CN112305591B - Tunnel advance geological prediction method, computer readable storage medium - Google Patents
Tunnel advance geological prediction method, computer readable storage medium Download PDFInfo
- Publication number
- CN112305591B CN112305591B CN202011078912.2A CN202011078912A CN112305591B CN 112305591 B CN112305591 B CN 112305591B CN 202011078912 A CN202011078912 A CN 202011078912A CN 112305591 B CN112305591 B CN 112305591B
- Authority
- CN
- China
- Prior art keywords
- data
- tunnel
- seismic
- neural network
- observation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000003860 storage Methods 0.000 title claims abstract description 15
- 230000002159 abnormal effect Effects 0.000 claims abstract description 47
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 45
- 238000013135 deep learning Methods 0.000 claims abstract description 31
- 238000012545 processing Methods 0.000 claims abstract description 24
- 238000012937 correction Methods 0.000 claims abstract description 17
- 230000005284 excitation Effects 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000010276 construction Methods 0.000 claims description 109
- 238000012549 training Methods 0.000 claims description 28
- 239000011435 rock Substances 0.000 claims description 10
- 238000003062 neural network model Methods 0.000 claims description 5
- 238000000513 principal component analysis Methods 0.000 claims description 5
- 238000011176 pooling Methods 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 33
- 238000009826 distribution Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 13
- 238000004590 computer program Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 238000013480 data collection Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000013277 forecasting method Methods 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种隧道超前地质预报方法、计算机可读存储介质,该隧道超前地质预报方法包括:基于隧道掌子面上布置三维观测系统实现三维地震波激发与接收,以及基于深度学习算法对所采集的数据进行处理从而获得异常体的位置。基于深度学习算法对数据进行处理包括:基于AlexNet卷积神经网络模型算法对采集的数据进行坏道数据的剔除,并进行滤波;基于U‑Net卷积神经网络模型算法对初至波进行识别,并且估算直达波速度;对剔除了坏道数据的原始数据进行线性动校正;将线性动校正后的数据进行等旅行时剖面叠加;对叠加后的数据进行反射层拾取。该隧道超前地质预报方法、计算机可读存储介质能够提高异常体的探测效率以及探测准确性。
The invention discloses a tunnel advance geological prediction method and a computer-readable storage medium. The tunnel advance geological prediction method comprises: arranging a three-dimensional observation system on a tunnel face to realize three-dimensional seismic wave excitation and reception; The collected data is processed to obtain the location of the abnormal body. The data processing based on the deep learning algorithm includes: removing the bad sectors of the collected data based on the AlexNet convolutional neural network model algorithm, and filtering; And the direct wave velocity is estimated; the linear dynamic correction is performed on the original data with the bad track data removed; the isotravel profile stacking is performed on the data after linear dynamic correction; the reflective layer is picked up on the stacked data. The tunnel advance geological prediction method and the computer-readable storage medium can improve the detection efficiency and detection accuracy of abnormal bodies.
Description
技术领域technical field
本发明是关于隧道工程技术领域,特别是关于一种隧道超前地质预报方法、计算机可读存储介质。The present invention relates to the technical field of tunnel engineering, in particular to a method for advance geological prediction of tunnels and a computer-readable storage medium.
背景技术Background technique
隧道超前预报技术是一种在隧道施工前及施工过程中对掌子面前方地质环境及地质结构进行探测的技术方法。其中,基于地震探测的隧道超前预报技术根据隧道围岩的弹性波场探测隧道掌子面前方围岩信息,探测深度大、探测精度高,是主要的超前预报技术之一。根据探测方式的不同,现有的基于地震探测的隧道超前预报技术大致可分为二维探测技术和准三维探测技术。二维探测技术多采用隧道壁或掌子面上利用炸药、电子雷管、锤击等方式激发地震波,隧道壁布置线性排列三分量检波器的观测系统采集反射地震波进行超前预报,如HSP、TSP技术等。准三维观测系统的探测技术多采用环隧道壁三维空间布置检波器,隧道壁或掌子面上激发反射波的观测系统,采用地震层析成像、散射波叠加、可希霍夫深度偏移等地震数据处理方式进行成像,如TRT、TST、TSWD等。The tunnel advance forecasting technology is a technical method to detect the geological environment and geological structure in front of the tunnel face before and during the construction of the tunnel. Among them, the tunnel advanced prediction technology based on seismic detection detects the surrounding rock information in front of the tunnel face according to the elastic wave field of the tunnel surrounding rock, with large detection depth and high detection accuracy, and is one of the main advanced prediction technologies. According to different detection methods, the existing tunnel advance prediction technology based on seismic detection can be roughly divided into two-dimensional detection technology and quasi-three-dimensional detection technology. The two-dimensional detection technology mostly uses the tunnel wall or face to excite seismic waves by means of explosives, electronic detonators, hammering, etc. The observation system with three-component geophones arranged in a linear arrangement on the tunnel wall collects reflected seismic waves for advance prediction, such as HSP and TSP technologies. Wait. The detection technology of the quasi-three-dimensional observation system mostly adopts the three-dimensional spatial arrangement of the detector around the tunnel wall, the observation system that stimulates the reflected wave on the tunnel wall or the face, and adopts seismic tomography, scattered wave superposition, Keshihoff depth migration, etc. Seismic data processing methods for imaging, such as TRT, TST, TSWD, etc.
发明人在实现本发明的过程中发现,基于地震探测的超前预报技术多存在误探或漏探、探测效率低、数据处理周期长、解释结果多解性强的问题。During the process of realizing the present invention, the inventor found that the advanced prediction technology based on seismic detection often has the problems of false detection or missed detection, low detection efficiency, long data processing period, and multiple interpretation results.
具体而言,发明人发现,HSP、TSP技术等二维探测技术的观测系统虽具有一定的空间分布,然而受隧道空间限制,其地震波激发接收角度极小,成像质量差,难以获得准确的地质异常体信息。相对于二维观测技术,TRT、TST、TSWD等准三维探测技术波速分析精确度和不良地质体的成像精度有一定改善,然而基于环隧道壁三维空间布置检波器的探测技术受隧道壁及掌子面的影响,炮点和检波点难以在全方位布设,易缺失部分相位数据,由此难以实现真实的三维探测;其次,隧道壁上接收的异常体反射信号易受隧道围岩面波、转换波、平行于隧道轴线的水平地层等强非反射信息的干扰,信噪比较低;同时现有的隧道超前预报地震数据多基于人工方式进行处理,周期长、成本高,处理结果受外界因素和技术人员专业知识影响大,成像多解性强,并且基于人工方式的隧道超前预报方法不能够直观对比不同隧道施工位置的隧道超前预报地震数据。Specifically, the inventor found that although the observation system of two-dimensional detection technologies such as HSP and TSP technology has a certain spatial distribution, due to the limitation of the tunnel space, the seismic wave excitation and reception angle is extremely small, and the imaging quality is poor, making it difficult to obtain accurate geological Exception body information. Compared with the two-dimensional observation technology, the quasi-three-dimensional detection technologies such as TRT, TST, TSWD and other quasi-three-dimensional detection technologies have improved the wave velocity analysis accuracy and the imaging accuracy of unfavorable geological bodies. Due to the influence of the sub-surface, it is difficult to arrange the shot points and detection points in all directions, and it is easy to lose some phase data, so it is difficult to realize the real three-dimensional detection; Due to the interference of strong non-reflection information such as converted waves and horizontal strata parallel to the tunnel axis, the signal-to-noise ratio is low; at the same time, the existing tunnel advance prediction seismic data is mostly processed manually, which has a long period and high cost, and the processing results are affected by the outside world. Factors and the professional knowledge of technicians have a great influence, the imaging has strong multi-solution, and the tunnel advance prediction method based on the manual method cannot intuitively compare the tunnel advance prediction seismic data of different tunnel construction locations.
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person of ordinary skill in the art.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种隧道超前地质预报方法、计算机可读存储介质,其能够提高异常体的探测效率以及探测准确性。The purpose of the present invention is to provide a tunnel advance geological prediction method and a computer-readable storage medium, which can improve the detection efficiency and detection accuracy of abnormal bodies.
为实现上述目的,本发明提供了一种隧道超前地质预报方法,该隧道超前地质预报方法包括:基于隧道掌子面上布置三维观测系统实现三维地震波激发与接收;基于深度学习算法对所述三维观测系统所采集的数据进行处理从而获得隧道中的异常体的位置。其中,基于隧道掌子面上布置三维观测系统实现三维地震波激发与接收包括:在掌子面上设置观测系统;在第一隧道施工位置,所述观测系统激发地震波,并接收反射波从而采集数据。其中,基于深度学习算法对所述三维观测系统所采集的数据进行处理从而获得隧道中的异常体的位置包括:基于AlexNet卷积神经网络模型算法对采集的数据进行坏道数据的剔除,并进行滤波;基于U-Net卷积神经网络模型算法对初至波进行识别,并且估算直达波速度;根据初至波识别结果对剔除了坏道数据的原始数据进行线性动校正;将线性动校正后的数据进行等旅行时剖面叠加;对叠加后的数据通过深度学习算法进行反射层拾取,从而推测出所述第一隧道施工位置的异常体所在的区域。In order to achieve the above purpose, the present invention provides a method for advance geological forecasting of tunnels. The method for advance geological forecasting of tunnels includes: arranging a three-dimensional observation system on a tunnel face to realize three-dimensional seismic wave excitation and reception; The data collected by the observation system is processed to obtain the location of the abnormal body in the tunnel. Wherein, arranging a three-dimensional observation system on the tunnel face to realize three-dimensional seismic wave excitation and reception includes: arranging an observation system on the face of the tunnel; at the first tunnel construction position, the observation system excites seismic waves and receives reflected waves to collect data . Wherein, processing the data collected by the three-dimensional observation system based on the deep learning algorithm to obtain the position of the abnormal body in the tunnel includes: removing bad track data from the collected data based on the AlexNet convolutional neural network model algorithm, and performing Filter; identify the first arrival wave based on the U-Net convolutional neural network model algorithm, and estimate the speed of the direct wave; perform linear dynamic correction on the original data with the bad track data removed according to the first arrival wave identification result; The superimposed data is carried out with equal travel profile; the superimposed data is picked up by the reflection layer through the deep learning algorithm, so as to infer the area where the abnormal body of the first tunnel construction position is located.
在本发明的一实施方式中,所述观测系统整体呈中心对称。In an embodiment of the present invention, the observation system as a whole is centrally symmetric.
在本发明的一实施方式中,所述观测系统的检波器以中心向四周呈辐射状排列,所述观测系统的地震波发生装置同样以所述中心向四周成辐射状排列。In an embodiment of the present invention, the detectors of the observation system are arranged radially from the center to the surrounding, and the seismic wave generating devices of the observation system are also arranged radially from the center to the surrounding.
在本发明的一实施方式中,所述基于AlexNet卷积神经网络模型算法对采集的数据进行坏道数据的剔除包括:对所述AlexNet卷积神经网络模型进行训练;采用训练后的所述AlexNet卷积神经网络模型对采集的数据进行坏道数据的剔除。In an embodiment of the present invention, the removing bad sector data from the collected data based on the AlexNet convolutional neural network model algorithm includes: training the AlexNet convolutional neural network model; using the trained AlexNet The convolutional neural network model removes the bad sector data from the collected data.
在本发明的一实施方式中,所述AlexNet卷积神经网络模型按照地震勘探分辨率以一个地震子波波场为基准,以四分之一个子波波长作为卷积核长度,八分之一个子波波长作为池化层长度。In an embodiment of the present invention, the AlexNet convolutional neural network model takes a seismic wave field as a benchmark according to the resolution of seismic exploration, takes a quarter wavelet wavelength as the convolution kernel length, and eighth One wavelet wavelength is used as the pooling layer length.
在本发明的一实施方式中,所述采用训练后的所述AlexNet卷积神经网络模型进行坏道剔除包括:将数据预测值在有效道预测阈值f(x)范围外的数据判断为噪声数据,并进行剔除,其中,其中,N为标签种类,pre(i)代表AlexNet对每一道数据的属于某一类标签的可能性预测值,F(x)代表每一道数据的所有标签预测值之和,F(x)max代表所有参与预测数据的最大所有标签预测值之和。In an embodiment of the present invention, the use of the trained AlexNet convolutional neural network model to perform bad-sector elimination includes: judging data whose predicted data value is outside the range of the effective track prediction threshold f(x) as noise data , and culling, where, Among them, N is the label type, pre(i) represents the probability prediction value of AlexNet belonging to a certain type of label for each data, F(x) represents the sum of all label predictions for each data, F(x) max Represents the maximum sum of all label predictions for all participating prediction data.
在本发明的一实施方式中,所述对叠加后的数据通过深度学习算法进行反射层拾取包括:采用主成分分析算法识别多炮记录的相似区域,该相似区域被推测为地质异常体所在区域。In an embodiment of the present invention, the step of picking up the reflection layer on the superimposed data by using a deep learning algorithm includes: using a principal component analysis algorithm to identify a similar area recorded by multiple shots, where the similar area is presumed to be the area where the geological anomaly is located .
在本发明的一实施方式中,所述隧道超前地质预报方法还包括:在完成所述第一隧道施工位置的异常体位置推测后,基于U-Net卷积神经网络模型算法构建地震信号关联性模型,根据所述地震信号关联性模型在同一隧道的其他施工位置进行异常体推测。In an embodiment of the present invention, the method for tunnel advance geological prediction further includes: after completing the estimation of the abnormal body position of the first tunnel construction position, constructing a seismic signal correlation based on a U-Net convolutional neural network model algorithm A model is used to estimate abnormal bodies in other construction positions of the same tunnel according to the seismic signal correlation model.
在本发明的一实施方式中,所述基于U-Net卷积神经网络模型算法构建地震信号关联性模型,根据所述地震信号关联性模型在同一隧道的其他施工位置进行异常体推测包括:获取一个或多个隧道施工位置的地震单炮数据;对每个隧道施工位置的地震单炮数据中的反射波同相轴进行分类从而得到所述每个隧道施工位置的反射波同相轴的标签数据;基于U-Net卷积神经网络算法对所述每个隧道施工位置的反射波同相轴的标签数据以及所述每个隧道施工位置的地震单炮数据进行训练,建立地震信号关联性模型;获取当前隧道施工位置的地震单炮数据;根据所述地震信号关联性模型对所述当前隧道施工位置的地震单炮数据中的反射波同相轴进行识别和定位;根据地表高程与施工区围岩信息以及所述当前隧道施工位置的地震单炮数据中的反射波同相轴识别和定位结果对所述当前隧道施工位置前方的异常体位置进行推测。In an embodiment of the present invention, the construction of the seismic signal correlation model based on the U-Net convolutional neural network model algorithm, and the abnormal body inference at other construction positions of the same tunnel according to the seismic signal correlation model includes: obtaining Seismic single shot data of one or more tunnel construction positions; classify the reflected wave event axis in the seismic single shot data of each tunnel construction position to obtain the label data of the reflected wave event axis of each tunnel construction position; Based on the U-Net convolutional neural network algorithm, the label data of the reflected wave event axis of each tunnel construction location and the seismic single shot data of each tunnel construction location are trained to establish a seismic signal correlation model; obtain the current The seismic single shot data of the tunnel construction location; the reflected wave event axis in the seismic single shot data of the current tunnel construction location is identified and located according to the seismic signal correlation model; according to the surface elevation and surrounding rock information of the construction area and The position of the abnormal body in front of the current tunnel construction position is estimated based on the identification and positioning results of the reflected wave event axis in the seismic single shot data of the current tunnel construction position.
基于同样的发明构思,本发明还提供了一种计算机可读存储介质,用于执行下述步骤:基于AlexNet卷积神经网络模型算法对观测系统采集的数据进行坏道数据的剔除,并进行滤波;基于U-Net卷积神经网络模型算法对初至波进行识别,并且估算直达波速度;根据初至波识别结果对剔除了坏道数据的原始数据进行线性动校正;将线性动校正后的数据进行等旅行时剖面叠加;对叠加后的数据通过深度学习算法进行反射层拾取,从而推测出所述第一隧道施工位置的异常体所在的区域。Based on the same inventive concept, the present invention also provides a computer-readable storage medium for performing the following steps: removing bad sector data from the data collected by the observation system based on the AlexNet convolutional neural network model algorithm, and filtering ; Identify the first arrival wave based on the U-Net convolutional neural network model algorithm, and estimate the speed of the direct wave; perform linear dynamic correction on the original data with the bad track data removed according to the first arrival wave identification result; The data are superimposed on the time-travel profile; the superimposed data is picked up by the reflection layer through the deep learning algorithm, so as to infer the area where the abnormal body of the first tunnel construction location is located.
在本发明的一实施方式中,所述计算机可读存储介质还用于执行如下步骤:获取一个或多个隧道施工位置的地震单炮数据;对每个隧道施工位置的地震单炮数据中的反射波同相轴进行分类从而得到所述每个隧道施工位置的反射波同相轴的标签数据;基于U-Net卷积神经网络算法对所述每个隧道施工位置的反射波同相轴的标签数据以及所述每个隧道施工位置的地震单炮数据进行训练,建立地震信号关联性模型;获取当前隧道施工位置的地震单炮数据;根据所述地震信号关联性模型对所述当前隧道施工位置的地震单炮数据中的反射波同相轴进行识别和定位;根据地表高程与施工区围岩信息以及所述当前隧道施工位置的地震单炮数据中的反射波同相轴识别和定位结果对所述当前隧道施工位置前方的异常体位置进行推测。In an embodiment of the present invention, the computer-readable storage medium is further configured to perform the following steps: acquiring single-shot seismic data of one or more tunnel construction positions; The reflected wave event axis is classified to obtain the label data of the reflected wave event axis of each tunnel construction position; the label data of the reflected wave event axis of each tunnel construction position based on the U-Net convolutional neural network algorithm and The seismic single shot data of each tunnel construction position is trained to establish a seismic signal correlation model; the seismic single shot data of the current tunnel construction position is obtained; according to the seismic signal correlation model, the earthquake signal of the current tunnel construction position is analyzed. Identify and locate the reflected wave event axis in the single shot data; according to the surface elevation and surrounding rock information in the construction area and the reflected wave event axis identification and positioning results in the seismic single shot data of the current tunnel construction location, the current tunnel is identified and located. The position of the abnormal body in front of the construction site is estimated.
与现有技术相比,根据本发明的隧道超前地质预报方法、计算机可读存储介质,基于深度学习算法对隧道单一施工位置地震数据进行了快速识别,对数据处理人员专业知识依赖性低,处理结果受外界影响干扰小,可实现大量数据的智能、快速、低成本处理。优选地,一实施方式中利用隧道地震波场传播规律,选用中心对称的观测系统,特别地选用辐射状的观测系统,从而可以获得大量可靠性更高的、真实性更强的反射波信息,同时对数据处理和解释影响小。优选地,一实施方式中,利用了同一异常体形成的反射波同相轴在不同探测位置采集的单炮数据上表现为旅行时不同,波形相似的这一特征,在获取前面一个或多个施工位置的探测结果后,后续的施工位置都可以利用该波形相似的特征来建立关联性模型,具体地,基于深度学习算法构建不同施工位置采集数据的关联性模型,可避免人工识别大量数据中的特殊波形效率低、可靠性差的问题,实现大量数据中特征波形的快速、精准识别,并且本发明可以将不同隧道施工位置的隧道超前预报地震数据进行直观对比分析,非常智能。Compared with the prior art, according to the tunnel advanced geological prediction method and the computer-readable storage medium of the present invention, the seismic data of a single construction location of the tunnel is quickly identified based on the deep learning algorithm, and the dependence on the professional knowledge of the data processing personnel is low, and the processing is easy. The result is less disturbed by external influences, and can realize intelligent, fast and low-cost processing of large amounts of data. Preferably, in one embodiment, the propagation law of the tunnel seismic wave field is used, and a centrally symmetric observation system, especially a radial observation system, can be used, so that a large amount of reflected wave information with higher reliability and authenticity can be obtained. Little impact on data processing and interpretation. Preferably, in one embodiment, the reflected wave event axis formed by the same abnormal body is used in the single shot data collected at different detection positions, which shows that the travel time is different and the waveform is similar. After the detection result of the location, the subsequent construction locations can use the similar features of the waveform to establish a correlation model. Specifically, the correlation model of the data collected at different construction locations is constructed based on the deep learning algorithm, which can avoid manual identification of large amounts of data. Due to the problems of low efficiency and poor reliability of special waveforms, rapid and accurate identification of characteristic waveforms in a large amount of data is realized, and the invention can intuitively compare and analyze the seismic data of tunnel advance prediction in different tunnel construction positions, which is very intelligent.
附图说明Description of drawings
图1是根据本发明一实施方式的隧道超前预报方法的步骤组成;Fig. 1 is the step composition of the tunnel advance forecasting method according to an embodiment of the present invention;
图2是根据本发明一实施方式的掌子面激发震源时的隧道空间地震波场能量分布图;Fig. 2 is the energy distribution diagram of the tunnel space seismic wave field when the tunnel face excites the source according to an embodiment of the present invention;
图3示出了一种中心对称的观测系统3a、该观测系统的三维地震波场能量分布图3b;Fig. 3 shows a centrally
图4示出了一种非中心对称的观测系统4a、该观测系统的三维地震波场能量分布图4b;FIG. 4 shows a
图5示出了矩阵正交观测系统5a、八边形正交观测系统5b、辐射状观测系统5c、非正交观测系统5d以及观测系统参数表5e;5 shows a matrix
图6示出了四种类型的三维面积观测系统的炮点以及检波点连线方位角分布图;Fig. 6 shows the shot point of four types of three-dimensional area observation systems and the azimuth angle distribution diagram of the connection line of the detection point;
图7示出了四种类型的三维面积观测系统的覆盖次数的分布图;Fig. 7 shows the distribution diagram of the coverage times of four types of three-dimensional area observation systems;
图8是根据本发明一实施方式的辐射状观测系统的不同炮线条数或炮线夹角与炮间距对方位角分布均匀性的影响;Fig. 8 is the influence of different shot line numbers or shot line angle and shot spacing of the radial observation system according to an embodiment of the present invention on the uniformity of azimuth distribution;
图9是根据本发明一实施方式的辐射状观测系统不同炮线条数或炮线夹角和炮间距对覆盖次数分布均匀性的影响;Fig. 9 is the influence of different shot lines or shot line angle and shot spacing on the uniformity of coverage times distribution of the radial observation system according to an embodiment of the present invention;
图10示出了辐射状观测系统采集的三维反射地震信号原始数据10a、单炮记录频谱曲线10b、第4道的单道时频谱10c、第5道的单道时频谱10d;Figure 10 shows the
图11示出了AlexNet卷积神经网络模型训练过程的损失函数随迭代次数变化的曲线11a、有效道预测阈值曲线11b;Fig. 11 shows the
图12示出了坏道剔除前的实际数据12a、坏道剔除后的实际数据12b;FIG. 12 shows the
图13示出了U-Net卷积神经网络训练过程中的损失函数值随迭代次数变化曲线13a、某一单炮记录的初至波识别数据以及识别结果13b、另一单炮记录的初至波识别数据以及识别结果13c;Figure 13 shows the
图14示出了线性动校正前的数据14a、线性动校正后的数据14b;Figure 14 shows
图15是根据本发明一实施方式的等旅行时剖面叠加的二维水平切片图;FIG. 15 is a two-dimensional horizontal slice diagram superimposed on iso-travel time sections according to an embodiment of the present invention;
图16是根据本发明一实施方式的采用主成分分析算法识别多炮记录的相似区域的示意图;16 is a schematic diagram of identifying similar regions of multiple shots recorded using a principal component analysis algorithm according to an embodiment of the present invention;
图17示出了基于深度学习的多炮记录的相似区域的自动识别结果17a以及反射波识别结果垂直剖面17b;Fig. 17 shows the
图18是根据本发明一实施方式的区间施工报告图;18 is a section construction report diagram according to an embodiment of the present invention;
图19是根据本发明一实施方式的四个不同时刻对应的不同施工位置的数值模拟模型图;19 is a numerical simulation model diagram of different construction positions corresponding to four different times according to an embodiment of the present invention;
图20是根据本发明一实施方式的T1时刻对应的施工位置的深度学习训练样本以及标签数据;20 is a deep learning training sample and label data of a construction position corresponding to time T1 according to an embodiment of the present invention;
图21是根据本发明一实施方式的T2时刻对应的施工位置的深度学习训练样本以及标签数据;21 is a deep learning training sample and label data of a construction position corresponding to time T2 according to an embodiment of the present invention;
图22是根据本发明一实施方式的T3时刻对应的施工位置的深度学习训练样本以及标签数据。22 is a deep learning training sample and label data of a construction position corresponding to time T3 according to an embodiment of the present invention.
图23是根据本发明一实施方式的T4时刻对应的施工位置的深度学习训练样本以及标签数据;23 is a deep learning training sample and label data of a construction position corresponding to time T4 according to an embodiment of the present invention;
图24是根据本发明一实施方式的对单次采集的数据处理结果修正的示意图;FIG. 24 is a schematic diagram of correction of a data processing result of a single acquisition according to an embodiment of the present invention;
图25是根据本发明一实施方式的四次隧道不同施工阶段数据采集模拟图;25 is a simulation diagram of data collection in different construction stages of four tunnels according to an embodiment of the present invention;
图26是根据本发明一实施方式的实验采集的数据;Figure 26 is data collected from experiments according to an embodiment of the present invention;
图27是根据本发明一实施方式的损失函数值随迭代次数变化曲线;FIG. 27 is a curve showing the variation of the loss function value with the number of iterations according to an embodiment of the present invention;
图28是根据本发明一实施方式的脚步波形的识别结果。FIG. 28 is a recognition result of a step waveform according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments.
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprising" or its conjugations such as "comprising" or "comprising" and the like will be understood to include the stated elements or components, and Other elements or other components are not excluded.
为了克服现有技术的问题,下列实施方式提供的隧道超前地质预报方法,结合隧道地震波场传播规律和能量分布规律,提出了隧道掌子面观测系统快速设计和布置方法,实现地震检波器的快速布置,在降低对隧道施工进程的影响以及掌子面破坏的情况下,获得信噪比更高、可靠性更高的掌子面前方异常体反射信息;在隧道施工过程中进行多次数据采集,针对获得的大量反射地震数据,基于深度学习技术、地震数据快速智能处理和异常体快速智能识别技术,最终获得更真实的异常体空间位置信息。In order to overcome the problems of the prior art, the tunnel advanced geological prediction method provided by the following embodiments, combined with the propagation law of the tunnel seismic wave field and the energy distribution law, proposes a rapid design and arrangement method of the tunnel face observation system, so as to realize the rapid development of the geophone. Arrangement, in the case of reducing the impact on the tunnel construction process and the damage of the face, to obtain the reflection information of the abnormal body in front of the face with higher signal-to-noise ratio and higher reliability; multiple data collection during the tunnel construction process , based on deep learning technology, rapid and intelligent processing of seismic data and rapid and intelligent identification of abnormal bodies, based on a large amount of acquired seismic reflection data, and finally obtain more real spatial location information of abnormal bodies.
图1是根据本发明一实施方式的隧道超前预报方法,该隧道超前预报方法包括:基于隧道掌子面上的观测系统进行三维地震波信号激发与接收;基于深度学习算法对所述观测系统所采集的数据进行处理从而获得隧道中的异常体的位置。具体而言,该方法包括步骤S1~步骤S8。Fig. 1 is a tunnel advance forecasting method according to an embodiment of the present invention, the tunnel advance forecasting method includes: performing three-dimensional seismic wave signal excitation and reception based on an observation system on the tunnel face; The data is processed to obtain the location of the anomaly in the tunnel. Specifically, the method includes steps S1 to S8.
在步骤S1中在掌子面上设置三维地震观测系统。In step S1, a three-dimensional seismic observation system is set on the face.
发明人在设置观测系统时,首先进行了如下研究。When setting up the observation system, the inventors first conducted the following research.
如图2所示为掌子面激发震源时的隧道空间地震波场能量分布图,其中,x轴为隧道水平延伸的方向,z轴为垂直于地面的方向,tunnel表示隧道。从图2中可以看出掌子面激发震源时隧道两侧空间地震波场能量分布关于激发点呈轴对称。因此在实际观测系统布置过程中,首先通过评价观测系统对隧道空间地震波场能量分布均匀性来判断观测系统是否合理。Figure 2 shows the energy distribution of the tunnel space seismic wave field when the tunnel face excites the source, in which the x-axis is the direction of the horizontal extension of the tunnel, the z-axis is the direction perpendicular to the ground, and the tunnel represents the tunnel. It can be seen from Fig. 2 that the energy distribution of the spatial seismic wave field on both sides of the tunnel is axisymmetric with respect to the excitation point when the source is excited by the tunnel face. Therefore, in the process of the actual observation system layout, firstly, it is judged whether the observation system is reasonable by evaluating the uniformity of the energy distribution of the observation system to the tunnel space seismic wave field.
发明人发现满足中心对称的观测系统可以避免观测系统布置造成的隧道空间地震波场能量分布出现差异。The inventor found that an observation system that satisfies the center symmetry can avoid the difference in the energy distribution of the seismic wave field in the tunnel space caused by the arrangement of the observation system.
图3分别示出了一种中心对称的观测系统3a、该观测系统的三维地震波场能量分布图3b、该观测系统在Z=50的平面地震波场能量等值线图3c、该观测系统在y=50平面地震波场能量等值线图3d。其中,y轴为平行于地面且垂直于X轴的方向,观测系统包括多个检波器(如图中的倒三角所示)以及多个地震波发生装置(如图中的圆点所示)。从等值线图3c和等值线图3d中的方框对比来看,可以说明中心对称的观测系统的隧道空间地震波场能量分布非常均匀。Fig. 3 shows a centrally
图4示出了一种非中心对称的观测系统4a、该观测系统的三维地震波场能量分布图4b、该观测系统在Z=50的平面地震波场能量等值线图4c、该观测系统在y=50平面地震波场能量等值线图4d。从等值线图4c和等值线图4d中的方框对比来看,可以说明中心对称的观测系统的隧道空间地震波场能量分布有差异。Figure 4 shows a
从图3和图4可以看出,中心对称的观测系统的隧道空间地震波场能量分布更加均匀。因此,优选地,在本实施方式中将观测系统布置成中心对称的观测系统,如此可以利用隧道地震波场传播规律从而采集到可靠性更强以及信噪比更高的数据。It can be seen from Fig. 3 and Fig. 4 that the energy distribution of the tunnel space seismic wave field of the centrally symmetric observation system is more uniform. Therefore, preferably, in this embodiment, the observation system is arranged as a center-symmetric observation system, so that data with higher reliability and higher signal-to-noise ratio can be collected by utilizing the propagation law of the tunnel seismic wave field.
另外,发明人还发现当观测系统的覆盖次数越均匀以及炮点和检波点连线方位角分布越均匀,则观测系统接收的信号更加符合隧道地震波场传播规律,因此可以进一步提高观测系统采集的原始数据的信噪比和可靠性。In addition, the inventor also found that when the coverage times of the observation system are more uniform and the azimuth distribution of the line connecting the shot point and the receiver point is more uniform, the signals received by the observation system are more in line with the propagation law of the tunnel seismic wave field, so the data collected by the observation system can be further improved. Signal-to-noise ratio and reliability of raw data.
具体而言,发明人分析了四种不同类型的三维面积观测系统。如图5所示,四种不同类型的三维面积观测系统分别为矩阵正交观测系统5a、八边形正交观测系统5b、辐射状观测系统5c以及非正交观测系统5d。另外图5还示出了该四种观测系统的布置参数表5e。图6为该四种类型的三维面积观测系统的炮点以及检波点连线方位角分布图。图7为该四种类型的三维面积观测系统的覆盖次数的分布图。Specifically, the inventors analyzed four different types of three-dimensional area observation systems. As shown in FIG. 5, the four different types of three-dimensional area observation systems are a matrix
从图6和图7可以发现,辐射状观测系统的覆盖次数、炮点和检波点连线方位角分布的均匀性最强。From Figure 6 and Figure 7, it can be found that the coverage times of the radial observation system and the azimuth distribution of the line connecting the shot point and the receiver point are the most uniform.
还需说明的一点是,在实际勘探过程中,在满足勘探需求的前提下,针对辐射状观测系统,为降低观测系统的布置成本以及布置时长,需要兼顾炮点和检波点连线方位角的分布均匀性,也要兼顾覆盖次数的分布均匀性,选取合适的炮线(穿过中心的炮点连线)以及信号接收线(穿过中心的检波点连线),并且选取合适的地震波发生装置(炮点)以及检波器(检波点)的数目。图8是辐射状观测系统的不同炮线条数或炮线夹角与炮间距对方位角分布均匀性的影响。图9是辐射状观测系统不同炮线条数或炮线夹角和炮间距对覆盖次数分布均匀性的影响。It should also be noted that, in the actual exploration process, under the premise of meeting the exploration needs, for the radial observation system, in order to reduce the cost and layout time of the observation system, it is necessary to take into account the azimuth angle between the shot point and the receiver point. The distribution uniformity should also take into account the distribution uniformity of the coverage times, select the appropriate shot line (the line connecting the shot points passing through the center) and the signal receiving line (the line connecting the detection points passing through the center), and select the appropriate seismic wave generation line. Number of devices (shots) and detectors (spots). Figure 8 shows the effect of different number of shot lines or the included angle of shot lines and shot spacing on the uniformity of the azimuth distribution of the radial observation system. Figure 9 shows the effect of different shot lines or shot line angle and shot spacing on the uniformity of coverage times distribution in the radial observation system.
在设置完观测系统之后,在步骤S2中,观测系统采集三维地震数据:在掌子面的某一施工位置的T1时刻,观测系统进行地震波激发,检波器接收信号从而实现三维地震数据采集。After the observation system is set up, in step S2, the observation system collects 3D seismic data: at time T1 at a certain construction position on the face, the observation system excites seismic waves, and the detector receives signals to realize 3D seismic data collection.
图10分别示出了本实施方式的辐射状观测系统采集的三维反射地震信号原始数据10a、单炮记录频谱曲线10b、第4道的单道时频谱10c、第5道的单道时频谱10d。单道时频谱中标注了初至波的区域,以及有效反射波可能存在的区域。FIG. 10 shows the
在步骤S3中,基于AlexNet卷积神经网络算法对采集的原始数据进行坏道剔除。具体而言,首先对AlexNet卷积神经网络模型进行训练,其中,AlexNet卷积神经网络模型按照地震勘探分辨率以一个地震子波波场为基准,以四分之一个子波波长作为卷积核长度,八分之一个子波波长作为池化层长度。然后基于训练后的模型进行坏道剔除。In step S3, the collected raw data is removed from bad sectors based on the AlexNet convolutional neural network algorithm. Specifically, the AlexNet convolutional neural network model is first trained, in which the AlexNet convolutional neural network model is based on a seismic wave field according to the resolution of seismic exploration, and a quarter wavelet wavelength is used as the convolution The core length, one-eighth of the wavelet wavelength is used as the length of the pooling layer. Then perform bad sector culling based on the trained model.
为了能够更好地区分有效道和坏道(空道数据以及噪声数据)从而提高坏道剔除的效果,优选地,本实施方式中,在坏道剔除中,还设置了有效道预测阈值f(x),其中其中,N为标签种类(即有效数据种类),pre(i)代表AlexNet对每一道数据的属于某一类标签(有效数据)的可能性预测值,F(x)代表每一道数据的所有标签预测值之和,F(x)max代表所有参与预测数据的最大所有标签预测值之和。In order to better distinguish between valid tracks and bad tracks (empty track data and noise data) to improve the effect of bad track culling, preferably, in this embodiment, in bad track culling, a valid track prediction threshold f ( x), where Among them, N is the label type (that is, the valid data type), pre(i) represents the probability prediction value of AlexNet belonging to a certain type of label (valid data) for each data, and F(x) represents all the labels of each data. The sum of predicted values, F(x) max represents the sum of the largest predicted values of all labels of all participating prediction data.
图11分别示出了本实施方式的AlexNet卷积神经网络模型训练过程的损失函数随迭代次数变化的曲线11a、有效道预测阈值曲线11b。FIG. 11 respectively shows a
从曲线11a可以看出,随着迭代次数增加,损失函数值逐渐降低,在迭代次数大于400后,损失函数值趋于0,表明AlexNet卷积神经网络模型在此处趋于稳定,由此结束训练。It can be seen from
根据训练样本数据,可以获得不同样本标签对应的有效道记录预测值上限和下限,如曲线11b所示,以该上限和下限作为有效道预测阈值,数据预测值在该范围内,则判断其为有效值,若在该范围外,则为噪音。由于构建坏道识别网络采用了未经任何处理的原始地震数据,因此在预测值中存在部分噪音影响,因此优选地,在本实施方式中,按照信噪比对有效道预测阈值进行一定程度的扩大,该优选的实施方式中的数据处理对11b所示范围进行了50%的扩充,最终确定有效数据上限为63.2,下限为-94.5。将48个共接收点炮集进行导入训练后的卷积神经网络中进行坏道识别。According to the training sample data, the upper limit and lower limit of the effective track record prediction value corresponding to different sample labels can be obtained. As shown in the
图12分别示出了坏道剔除前的实际数据12a、坏道剔除后的实际数据12b。FIG. 12 respectively shows the
坏道剔除前的实际数据12a为48个原始单道记录数据,上方曲线为不同单道记录的预测值曲线,横轴代表不同共接收点炮集记录,纵轴代表基于AlexNet卷积神经网络算法的坏道识别预测值,预测值越小代表其为坏道的可能性越大,反之代表其为坏道的可能性越小。坏道剔除后的实际数据12a与坏道剔除前的实际数据12b进行对比可以看出,高频、正弦噪音及低频、强振幅噪音得到了有效的剔除。The
在步骤S4中对坏道剔除后的数据进行滤波处理。In step S4, filter processing is performed on the data after the bad sectors are eliminated.
在步骤S5中,基于U-Net卷积神经网络算法进行初至波识别,并且估算直达波速度。首先对U-Net卷积神经网络模型进行训练,然后基于训练后的卷积神经网络模型对初至波进行识别,之后估算直达波速度。In step S5, the first arrival wave is identified based on the U-Net convolutional neural network algorithm, and the direct wave velocity is estimated. First, the U-Net convolutional neural network model is trained, and then the first arrival waves are identified based on the trained convolutional neural network model, and then the direct wave velocity is estimated.
图13分别示出了U-Net卷积神经网络训练过程中的损失函数值随迭代次数变化曲线13a、某一单炮记录的初至波识别数据以及识别结果13b、另一单炮记录的初至波识别数据以及识别结果13c。Figure 13 shows the
损失函数值随迭代次数变化曲线13a中所示,随着迭代次数增加,卷积神经网络的损失函数值逐渐降低并最终趋于不变,其中,迭代次数在0~30次时损失函数值降低速度快,在30~150次范围内损失函数值降低速度较慢,在大于170次后,损失函数值趋于0,表明此时U-Net网络已趋于稳定,本实施方式中采用迭代次数等于1350时的网络模型作为最终网络进行初至波识别。As shown in the
从某一单炮记录的初至波识别数据以及识别结果13b以及另一单炮记录的初至波识别数据以及识别结果13c可以看出,基于U-Net算法的深度学习技术有效地识别出了初至波位置。另外,图13b中所示,直达波速度为4000m/s。From the first-arrival identification data and
在步骤S6中进行线性动校正:根据初至波位置识别结果对坏道剔除后的数据进行线性动校正,图14示出了线性动校正前的数据14a、线性动校正后的数据14b,可以看出线性动校正结果很好。In step S6, linear motion correction is performed: linear motion correction is performed on the data after bad track elimination according to the first arrival wave position identification result. Figure 14 shows the
在步骤S7中进行等旅行时剖面叠加。具体而言,将初至波视速度作为初始速度进行速度扫描,当网格节点上的速度正确时,多个等旅行时剖面在该点位置叠加表现为强能量值,反之则为弱能量值。In step S7, isotravel profile stacking is performed. Specifically, the apparent velocity of the first arrival wave is used as the initial velocity to scan the velocity. When the velocity on the grid node is correct, the superposition of multiple isotravel profiles at this point shows a strong energy value, otherwise it is a weak energy value .
图15为本实施方式的等旅行时剖面叠加的二维水平切片图。观测其二维水平切片可发现,按照反射同相轴能量变化,可将x=50~300区域分为1、2、3这三部分。FIG. 15 is a two-dimensional horizontal slice diagram superimposed on iso-travel time sections of the present embodiment. Observing its two-dimensional horizontal slices, it can be found that the region x=50-300 can be divided into three parts: 1, 2, and 3 according to the energy change of the reflection event axis.
在步骤S8中基于深度学习算法拾取反射层,具体而言,采用主成分分析算法识别多炮记录的相似区域。该相似区域被推测为地质异常体所在区域。如图16所示,矩形框起来的区域被推测为异常体所在区域。In step S8, the reflection layer is picked up based on a deep learning algorithm, and specifically, a principal component analysis algorithm is used to identify similar areas recorded by multiple shots. This similar area is presumed to be the area where the geological anomaly is located. As shown in Fig. 16, the area enclosed by the rectangle is estimated to be the area where the abnormal body is located.
图17示出了基于深度学习的多炮记录的相似区域的自动识别结果17a以及反射波识别结果垂直剖面17b。以同相轴相位反转代表相似区域位置(如图中黑框所示区域)。在y=100m处的水平剖面能量较强,而在z=100m处的垂直剖面上能量相对较弱,这主要是由于炮点和检波点连线方位角主要分布在z方向,在y方向分布较少,使得在该方向上能量分布较强。同时结合图16的二维水平切片中的三个区域进行反射波拾取,拾取结果如图17所示。根据同相轴位置和形态,将其划分为x=100~150、x=200~250以及x=300三个部分,推测在该三个区域存在异常体结构。Fig. 17 shows the
为了验证推测结果,图18为本实施方式的2+966-3+311区间的施工报告图,图中三角位置为本次探测的位置。从施工报告可以看出,在掌子面前方60米(图18中3+074)位置处有一香肠状石英岩脉和花岗伟晶岩脉穿插于岩内,其位置与反射波识别结果垂直剖面17b中的在距离掌子面55米处的反射波异常体吻合(如图17b中的矩形框1所示);在距离掌子面260米处的围岩内存在一宽0.1-0.5m,长2-10m、沿裂隙侵入的黄岗岩岩脉穿插,在空间位置上,其与图17b在掌子面前方250米处的同相轴吻合(如图17b中的矩形框3所示);与此同时,在距掌子面60米至250米之间存在强能量的反射波,对比其与距掌子面60米处(如图17b中的矩形框2所示)的同相轴可以看出,相位变化规律相似,同时从后续施工报告中可以看出,在桩号2+966-3+240段,围岩完整性和稳定性较差,褶皱变形严重,因此推断其反射波为如图17b中的矩形框1内的同相轴形成的多次波。In order to verify the presumed result, Fig. 18 is a construction report drawing of the 2+966-3+311 section of this embodiment, and the triangle position in the figure is the position of this detection. It can be seen from the construction report that there is a sausage-shaped quartz dyke and a granite pegmatite dyke interspersed in the rock at a position of 60 meters in front of the face (3+074 in Figure 18), and its position is perpendicular to the reflection wave identification result. In 17b, the reflected wave anomaly at a distance of 55 meters from the face is consistent (as shown in the
另外隧道是一个动态施工过程,在整个施工过程中,探测目标体位置不发生改变,探测位置随着施工进度发生变化。发明人发现这种特性使得同一异常体形成的反射波同相轴在不同探测位置采集的单炮数据上表现为旅行时不同,波形相似。因此,为了提高以后的施工过程中的异常体的推测效率,在一优选的实施方式中,采用基于U-Net卷积神经网络算法构建隧道不同施工位置采集的地震信号关联性模型,利用计算机对这些大量数据进行特征波智能学习,实现不同地震信号中相同异常体反射信息的智能识别和提取,从而消除地表覆盖物、地表层、隧道壁等外界因素对掌子面前方异常体识别造成的影响。In addition, the tunnel is a dynamic construction process. During the whole construction process, the position of the detection target does not change, and the detection position changes with the construction progress. The inventor found that this characteristic makes the reflected wave events formed by the same anomaly appear to have different travel times and similar waveforms on the single-shot data collected at different detection positions. Therefore, in order to improve the estimation efficiency of abnormal bodies in the future construction process, in a preferred embodiment, a U-Net convolutional neural network algorithm is used to construct a correlation model of seismic signals collected at different construction positions of the tunnel, and a computer These large amounts of data are subjected to intelligent learning of characteristic waves to realize intelligent identification and extraction of the reflection information of the same abnormal body in different seismic signals, thereby eliminating the influence of external factors such as ground cover, surface layer, and tunnel wall on the identification of abnormal bodies in front of the face. .
具体而言,在完成第一时刻的异常体位置推测后,后续各施工位置的异常体推测的过程如下:首先获取一个或多个隧道施工位置的地震单炮数据;对每个隧道施工位置的地震单炮数据中的反射波同相轴进行分类从而得到所述每个隧道施工位置的反射波同相轴的标签数据;基于U-Net卷积神经网络算法对所述每个隧道施工位置的反射波同相轴的标签数据以及所述每个隧道施工位置的地震单炮数据进行训练,建立地震信号关联性模型;获取当前隧道施工位置的地震单炮数据;根据所述地震信号关联性模型对所述当前隧道施工位置的地震单炮数据中的反射波同相轴进行识别和定位;根据地表高程与施工区围岩信息以及所述当前隧道施工位置的地震单炮数据中的反射波同相轴识别和定位结果对所述当前隧道施工位置前方的异常体位置进行推测。Specifically, after completing the estimation of the abnormal body position at the first moment, the process of estimating the abnormal body at each subsequent construction position is as follows: first obtain the seismic single shot data of one or more tunnel construction positions; The reflected wave event axis in the seismic single shot data is classified to obtain the label data of the reflected wave event axis of each tunnel construction location; based on the U-Net convolutional neural network algorithm, the reflected wave of each tunnel construction location The label data of the event axis and the seismic single shot data of each tunnel construction position are trained to establish a seismic signal correlation model; the seismic single shot data of the current tunnel construction position is obtained; Identify and locate the reflected wave event axis in the seismic single shot data at the current tunnel construction location; identify and locate the reflected wave event axis in the seismic single shot data at the current tunnel construction location based on the surface elevation and surrounding rock information in the construction area and the current tunnel construction location As a result, the position of the abnormal body in front of the current tunnel construction position is estimated.
需要说明的一点的是,训练的样本数据越多,异常体的推测结果越准确。因此,当推测出第一施工位置的异常体位置后,根据上述过程,再得出后续的第二施工位置的异常体位置;之后在推测第三施工位置的异常体位置时,优选地,应该将第一施工位置和第二施工位置的单炮数据以及标签数据均作为训练样本进行训练;依此类推,之后在推测第四施工位置的异常体位置时,优选地,应该将第一施工位置、第二施工位置以及第三施工位置的单炮数据以及标签数据均作为训练样本进行训练。如此,可以获得更加准确的异常体推测结果。It should be noted that the more sample data for training, the more accurate the prediction result of abnormal body. Therefore, after estimating the position of the abnormal body at the first construction position, according to the above process, the subsequent position of the abnormal body at the second construction position is obtained; then when estimating the position of the abnormal body at the third construction position, preferably, the The single shot data and label data of the first construction position and the second construction position are used as training samples for training; and so on, when inferring the abnormal body position of the fourth construction position, preferably, the first construction position should be , the second construction position and the single shot data and label data of the third construction position are used as training samples for training. In this way, a more accurate abnormal body estimation result can be obtained.
接下来以数值模拟数据对隧道超前预报数据智能解释技术进行阐述。图19为四个不同时刻对应的不同施工位置的数值模拟模型。图20为T1时刻对应的施工位置的深度学习训练样本以及标签数据。图21为T2时刻对应的施工位置的深度学习训练样本以及标签数据。图22为T3时刻对应的施工位置的深度学习训练样本以及标签数据。图23为T4时刻对应的施工位置的深度学习训练样本以及标签数据。为了增加采样数据的随机性,四个施工时刻掌子面之间的距离并不是等间距,T1时刻对应的掌子面位于x=25m处,T2时刻对应的掌子面位于x=47m处,T3时刻对应的掌子面位于x=53m处,T4时刻对应的掌子面位于x=73m处。每个单炮记录共20道数据,道间距0.5m。首先利用T1时刻的单炮数据建立初始的多时刻单炮数据同相轴关联性数值模拟。观察T1时刻数据可以看出,在反射波区域内存在负视速度同相轴(75ms处)和小视倾角的同相轴(50ms处)两类反射波同相轴,据此,将T1单炮记录上的同相轴分为两类,将50ms处、小视倾角同相轴视为第一类同相轴,将75ms处的负视速度同相轴视为第二类同相轴,以此制作T1时刻标签数据(如图20所示)。炮集记录表明随着隧道距离异常体位置的靠近,由异常体形成的反射波同相轴旅行时逐渐变小,水平地层在x=25及x=75范围内深度变化小,因此由该类异常体影响形成的反射波同相轴旅行时几乎不变。接下来基于深度学习技术的自动识别出不同隧道施工位置炮集记录同相轴,如图21~23所示。可以看出,基于深度学习算法建立的多时刻地震数据关联性网络模型可以有效地识别和反应同一异常体形成的反射波同相轴变化规律。其次,由于多次波和一次波的波形相似度高,当仅用T1数据作为训练数据构建多时刻炮集记录关联性模型时,预测结果较差,难以将一次波和多次波分开,预测结果残留了大量的多次波信息(如图21所示);然而当训练样本数据增多时,基于多数据构建的多时刻炮集记录关联性模型不仅可有效区分一次波和多次波(如图22以及图23所示),波形识别的抗干扰能力也得到了增强,如T4时刻炮集记录中,有效异常体反射波已与直达波混叠在一起,当采用3个时刻的数据作为训练数据时,同相轴的识别能力明显提高,这表明预测结果与训练数据集量成正相关,参与模型训练的数据量越大、代表性越强,获得的预测结果越准确。在此基础上对单次采集的数据处理结果进行修正,如图24所示,地表、平行于隧道轴线的地层等干扰得到了有效地滤除。Next, the intelligent interpretation technology of tunnel advance forecast data is explained with numerical simulation data. Figure 19 is a numerical simulation model of different construction positions corresponding to four different times. FIG. 20 shows the deep learning training samples and label data of the construction location corresponding to time T1. FIG. 21 shows the deep learning training samples and label data of the construction position corresponding to time T2. FIG. 22 shows the deep learning training samples and label data of the construction position corresponding to time T3. FIG. 23 shows the deep learning training samples and label data of the construction position corresponding to time T4. In order to increase the randomness of the sampling data, the distances between the four construction moments are not equidistant; The tunnel face corresponding to time T3 is located at x=53m, and the tunnel face corresponding to time T4 is located at x=73m. A total of 20 data tracks were recorded for each single shot, and the track spacing was 0.5m. Firstly, an initial multi-time single-shot data event correlation numerical simulation is established by using the single-shot data at T1 time. Observing the data at the time of T1, it can be seen that there are two types of reflected wave events in the reflected wave area: the negative apparent velocity event axis (at 75ms) and the event axis with small apparent inclination angle (at 50ms). The event axis is divided into two categories. The event axis at 50ms and small apparent inclination angle is regarded as the first type event axis, and the negative apparent velocity event axis at 75ms is regarded as the second type event axis, so as to make the label data at T1 time (as shown in the figure). 20). The shot collection records show that as the tunnel gets closer to the position of the anomaly, the event axis of the reflected wave formed by the anomaly gradually becomes smaller when traveling, and the depth of the horizontal stratum changes little in the range of x=25 and x=75. The reflected wave formed by the bulk influence travels almost unchanged. Next, based on the deep learning technology, the event axis of the shot set recording at different tunnel construction positions is automatically identified, as shown in Figures 21-23. It can be seen that the multi-time seismic data correlation network model established based on the deep learning algorithm can effectively identify and reflect the change law of the reflected wave event axis formed by the same abnormal body. Secondly, due to the high similarity of the waveforms of multiples and primarys, when only the T1 data is used as training data to build a multi-time shot record correlation model, the prediction results are poor, and it is difficult to separate the primary and multiples. As a result, a large amount of multiple wave information remains (as shown in Figure 21); however, when the training sample data increases, the multi-time shot record correlation model constructed based on multiple data can not only effectively distinguish primary waves from multiples (such as As shown in Figure 22 and Figure 23), the anti-interference ability of waveform recognition has also been enhanced. For example, in the shot collection record at the time of T4, the reflected wave of the effective abnormal body has been aliased with the direct wave. When the data at three times is used as the When training data, the recognition ability of the event axis is significantly improved, which indicates that the prediction result is positively correlated with the training data set. On this basis, the data processing results of a single acquisition are corrected. As shown in Figure 24, the interference of the ground surface and the stratum parallel to the tunnel axis has been effectively filtered out.
另外,为了验证通过建立关联性模型而进行特征波识别的效果,利用物理实验来进行说明。首先利用smartsolo 5Hz节点式地震仪布置两条测线,每条测线20个接收点,道间距0.5m。行人沿测线行走过程与隧道向前方掘进过程类似,当行走至某一个接收点时可认为隧道施工到了某一位置,以此物理实验模拟隧道掘进过程。数据采集过程中沿测线来回行走2次,以此模拟进行了四次隧道不同施工阶段数据采集,如图25所示。以行人第一次行走记录的脚步作为T1时刻隧道接收的反射波(图26的m框所示),以后续行走三次记录的脚步作为后续不同时刻采集的反射波信号(图26中的n框所示)。为增加数据差异,在第一次行走时路人手持一个5kg重量的铅球,在后续三次行走时手持两个5kg重量的铅球。以m框内数据作为训练数据,以道号作为样本标签进行训练,在此基础上对n框数据进行识别,损失函数值随迭代次数变化曲线如图27所示。图28所示的识别结果表明,利用T1时刻数据构建的神经网络模型有效识别出了后续脚步波形的位置,这一实验表明该方法可用于隧道不同时刻采集的单炮数据关联性模型建立,以此实现特征波识别。In addition, in order to verify the effect of eigenwave identification by establishing a correlation model, a description will be given using a physical experiment. First, two survey lines were arranged using a smartsolo 5Hz nodal seismometer, each with 20 receiving points and a track spacing of 0.5m. The process of pedestrian walking along the survey line is similar to the process of tunnel excavation forward. When walking to a certain receiving point, it can be considered that the tunnel construction has reached a certain position, and the physical experiment is used to simulate the tunnel excavation process. During the data collection process, the survey line was walked back and forth twice, and the data collection at different construction stages of the tunnel was simulated four times, as shown in Figure 25. Take the footsteps recorded by the pedestrian for the first time as the reflected wave received by the tunnel at time T1 (shown in the m box in Figure 26), and take the footsteps recorded in the following three times as the reflected wave signal collected at different subsequent times (the n box in Figure 26). shown). In order to increase the data difference, passers-by held a 5kg lead put during the first walk, and two 5kg lead put in the next three walks. The data in the m frame is used as the training data, and the track number is used as the sample label for training. On this basis, the data in the n frame is identified. The change curve of the loss function value with the number of iterations is shown in Figure 27. The recognition results shown in Figure 28 show that the neural network model constructed using the data at time T1 can effectively identify the position of the subsequent footstep waveforms. This experiment shows that this method can be used to establish the correlation model of the single shot data collected at different times in the tunnel, so that the This enables eigenwave identification.
基于同样的发明构思,本实施方式还提供了一种计算机可读存储介质,用于执行下述步骤:基于AlexNet卷积神经网络模型算法对观测系统采集的数据进行坏道数据的剔除,并进行滤波;基于U-Net卷积神经网络模型算法对初至波进行识别,并且估算直达波速度;根据初至波识别结果对剔除了坏道数据的原始数据进行线性动校正;将线性动校正后的数据进行等旅行时剖面叠加;对叠加后的数据通过深度学习算法进行反射层拾取,从而推测出所述第一隧道施工位置的异常体所在的区域。Based on the same inventive concept, this embodiment also provides a computer-readable storage medium for performing the following steps: removing bad sector data from the data collected by the observation system based on the AlexNet convolutional neural network model algorithm, and performing the following steps: Filter; identify the first arrival wave based on the U-Net convolutional neural network model algorithm, and estimate the speed of the direct wave; perform linear dynamic correction on the original data with the bad track data removed according to the first arrival wave identification result; The superimposed data is carried out with equal travel profile; the superimposed data is picked up by the reflection layer through the deep learning algorithm, so as to infer the area where the abnormal body of the first tunnel construction position is located.
优选地,本实施方式的计算机可读存储介质还用于执行如下步骤:获取一个或多个隧道施工位置的地震单炮数据;对每个隧道施工位置的地震单炮数据中的反射波同相轴进行分类从而得到所述每个隧道施工位置的反射波同相轴的标签数据;基于U-Net卷积神经网络算法对所述每个隧道施工位置的反射波同相轴的标签数据以及所述每个隧道施工位置的地震单炮数据进行训练,建立地震信号关联性模型;获取当前隧道施工位置的地震单炮数据;根据所述地震信号关联性模型对所述当前隧道施工位置的地震单炮数据中的反射波同相轴进行识别和定位;根据地表高程与施工区围岩信息以及所述当前隧道施工位置的地震单炮数据中的反射波同相轴识别和定位结果对所述当前隧道施工位置前方的异常体位置进行推测。Preferably, the computer-readable storage medium of this embodiment is further configured to perform the following steps: acquiring single-shot seismic data of one or more tunnel construction positions; Classify to obtain the label data of the reflected wave event axis of each tunnel construction position; based on the U-Net convolutional neural network algorithm, the label data of the reflected wave event axis of each tunnel construction position and the each The seismic single shot data of the tunnel construction location is trained to establish a seismic signal correlation model; the seismic single shot data of the current tunnel construction location is obtained; according to the seismic signal correlation model, the seismic single shot data of the current tunnel construction location is analyzed. Identify and locate the reflected wave event axis; according to the surface elevation and the surrounding rock information of the construction area and the reflected wave event axis identification and positioning results in the seismic single shot data of the current tunnel construction location The location of the abnormal body is estimated.
综上,根据本实施方式的隧道超前地质预报方法、计算机可读存储介质,基于深度学习算法对隧道单一施工位置地震数据进行了快速识别,对数据处理人员专业知识依赖性低,处理结果受外界影响干扰小,可实现大量数据的智能、快速、低成本处理。优选地,利用隧道地震波场传播规律,首次提出了掌子面上的地震观测系统,选用中心对称的观测系统,特别地选用辐射状的观测系统,从理论和实际上验证了该观测系统可获得大量可靠性更高的、真实性更强的反射波信息,同时对数据处理和解释影响小。优选地,一实施方式中,利用了同一异常体形成的反射波同相轴在不同探测位置采集的单炮数据上表现为旅行时不同,波形相似的这一特征,只需要获取一个位置的探测结果后,后续的施工位置都可以利用该波形相似的特征来建立关联性模型,具体地,基于深度学习算法构建不同施工位置采集数据的关联性模型,可避免人工识别大量数据中的特殊波形效率低、可靠性差的问题,实现大量数据中特征波形的快速、精准识别。To sum up, according to the tunnel advanced geological prediction method and the computer-readable storage medium of the present embodiment, the seismic data of a single construction location of the tunnel is quickly identified based on the deep learning algorithm, and the dependence on the professional knowledge of the data processing personnel is low, and the processing results are affected by the outside world. The impact and interference are small, and the intelligent, fast and low-cost processing of large amounts of data can be realized. Preferably, the seismic observation system on the tunnel face is proposed for the first time by using the propagation law of the seismic wave field in the tunnel. The observation system of center symmetry is selected, especially the radial observation system. It is verified from theory and practice that the observation system can obtain A large number of more reliable and more realistic reflected wave information, and at the same time have little impact on data processing and interpretation. Preferably, in one embodiment, the reflected wave event axis formed by the same abnormal body is used in the single shot data collected at different detection positions, which shows that the travel time is different and the waveforms are similar, and only the detection result of one position needs to be obtained. After that, the subsequent construction positions can use the similar characteristics of the waveform to establish the correlation model. Specifically, the correlation model of the data collected at different construction positions can be constructed based on the deep learning algorithm, which can avoid the low efficiency of manual identification of special waveforms in a large amount of data. , the problem of poor reliability, to achieve rapid and accurate identification of characteristic waveforms in a large amount of data.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and illustration. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and their practical applications, to thereby enable others skilled in the art to make and utilize various exemplary embodiments and various different aspects of the invention. Choose and change. The scope of the invention is intended to be defined by the claims and their equivalents.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011078912.2A CN112305591B (en) | 2020-10-10 | 2020-10-10 | Tunnel advance geological prediction method, computer readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011078912.2A CN112305591B (en) | 2020-10-10 | 2020-10-10 | Tunnel advance geological prediction method, computer readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112305591A CN112305591A (en) | 2021-02-02 |
CN112305591B true CN112305591B (en) | 2022-04-29 |
Family
ID=74489584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011078912.2A Active CN112305591B (en) | 2020-10-10 | 2020-10-10 | Tunnel advance geological prediction method, computer readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112305591B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113202481A (en) * | 2021-05-10 | 2021-08-03 | 中铁第四勘察设计院集团有限公司 | Method and device for acquiring geological information, electronic equipment and storage medium |
CN114609668B (en) * | 2022-03-11 | 2023-09-19 | 西安交通大学 | A high-quality reservoir identification method, device, equipment and storage medium based on scattering transformation and neural network |
CN115201901B (en) * | 2022-06-30 | 2024-11-05 | 中铁第四勘察设计院集团有限公司 | Method, device and equipment for determining tunnel wavefront travel time and readable storage medium |
CN115079165B (en) * | 2022-07-05 | 2024-12-10 | 电子科技大学 | A building layout tomography method based on direct wave delay estimation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105676279A (en) * | 2016-01-18 | 2016-06-15 | 长江地球物理探测(武汉)有限公司 | Earthquake reflection data collection method with concentric-circle equivalent shot-geophone distance |
CN111929728A (en) * | 2020-08-13 | 2020-11-13 | 高军 | Three-dimensional three-component advanced refined geological prediction method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105259572B (en) * | 2015-07-23 | 2018-06-19 | 成都理工大学 | The seismic facies computational methods classified automatically based on seismic multi-attribute parametrical nonlinearity |
CN106650951B (en) * | 2016-12-29 | 2019-06-21 | 中国科学技术大学 | Automatic screening method of multi-channel measurement data based on global similarity in time domain |
CN109557583B (en) * | 2017-09-26 | 2020-12-01 | 中国石油化工股份有限公司 | Seismic attribute extraction method and system |
CN107807387B (en) * | 2017-10-31 | 2019-08-27 | 中国科学技术大学 | Acquisition Method of First Arrival Travel Time of Earthquake Based on Neural Network |
KR102027252B1 (en) * | 2017-12-28 | 2019-10-01 | (주)대우건설 | Methods for differentiation of earthquake signal and prediction of earthquake intensity using randomly generated artificial seismic training data for an arbitrary zone |
CN108337153B (en) * | 2018-01-19 | 2020-10-23 | 论客科技(广州)有限公司 | Method, system and device for monitoring mails |
CN111478783B (en) * | 2019-01-23 | 2023-01-13 | 中国移动通信有限公司研究院 | Method and equipment for configuring wireless transmission parameters |
CN111123351B (en) * | 2019-11-29 | 2022-03-15 | 中铁工程服务有限公司 | Advanced forecasting system and method for shield construction |
CN110988981B (en) * | 2019-12-23 | 2021-09-14 | 山东大学 | Phased array sound wave advanced prediction system and method suitable for drilling and blasting method tunnel |
CN111007566B (en) * | 2019-12-27 | 2020-12-18 | 西南石油大学 | A Curvature-Driven Diffusion Fully Convolutional Network Seismic Data Bad Sector Reconstruction and Denoising Method |
CN111178320B (en) * | 2020-01-07 | 2020-11-17 | 中国矿业大学(北京) | Geological abnormal body recognition method and model training method and device thereof |
CN111289250A (en) * | 2020-02-24 | 2020-06-16 | 湖南大学 | A method for predicting the remaining service life of a servo motor rolling bearing |
CN111626355A (en) * | 2020-05-27 | 2020-09-04 | 中油奥博(成都)科技有限公司 | Unet + + convolutional neural network-based seismic data first arrival pickup method |
-
2020
- 2020-10-10 CN CN202011078912.2A patent/CN112305591B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105676279A (en) * | 2016-01-18 | 2016-06-15 | 长江地球物理探测(武汉)有限公司 | Earthquake reflection data collection method with concentric-circle equivalent shot-geophone distance |
CN111929728A (en) * | 2020-08-13 | 2020-11-13 | 高军 | Three-dimensional three-component advanced refined geological prediction method |
Also Published As
Publication number | Publication date |
---|---|
CN112305591A (en) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112305591B (en) | Tunnel advance geological prediction method, computer readable storage medium | |
CN106094029B (en) | Utilize the method for offset distance vector piece geological data Predicating Reservoir Fractures | |
US10209401B2 (en) | Method for validating a training image for the multipoint geostatistical modeling of the subsoil | |
CN104765064B (en) | A kind of method of microseism interference imaging | |
CN102053263B (en) | Method for inspecting surface structure | |
CN101900833B (en) | A Velocity Analysis Method for Seismic Scattering P-P Wave Imaging | |
US10345463B2 (en) | Methods and systems for using known source events in seismic data processing | |
CN106772592B (en) | Diffracted wave focuses the analysis method and device of energy | |
CN110261902B (en) | A method for localization of shallow subsurface sources based on multispectral energy synthesis | |
CN105093301B (en) | The generation method and device of common imaging point angle of reflection angle gathers | |
CN103758511A (en) | Method and device for identifying hidden reservoir through underground reverse time migration imaging | |
CN102877828A (en) | CT (Computed Tomography) imaging method of three-dimensional multi-well combined well land | |
CN113189644A (en) | Microseismic source positioning method and system | |
CN104570078B (en) | A kind of solution cavity detection method of the similitude cross directional variations rate based on frequency domain inclination angle | |
CN105425299A (en) | Method and apparatus for determining formation fracture distribution | |
CN104199088B (en) | Incident angle gather extraction method and system | |
CN110320576A (en) | Method for forecasting advanced geology, device and storage medium | |
CN105093296A (en) | Method and device for optimizing observation system | |
CN109856677A (en) | A kind of seismoelectric joint obtains the localization method of crack information | |
CN107664771B (en) | A kind of microseism Full wave shape localization method based on likeness coefficient | |
CN104849751B (en) | The method of Prestack seismic data imaging | |
CN105301638A (en) | Method and device for extracting bottom interface of weathered layer | |
CN113376695A (en) | Full waveform inversion method suitable for complex collapse column of coal seam floor | |
CN110687591B (en) | Method for determining physical property parameters of coal bed and surrounding rock based on waveform matching of prior data | |
CN108897046B (en) | Far detection sound wave reverse time migration imaging method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |