶液振荡回流12h,重复三次,除去模板剂CTAC,沉淀最后用超纯水洗涤3次,得MSNs(即M-OH)。
(2)氨基修饰大孔二氧化硅纳米粒(M-NH2)的制备
取步骤(1)所制备的100mL MSNs(M-OH)乙醇溶液(粒子浓度为1mg/mL)90℃恒温搅拌反应4h,滴加600μL APTES继续90℃搅拌24h;反应完成后,12000rpm,18℃离心30min,沉淀先后用无水乙醇和超纯水洗涤3次除去未反应试剂,得M-NH2。
(3)顺式乌头酸酐修饰的大孔二氧化硅纳米粒(M-CA)的制备
取步骤(2)所制备的100mg M-NH2溶于22mL N,N二甲基甲酰胺(DMF)中,超声使其分散均匀;加入250μL三乙胺,搅拌均匀;密封完全,充入氮气,于冰上快速加入浓度为100mg/mL顺式乌头酸酐(CA)的DMF溶液3mL,将反应移至4℃层析柜中搅拌反应24h;反应完成后,12000rpm,4℃离心30min,沉淀先后用冷的DMF和超纯水洗涤3次后,得M-CA。
(4)多臂聚乙二醇堵孔的大孔硅控释系统(M-CA~8P)的制备
用超纯水配制浓度为10mg/mL的步骤(3)所得的M-CA溶液和浓度为100mg/mL的八臂聚乙二醇氨基(8Arm-PEG-NH2)溶液;将二者按1︰1的体积比混合均匀,1000rpm,4℃振荡反应24h;反应结束后,14000rpm,4℃离心30min,沉淀用超纯水洗涤2次,得M-CA~8P。
(5)负载N9肽大孔硅控释系统(N9@M-CA~8P)的制备
称取0.5mg N9肽和步骤(3)所得的5mg M-CA分别溶于0.5mL的无菌PBS中,超声后将二者混合均匀,1000rpm,4℃振荡反应24h;反应结束后,14000rpm,4℃离心30min,沉淀用超纯水洗涤3次,得N9@M-CA。在按照步骤(5)制备负载N9肽的多臂聚乙二醇堵孔的大孔硅控释系统。
实施例1中步骤(5)所制备的大孔硅纳米控释系统的透射电镜图(TEM)见图1。图A为未经2%磷钨酸负染干燥后的M-CA~8P,图B为经2%磷钨酸负染干燥后的M-CA~8P的透射电镜图。可见,采用温和简单的制备工艺,可合成外貌球形的大孔二氧化硅纳米粒子,且粒子直径维持在60nm左右,颗粒外部包覆着一层PEG外壳。
实施例1中所制备的大孔硅控释纳米粒制备过程中的水合粒径分布变化图见图2。随着大孔二氧化硅纳米粒表面基团的逐步修饰,及表面多臂PEG的组装,最终得到的PEG堵孔的大孔硅控释系统呈现出水合粒径增大的趋势,且粒径维持在201nm左右。而颗粒的PDI始终维持在0.3左右,呈现出良好的溶液分散性。
实施例1中所制备的大孔硅控释纳米粒制备过程中的表面电势分布变化图见图3。随着大孔二氧化硅纳米粒表面基团由羟基,到氨基,再到羧基;其zeta电位呈现由负到正再到负的明显变化。当表面吸附带八个氨基的PEG后,颗粒的溶液电势平均值从-21.9mV变为+9.88mV,发生了明显的翻转,从而证实PEG成功封堵在大孔二氧化硅表面。而正电位能够增强纳米粒子的细胞穿透能力。
实施例2:
与实施例1类似,区别在于步骤(3):顺式乌头酸酐修饰的大孔二氧化硅纳米粒(M-CA)的制备
取步骤(2)所制备的10mg M-NH2溶于2.2mL N,N二甲基甲酰胺(DMF)中,超声使其分散均匀;加入25μL三乙胺,搅拌均匀;密封完全,充入氮气,于冰上快速加入浓度为10mg/mL顺式乌头酸酐(CA)的DMF溶液0.3mL,将反应移至4℃层析柜中搅拌反应24h;反应完成后,12000rpm,4℃离心30min,沉淀先后用冷的DMF和超纯水洗涤3次后,得M-CA。
步骤(4):多臂聚乙二醇堵孔的大孔硅控释系统(M-CA~8P)的制备
用超纯水配制浓度为10mg/mL的步骤(3)所得的M-CA溶液和浓度为50mg/mL的八臂聚乙二醇氨基(8Arm-PEG-NH2)溶液;将二者按1︰1的体积比混合均匀,1000rpm,4℃振荡反应24h;反应结束后,14000rpm,4℃离心30min,沉淀用超纯水洗涤2次,得M-CA~8P。
实施例3:本发明所制备pH响应的多臂聚PEG封堵大孔硅纳米控释系统体外模拟释放动力学考察
以pH7.4、6.8和5.0的PBS作为释放介质,以模拟正常的血液、肿瘤外部组织和肿瘤细胞内环境。然后称取4.0mg的DOX@M-CA~8P分散于400uL释放介质中并转移至预处理过的无菌透析袋(MWCO:3500Da)中,密封;置于4mL EP管中并加入3mL释放介质;接着将EP管置于恒温混匀仪中250rpm,37℃±1℃下振荡。在不同的时间间隔(2、4、6、8、12、24、48、96h),取出0.2mL透析液并补加相同体积的释放介质,通过测定透析液480nm的吸光值计算释药速率。
实施例3中的体外释放结果如图4所示,表明DOX从大孔硅纳米粒中的体外释放呈pH依赖性,pH越低,DOX的累计释放率越高。在初始释放阶段,24h内DOX的释放速率较快,后续呈缓慢释放趋势。
实施例4:pH响应型多臂PEG封堵大孔硅纳米控释系统胞内释放动力学考察
将荧光探针尼罗红(Neil Red,NR)封装在M-CA~8P纳米粒子中制备NR@M-CA~8P。将NR@M-CA~8P(25μg/mL)与健康肝细胞LO2和耐药宫颈癌HeLa-Bcl2细胞分别共孵育4h和8h后,用1μg/ml DAPI染料定位细胞核,进行激光共聚焦成像分析。
实施例4中NR是一种亲脂性荧光探针,游离的NR与细胞内脂滴结合后,在634nm的发射波长处出现红色荧光。相反,如果NR被封装在纳米颗粒中,其在该发射波长的荧光强度将非常弱。根据NR的光学特性,pH响应型多臂PEG封堵介孔硅纳米控释系统胞内释放动力学考察结果如图5所述。由于癌细胞HeLa-Bcl2胞质内pH值要比正常健康肝细胞LO2低的多,故随着时间的延长,两种癌细胞的红色荧光逐渐增强,而正常肝细胞中只观察到极其微弱的红色荧光。这说明在酸性环境下NR能从M-CA~8P的孔中泄露,而正常细胞内的NR仍然被包裹在纳米颗粒中而没有释放。这些结果表明,对所构建的纳米载体在对肿瘤细胞具有较高的选择性,在健康细胞株中具有良好的稳定性,避免非靶向药物泄漏。
实施例5:pH响应型多臂PEG封堵大孔硅纳米控释系统进入癌胞能力分析
将3μg/ml RB-N9的RB-N9@M-CA~8P同Bcl-2稳转细胞HeLa-Bcl2共孵育12h和24h后,用线粒体绿光探针定位线粒体,用1μg/ml DAPI染料定位细胞核,进行激光共聚焦成像分析。
实施例5中所制备的pH响应型多臂PEG封堵大孔硅纳米控释系统进入癌胞能力分析结果如图6。RB-N9借助M-CA~8P的运载之后,2h在细胞内检测到红色荧光,并且红色荧光信号随着时间的延长逐渐增强,表明M-CA~8P能够成功运载N9肽进入肿瘤细胞,并到达线粒体。
实施例6:pH响应型多臂PEG封堵大孔硅纳米控释系统联合雷公藤红素增殖抑制实验
于超净台中配制纳米载体浓度分别为1、10、20、50、100、200μg/mL的Control、N9、Ce、Ce+N9、N9@M-CA~8P、Ce+N9@M-CA~8P对应的游离药物浓度的含药培养液与HeLa-Bcl2细胞避光共孵育48h用MTT检测细胞活力,得到不同组别药物的细胞毒性。
实施例6中pH响应型多臂PEG封堵大孔硅纳米控释系统联合雷公藤红素增殖抑制实验结果如图7。游离N9肽无法穿透细胞膜,难以发挥功效。Ce组和N9+Ce联用组均能在一定程度上降低癌细胞活力,说明雷公藤红素在较低剂量下仍具有一定的抗癌活性。N9@M-CA~8P组呈浓度依赖性降低耐药癌细胞活力,能够较好的发挥抗肿瘤作用。联合给药组显示出更强的抗肿瘤效果,这表明协同抗癌作用可能是N9肽与雷公藤红素各自抗癌机制相互结合的结果。Ce组和N9+Ce联用组细胞增殖抑制率均不足50%;N9@M-CA~8P组能够实现较好的抗肿瘤效果,IC50值为88.76μg/mL。而N9@M-CA~8P+Ce组IC50值仅为35.5μg/mL,进一步表明在pH和浓度梯度的驱动下,N9肽的延迟释放行为和雷公藤红素的增敏作用,可能导致细胞内药物水平增加而增强细胞凋亡效应。
实施例7:所制备pH响应型多臂PEG封堵大孔硅纳米控释系统联合雷公藤红素诱导凋亡能力分析
无菌环境下将N9、Ce、Ce+N9、N9@M-CA~8P、Ce+N9@M-CA~8P用细胞培养液配制成N9和Ce浓度分别为8.14μg/mL和0.8μg/mL的含药培养液,与LS174T耐药癌细胞避光共孵育48h。通过Annexin V-FITC/PI双重染色法定量检测不同药物组导L174T细胞凋亡作用。
实施例7所制备pH响应型多臂PEG封堵大孔硅纳米控释系统联合雷公藤红素诱导凋亡能力分析结果如图8。N9肽难以单独穿透细胞,故游离N9组与对照组(Control)无明显差别;Ce组和N9+Ce组均可引起不到40%的LS174T细胞凋亡,其中早期凋亡占约15%,晚期凋亡占比约25%;N9@M-CA~8P组诱导细胞凋亡作用效果更佳,有约49%的细胞凋亡;而N9@M-CA~8P+Ce组能够诱导73%以上细胞发生凋亡,且有58%的细胞处于晚期凋亡阶段,进一步验证负载N9肽的大孔硅控释系统与雷公藤红素具有良好的协同抗耐药性肿瘤细胞作用。
实施例8:所制备pH响应型多臂PEG封堵大孔硅纳米控释系统联合雷公藤红素体内治疗耐药性肿瘤。
随机将LS174T移植瘤裸鼠分为6组,每组5只。按照Saline、M-CA~8P、Ce、N9+Ce、N9@M-CA~8P和N9@M-CA~8P+Ce组,按每只荷瘤小鼠同等纳米颗粒M-CA~8P剂量(50mg/kg)或同等N9肽(4.07mg/kg)或同等Ce剂量(0.8mg/kg)进行尾静脉注射,每两天给药一次。定期观察记录裸小鼠的肿瘤体积,绘制肿瘤生长曲线。
实施例8中pH响应型多臂PEG封堵大孔硅纳米控释系统联合雷公藤红素体内治疗耐药性肿瘤结果如图9所示。从肿瘤体积生长曲线可以看出,经过15天的治疗,生理盐水组和空白载体M-CA~8P组肿瘤快速生长,从初始体积100mm3长至2022mm3左右,体积增加近二十倍;由于LS174T肿瘤细胞的耐药0.8mg/kg的Ce给药组仅有部分抑制作用。N9@M-CA~8P组发挥优良的体内抗癌活性,两周后平均肿瘤体积为600mm3,与首日相比扩大6倍,抑瘤率为70%;硅肽载药系统与0.8mg/kg Ce联合给药可以明显抑制肿瘤生长,肿瘤体积与给药前变化不大,抑瘤率分别高达90%,与游离N9+Ce组相比具有显著性差异,说明N9肽只有经过pH响应型多臂PEG封堵大孔硅纳米控释系统的递送与雷公藤红素在体内可协同高效治疗耐药性肿瘤。
本发明在获得大孔硅纳米粒子的基础上,利用肿瘤部位特殊的酸性环境,设计环境刺激响应的智能大孔硅纳米递送系统,实现对蛋白肽类抗癌药物(如NuBCP9)的胞内递送和瘤内控释,防止药物的泄露和失活,改善功效,从而解决蛋白肽类抗癌药物在耐药性肿瘤临床治疗应用中的难题:提高大分子药物的在体生物稳定性和运输载体的在体安全性。同时,本发明在获得具有pH响应型的以多臂聚乙二醇为可控开关的大孔硅肽控释系统的基础上,进一步联合低剂量雷公藤红素提供其在治疗癌症药物、抗耐药性癌症药物中的应用。

Claims (10)

1.多臂聚乙二醇封堵的大孔硅肽纳米控释系统,其特征在于由经酸敏感性酸酐功能化的大孔二氧化硅纳米粒子和多臂聚乙二醇组成;在大孔二氧化硅纳米粒子的孔中物理包埋肽类抗癌药物,多臂聚乙二醇作为堵孔剂覆盖在酸敏感性酸酐功能化的大孔二氧化硅纳米粒子表面。
2.如权利要求1所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统,其特征在于所述酸敏感性酸酐采用顺式乌头酸酐;
所述多臂聚乙二醇可为8Arm-PEG-NH2、6Arm-PEG-NH2或4Arm-PEG-NH2;所述多臂聚乙二醇的分子量在5000~20000之间,其末端功能基团为氨基。
3.如权利要求1所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统,其特征在于所述酸酐功能化的大孔二氧化硅纳米粒子和多臂聚乙二醇的连接方式为静电吸附;
所述肽类抗癌药物包含但不局限于Bcl-2功能转换肽。
4.如权利要求1所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的制备方法,其特征在于包括以下步骤:
1)氨基修饰的大孔二氧化硅纳米粒溶于冷的N,N-二甲基甲酰胺,超声分散均匀,加入三乙胺,搅拌均匀,得混合溶液A;
2)取顺式乌头酸酐粉末,用冷的N,N-二甲基甲酰胺溶解后,在氮气保护下,于冰上加入步骤1)所得混合溶液A中,搅拌反应,离心、洗涤得酸敏感性酸酐功能化的大孔二氧化硅纳米粒M-CA;
3)取步骤2)所制备的M-CA溶于无菌PBS中,超声分散后加入N9肽,搅拌反应,洗涤得负载N9肽的M-CA,记为N9@M-CA;
4)取步骤3)所制备的N9@M-CA溶于超纯水中,超声分散均匀后,加入多臂聚乙二醇水溶液,混合后搅拌反应,洗涤得负载N9肽的多臂聚乙二醇封堵的大孔硅肽纳米控释系统。
5.如权利要求4所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的制备方法,其特征在于在步骤1)中,所述大孔二氧化硅纳米粒、N,N-二甲基甲酰胺、三乙胺的配比为(10~100mg)︰(2.5~25mL)︰(25~250μL);其中,大孔二氧化硅纳米粒以质量计算,N,N-二甲基甲酰胺和三乙胺以体积计算。
6.如权利要求4所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的制备方法,其特征在于在步骤2)中,所述顺式乌头酸酐、N,N-二甲基甲酰胺、混合溶液A的配比为(30~300mg)︰(0.3~3mL)︰(2.2~22mL);其中,顺式乌头酸酐以质量计算,N,N-二甲基甲酰胺和混合溶液A以体积计算;搅拌反应可于4℃下搅拌反应6~24h;所述离心的转速可为14000rpm,离心的时间可为30min。
7.如权利要求4所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的制备方法,其特征在于在步骤3)中,所述M-CA与N9肽的质量比为10︰1;搅拌反应的时间可为6~24h。
8.如权利要求4所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统的制备方法,其特征在于在步骤4)中,所述N9@M-CA︰多臂聚乙二醇的质量比为1︰(5~10);多臂聚乙二醇加入量为50~100mg/mL;搅拌反应的时间可为6~24h;所述多臂聚乙二醇以静电吸附形式附于大孔二氧化硅表面。
9.如权利要求1所述多臂聚乙二醇封堵的大孔硅肽纳米控释系统与雷公藤红素联合协同高效地在Bcl-2靶点丰富的癌症治疗药物中应用,或在克服耐药性癌症的治疗药物中应用。
10.如权利要求9所述应用,其特征在于所述应用的具体用法为,负载肽类抗癌药物的介孔硅纳米控释系统的体外细胞用量是50~200ug/mL,对应N9肽的用量是4.07~16.28ug/mL;小鼠体内剂量为50~100mg/kg,对应N9肽的剂量为4.07~8.14mg/kg;所用雷公藤红素为低剂量的雷公藤红素,体外细胞用量为0.15~0.8μg/mL,小鼠体内剂量为0.4~0.8mg/kg。
CN202110685309.9A 2021-06-21 2021-06-21 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用 Active CN113521302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110685309.9A CN113521302B (zh) 2021-06-21 2021-06-21 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110685309.9A CN113521302B (zh) 2021-06-21 2021-06-21 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用

Publications (2)

Publication Number Publication Date
CN113521302A true CN113521302A (zh) 2021-10-22
CN113521302B CN113521302B (zh) 2024-04-12

Family

ID=78125382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110685309.9A Active CN113521302B (zh) 2021-06-21 2021-06-21 多臂聚乙二醇封堵的大孔硅肽纳米控释系统及制备与应用

Country Status (1)

Country Link
CN (1) CN113521302B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114903872A (zh) * 2022-05-30 2022-08-16 厦门大学 共递雷公藤红素和Bcl-2-功能转换肽的树状大分子自组装体及制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109364267A (zh) * 2018-12-10 2019-02-22 四川大学华西医院 肿瘤组织和细胞双重靶向的介孔二氧化硅纳米载药颗粒及其制备方法
CN111789823A (zh) * 2019-06-20 2020-10-20 华东理工大学 一种pH可逆控释介孔硅纳米载药体系的制备方法及其应用
CN112315941A (zh) * 2020-11-18 2021-02-05 海南大学 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品
KR102228272B1 (ko) * 2019-11-13 2021-03-17 한국과학기술연구원 항암 상승효과를 나타내는 종양세포 특이적 자기조립 나노약물 복합체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109364267A (zh) * 2018-12-10 2019-02-22 四川大学华西医院 肿瘤组织和细胞双重靶向的介孔二氧化硅纳米载药颗粒及其制备方法
CN111789823A (zh) * 2019-06-20 2020-10-20 华东理工大学 一种pH可逆控释介孔硅纳米载药体系的制备方法及其应用
KR102228272B1 (ko) * 2019-11-13 2021-03-17 한국과학기술연구원 항암 상승효과를 나타내는 종양세포 특이적 자기조립 나노약물 복합체
CN112315941A (zh) * 2020-11-18 2021-02-05 海南大学 一种具有pH和还原双敏感的纳米疫苗的制备方法及所得产品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114903872A (zh) * 2022-05-30 2022-08-16 厦门大学 共递雷公藤红素和Bcl-2-功能转换肽的树状大分子自组装体及制备方法与应用
CN114903872B (zh) * 2022-05-30 2023-10-13 厦门大学 共递雷公藤红素和Bcl-2-功能转换肽的树状大分子自组装体及制备方法与应用

Also Published As

Publication number Publication date
CN113521302B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
Pei et al. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy
Liu et al. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer
Ashrafizadeh et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression
Li et al. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy
Hari et al. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system
Zheng et al. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo
Xin et al. Nanoscale drug delivery for targeted chemotherapy
Liang et al. Paclitaxel-loaded poly (γ-glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer
Ihsanullah et al. Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy
Bugaj Targeted photodynamic therapy–a promising strategy of tumor treatment
US10994024B2 (en) Drug formulation based on particulates comprising polysaccharide-vitamin conjugate
Du et al. Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly (D, L-lactide-co-glycolide)-methoxy-poly (ethylene glycol) nanodroplets
Yang et al. Stimuli-responsive polymeric micelles for the delivery of paclitaxel
Fathi-Karkan et al. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review
Wang et al. Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force
Zhang et al. Co-delivery of doxorubicin and pheophorbide A by pluronic F127 micelles for chemo-photodynamic combination therapy of melanoma
Cao et al. Porphine functionalized nanoparticles of star-shaped poly (ε-caprolactone)-bD-α-tocopheryl polyethylene glycol 1000 succinate biodegradable copolymer for chemophotodynamic therapy on cervical cancer
Wang et al. Self-assembled indomethacin dimer nanoparticles loaded with doxorubicin for combination therapy in resistant breast cancer
Lin et al. A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity
Chen et al. Advances in antitumor nano-drug delivery systems of 10-hydroxycamptothecin
Yang et al. Recent advances in polymeric core–shell nanocarriers for targeted delivery of chemotherapeutic drugs
Bai et al. Progress and principle of drug nanocrystals for tumor targeted delivery
Yang et al. Rational design of multifunctional polymeric micelles with stimuli-responsive for imaging-guided combination cancer therapy
Lin et al. Stimuli-responsive polyprodrug for cancer therapy
Zhang et al. Tumor acidity/redox hierarchical-activable nanoparticles for precise combination of X-ray-induced photodynamic therapy and hypoxia-activated chemotherapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant