CN112300232B - Lamellarin D糖基化衍生物及其制备和应用 - Google Patents

Lamellarin D糖基化衍生物及其制备和应用 Download PDF

Info

Publication number
CN112300232B
CN112300232B CN202011211865.4A CN202011211865A CN112300232B CN 112300232 B CN112300232 B CN 112300232B CN 202011211865 A CN202011211865 A CN 202011211865A CN 112300232 B CN112300232 B CN 112300232B
Authority
CN
China
Prior art keywords
glycosyl
compound
lamellarin
preparation
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011211865.4A
Other languages
English (en)
Other versions
CN112300232A (zh
Inventor
沈立
郑柳柳
顾依钰
施雨珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011211865.4A priority Critical patent/CN112300232B/zh
Publication of CN112300232A publication Critical patent/CN112300232A/zh
Application granted granted Critical
Publication of CN112300232B publication Critical patent/CN112300232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一类Lamellarin D糖基化衍生物及其制备和应用。该衍生物结构式如下式(I)所示:
Figure DDA0002759018810000011
其中,R1选自氢原子、苄基、甲磺酰基、五碳糖或六碳糖的单糖基中的一种,R2选自氢原子、异丙基、五碳糖或六碳糖的单糖基中的一种,R3选自氢原子、甲磺酰基、五碳糖或六碳糖的单糖基中的一种,并且R1、R2、R3中至少有一个为五碳糖或六碳糖的单糖基;五碳糖选自核糖,六碳糖选自葡萄糖、甘露糖或半乳糖。本发明通过在Lamellarin D 8、14、20位的至少一个羟基上引入相同或不同的糖基,来调节所得Lamellarin D糖基化衍生物的溶解度、抗肿瘤活性等理化性能和生物活性。

Description

Lamellarin D糖基化衍生物及其制备和应用
技术领域
本发明涉及医药领域,具体涉及一类Lamellarin D糖基化衍生物及其制备和应用。
背景技术
Lamellarin D是Faulkner及其同事从前鳃亚纲软体动物Lamellaria sp.中分离得到的海洋天然产物之一,含有14-苯基-6H-[1]苯并吡喃并[4',3':4,5]吡咯并[2,1-a]异喹啉骨架(Andersen RJ,Faulkner DJ,He CH,Van Duyne GD,Clardy J:Metabolites ofthe marine prosobranch mollusk Lamellaria sp.Journal of the American ChemicalSociety 1985,107(19):5492-5495)。lamellarin D被证明是拓扑异构酶I的有效抑制剂(Facompre M,Tardy C,Bal-Mahieu C,Colson P,Perez C,Manzanares I,Cuevas C,Bailly C:Lamellarin D:a novel potent inhibitor of topoisomerase I.Cancer Res2003,63(21):7392-7399;Ballot C,Martoriati A,Jendoubi M,Buche S,Formstecher P,Mortier L,Kluza J,Marchetti P:Another Facet to the Anticancer Response toLamellarin D:Induction of Cellular Senescence through Inhibition ofTopoisomerase I and Intracellular Ros Production.Marine Drugs 2014,12(2);OhtaT,Fukuda T,Ishibashi F,Iwao M:Design and Synthesis of Lamellarin D AnaloguesTargeting Topoisomerase I.The Journal of Organic Chemistry 2009,74(21):8143-8153;Marco E,Laine W,Tardy C,Lansiaux A,Iwao M,Ishibashi F,Bailly C,Gago F:Molecular Determinants of Topoisomerase I Poisoning by Lamellarins:Comparisonwith Camptothecin and Structure-Activity Relationships.J Med Chem vol.48;2005)。尽管lamellarin D具有良好的生物活性,但由于其具有一个独特的五环平面骨架导致溶解性较差。为了克服lamellarin D水溶性差的缺点,前人进行了大量研究,例如在lamellarine D上引入氨基酸残基(Tardy C,Facompre M,Laine W,Baldeyrou B,Garcia-Gravalos D,Francesch A,Mateo C,Pastor A,Jimenez JA,Manzanares I et al:Topoisomerase I-mediated DNA cleavage as a guide to the development ofantitumor agents derived from the marine alkaloid lamellarin D:triesterderivatives incorporating amino acid residues.Bioorg Med Chem 2004,12(7):1697-1712),核定位肽(Pla,D.;Martí,M.;Farrera-Sinfreu,J.;Pulido,D.;Francesch,A.;Calvo,P.;Cuevas,C.;Royo,M.;Aligué,R.;Albericio,F.;
Figure BDA0002759018790000021
M.,Lamellarin DBioconjugates II:Synthesis and Cellular Internalization of Dendrimer andNuclear Location Signal Derivatives.Bioconjugate chemistry 2009,20(6),1112-1121),PEG缀合物(Pla,D.;Francesch,A.;Calvo,P.;Cuevas,C.;Aligue,R.;Albericio,F.;Alvarez,M.,Lamellarin D bioconjugates I:Synthesis and cellularinternalization of PEG-derivatives.Bioconjugate chemistry 2009,20(6),1100-1111),或曼尼希侧链(Shen L,Xie N,Yang B,Hu Y,Zhang Y:Design and totalsynthesis of Mannich derivatives of marine natural product lamellarin D ascytotoxic agents.Eur J Med Chem 2014,85:807-817)。糖基化也是提高先导化合物溶解度的有效方法之一,糖基的引入也可以改善化合物的生物活性以及增强先导化合物靶向作用(Byrne SL,Leverence R,Klein JS,Giannetti AM,Smith VC,MacGillivray RTA,Kaltashov IA,Mason AB:Effect of Glycosylation on the Function of a Soluble,Recombinant Form of the Transferrin Receptor.Biochemistry 2006,45(21):6663-6673;Sodano F,Lazzarato L,Rolando B,Spyrakis F,De Caro C,Magliocca S,Marabello D,Chegaev K,Gazzano E,Riganti C et al:Paracetamol–GalactoseConjugate:A Novel Prodrug for an Old Analgesic Drug.Molecular Pharmaceutics2019,16(10):4181-4189)。
基于上述研究,本发明拟通过在lamellarin D(结构如图1所示)的8、14和20位(如无特殊说明,本发明均指C原子8、14、20位)的羟基上引入一个或多个、相同或不同的糖基来开发新型抗肿瘤化合物,从而影响lamellarin D的理化性质和生物活性。
发明内容
针对本领域存在的不足之处,本发明提供了一类Lamellarin D糖基化衍生物,通过在8、14、20位的至少一个羟基上引入相同或不同的糖基,来调节所得Lamellarin D糖基化衍生物的溶解度、抗肿瘤活性等理化性能和生物活性。
一类Lamellarin D糖基化衍生物,结构式如下式(I)所示:
Figure BDA0002759018790000031
其中,R1选自氢原子、苄基、甲磺酰基、五碳糖或六碳糖的单糖基中的一种,R2选自氢原子、异丙基、五碳糖或六碳糖的单糖基中的一种,R3选自氢原子、甲磺酰基、五碳糖或六碳糖的单糖基中的一种,并且R1、R2、R3中至少有一个为五碳糖或六碳糖的单糖基;
所述五碳糖选自核糖,所述六碳糖选自葡萄糖、甘露糖或半乳糖。
作为优选,所述的Lamellarin D糖基化衍生物,R1、R2均为氢原子,R3为葡萄糖基或半乳糖基;
或者,R2、R3均为氢原子,R1为葡萄糖基或半乳糖基;
或者,R1、R3均为葡萄糖基,R2为氢原子。
本发明还提供了所述的Lamellarin D糖基化衍生物的制备方法,包括步骤:
(1)反复进行如下去羟基保护基-上糖基过程共1~3次:选择性去除化合物16或上一去羟基保护基-上糖基过程得到的糖基取代化合物的8、14或20位上的羟基保护基,然后以二氯甲烷为溶剂,将所得产物与糖基供体在三氟化硼乙醚催化作用下反应,反应温度0~25℃,反应时间2~4h,得到糖基取代化合物;
所述化合物16的结构式:
Figure BDA0002759018790000032
所述糖基供体为2,3,4,6-O-乙酰基-D-吡喃葡萄糖三氯乙酰亚胺酯、2,3,4,6-O-乙酰基-D-吡喃甘露糖三氯乙酰亚胺酯、2,3,4,6-O-乙酰基-D-吡喃半乳糖三氯乙酰亚胺酯或2,3,5-O-乙酰基-D-呋喃核糖三氯乙酰亚胺酯;
(2)去除步骤(1)最终得到的糖基取代化合物8、14和20位上所有剩余的羟基保护基,得到所述的Lamellarin D糖基化衍生物。
本发明制备方法流程和构思设计如图1所示。在本发明制备方法中,化合物16为现有技术中已有的化合物,其合成过程和方法也在现有技术中已有报道,例如,可参见已有文献Shen L,Xie N,Yang B,Hu Y,Zhang Y:Design and total synthesis of Mannichderivatives of marine natural product lamellarin D as cytotoxic agents.Eur JMed Chem 2014,85:807-817。
本发明制备方法中,化合物16的8、14和20位上的羟基保护基(-OBn、-OiPr、-OMs)的去除方法,即转变为羟基的方法,为现有技术,例如,同样可参见已有文献Shen L,Xie N,Yang B,Hu Y,Zhang Y:Design and total synthesis of Mannich derivatives ofmarine natural product lamellarin D as cytotoxic agents.Eur J Med Chem 2014,85:807-817。
本发明还提供了所述的Lamellarin D糖基化衍生物在制备治疗胃癌、结肠癌、肝癌的药物中的应用,所述Lamellarin D糖基化衍生物中,R2、R3均为氢原子,R1为葡萄糖基。
本发明还提供了所述的Lamellarin D糖基化衍生物在制备治疗胃癌、结肠癌、肝癌的药物中的应用,所述Lamellarin D糖基化衍生物中,R1、R2均为氢原子,R3为葡萄糖基。
本发明还提供了所述的Lamellarin D糖基化衍生物在制备治疗乳腺癌、胃癌、肝癌的药物中的应用,所述Lamellarin D糖基化衍生物中,R2、R3均为氢原子,R1为半乳糖基。
本发明还提供了所述的Lamellarin D糖基化衍生物在制备治疗乳腺癌、胃癌、结肠癌、肝癌的药物中的应用,所述Lamellarin D糖基化衍生物中,R1、R2均为氢原子,R3为半乳糖基。
本发明还提供了所述的Lamellarin D糖基化衍生物在制备治疗胃癌的药物中的应用,所述Lamellarin D糖基化衍生物中,R1、R3均为葡萄糖基,R2为氢原子。
本发明与现有技术相比,主要优点包括:本发明提供了一类Lamellarin D糖基化衍生物,通过在8、14、20位的至少一个羟基上引入相同或不同的糖基,来调节所得Lamellarin D糖基化衍生物的溶解度、抗肿瘤活性等理化性能和生物活性。
附图说明
图1为Lamellarin D结构示意图及其糖基化衍生物的制备流程示意图;
图2为实施例1化合物ZL-1,4,7,10的制备流程示意图;
图3为实施例2化合物ZL-2,5,8,11的制备流程示意图;
图4为实施例3化合物ZL-3,6,9,12的制备流程示意图;
图5为实施例4化合物ZL-13的制备流程示意图;
图6为实施例5化合物ZL-14的制备流程示意图;
图7为实施例6化合物ZL-15的制备流程示意图;
图8为实施例7化合物ZL-16的制备流程示意图;
图9为实施例9Lamellarin D糖基化衍生物的拓扑异构酶I抑制活性测试结果图;
图10为实施例10细胞周期分析结果图;
图11为实施例11不同样品的溶解度标准曲线的建立,(A)lamellarin D的溶解度标准曲线,y=215919x+7628,R2=0.9876,(B)化合物ZL-3的溶解度标准曲线,y=122039x-1182,R2=0.994,(C)化合物ZL-13的溶解度标准曲线,y=13261x-2076,R2=9956,(D)六碳糖取代的Lamellarin D单糖基化衍生物的溶解度标准曲线(pyranose),y=26193x+11340,R2=0.990,(E)五碳糖取代的Lamellarin D单糖基化衍生物的溶解度标准曲线,y=15516x+6473,R2=0.9997,(F)二糖基化Lamellarin D衍生物的溶解度标准曲线,y=16684x+5567,R2=0.995;
图12为实施例11Lamellarin D糖基化衍生物的溶解度实验结果图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1
化合物ZL-1,4,7,10的制备过程如图2所示。
化合物17由化合物16经选择性去除苄基保护基获得,反应条件为:将化合物16以及10%钯-碳分散在二氯甲烷中,在氢气保护条件下室温反应18h,纯化后获得化合物17,产率>95%。
化合物18由化合物17与糖基供体反应获得,反应条件为:将化合物17、糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛(用于除水)和三氟化硼乙醚,室温反应2h,纯化后获得化合物18,最高产率为85%。
化合物ZL-1,4,7,10由对应的化合物18a-d去除羟基保护基获得,反应条件为:将化合物18a-d溶解在二氯甲烷中,冰浴下加入四氯化钛,反应24h后纯化,将纯化后产物用甲醇溶解,冰浴条件下加入20wt%的氢氧化钠水溶液,50℃反应36h,纯化后获得对应化合物ZL-1,4,7,10。
化合物ZL-1的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.84(s,1H,C-11-OH),9.84(s,1H,C-3-OH),9.00(d,J=7.3Hz,1H,C-8-H),7.42(d,J=7.3Hz,1H,C-9-H),7.23(s,1H,C-10-H),7.21(1H,C-14-O-Ar-5’-H),7.18(s,1H,C-4-H),7.11(m,1H,C-14-O-Ar-6’-H),7.08(s,0.5H,C-13-H),7.05(s,0.5H,C-13-H),6.87(d,1H,C-14-O-Ar-1’-H),6.70-6.67(1H,C-13-H),5.25–5.19(m,1H,C-14-O-Ar-4’-glycosyl-3’-H),5.04(1H,C-14-O-Ar-4’-glycosyl-2’-H),5.00(d,J=7.3Hz,1H,C-14-O-Ar-4’-glycosyl-1’-H),4.96(1H,C-14-O-Ar-4’-glycosyl-4’-H),4.42–4.49(m,1H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc),3.78(s,3H,C-2-OCH3),3.67–3.72(1H,C-14-O-Ar-4’-glycosyl-5’-H),3.44–3.50(1H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc),3.40(s,3H,C-14-Ar-OCH3),3.37(s,3H,C-12-OCH3),3.31–3.35(m,4H,C-14-O-Ar-4’-glycosyl-OH).13C NMR(151MHz,DMSO-d6)δ154.9,149.8,149.4,148.5,148.2,147.5,146.9,145.2,134.2,129.5,125.8,124.7,124.4,122.8,119.8,117.1,115.7,113.3,112.6,112.0,108.8,107.3,106.5,104.5,100.5,77.7,77.5,74.3,70.2,61.2,60.2,56.6,55.7,55.2HRMS:(m/z):[M+H]+Calcd.for C34H31NO13:661.6160,found:662.1863.
化合物ZL-4的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.74(s,0.5H,C-14-Ar-OH),7.54(s,0.5H,C-3-OH)8.99(d,J=7.4Hz,1H,C-8-H),7.60(d,J=7.4Hz,1H,C-9-H),7.18–7.23(1H,C-14-O-Ar-2’-H),7.13(s,1H,C-10-H),7.11(s,1H,C-13-H),7.02–7.07(1H,C-14-O-Ar-5’-H),6.93–6.98(1H,C-14-O-Ar-6’-H),6.80(s,1H,C-4-H),6.66(s,1H,C-1-H),5.44–5.47(1H,C-11-glycosyl-1’-H),5.08(s,1H,C-11-glycosyl-4’-H),4.84(s,1H,C-11-glycosyl-3’-H),4.77(s,1H,C-11-glycosyl-2’-H),4.45(s,1H,C-11-glycosyl-5’-H),3.82(s,1H,C-11-glycosyl-5’-CH2-OAc),3.72(s,3H,C-2-OCH3),3.65(1H,C-11-glycosyl-5’-CH2-OAc),3.53–3.57(1H,C-11-glycosyl-OH),3.34–3.48(C-11-glycosyl-OH,C-12-OCH3,C-14-Ar-OCH3).13C NMR(151MHz,DMSO-d6)δ155.0,150.7,150.2,148.8,147.4,146.9,134.1,125.8,124.6,124.3,122.7,120.2,116.9,115.9,114.8,114.1,113.2,112.0,107.6,106.0,104.3,99.8,75.8,71.1,70.5,67.1,61.6,56.5,55.5,55.2.HRMS:(m/z):[M+H]+Calcd.for C34H31NO13:662.1868,found:662.1889.
化合物ZL-7的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.83(s,1H,C-11-OH),9.33(s,1H,C-3-OH),9.02(d,1H,C-9-H),7.51(s,1H,C-10-H),7.21(d,1H,C-8-H),7.10–7.13(2H,C-14-O-Ar-2’-H,C-13-H),7.07–7.04(m,1H,C-14-O-Ar-6’-H),7.01–6.96(m,1H,C-14-O-Ar-5’-H),6.84(s,1H,C-4-H),6.69(s,1H,C-1-H),5.13(s,1H,C-11-glycosyl-1’-H),5.00–5.06(1H,C-11-glycosyl-3’-H),4.86(s,1H,C-11-glycosyl-2’-H),4.66–4.59(m,1H,C-11-glycosyl-4’-H),4.51(s,1H,C-11-glycosyl-5’-H),3.72(s,3H,C-2-OCH3),3.69(s,1H,C-11-glycosyl-6’-H),3.37–3.63(m 5H,C-11-glycosyl-6’-H,C-11-glycosyl-OH),3.34(6H,C-12-OCH3,C-14-Ar-OCH3).13C NMR(151MHz,DMSO-d6)δ154.9,149.7,149.3,148.5,148.2,147.4,146.9,143.1,134.2,129.5,125.8,124.6,124.3,122.8,119.7,117.0,115.5,113.3,112.3,112.0,108.8,107.2,106.3,105.9,104.3,100.9,76.1,74.1,70.6,68.6,60.7,56.5,55.6,55.1.HRMS:(m/z):[M+H]+Calcd.forC34H31NO13:662.1868,found:662.1871.
化合物ZL-10的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.82(s,1H,C-11-OH),9.32(s,1H,C-3-OH),8.99(d,J=7.4Hz,1H,C-8-H),7.53(s,1H,C-10-H),7.27(d,J=7.4Hz,1H,C-9-H),7.14(s,1H,C-13-H),7.10-7.12(1H,C-14-O-Ar-2’-H),7.03–7.06(1H,C-14-O-Ar-5’-H),6.99–6.94(m,1H,C-14-O-Ar-6’-H),6.83(s,1H,C-4-H),6.66–6.69(1H,C-1-H),5.45-5.48(1H,C-11-glycosyl-1’-H),5.10–5.14(1H,C-11-glycosyl-2’-H),5.02–5.05(1H,C-11-glycosyl-4’-H),4.97–4.99(1H,C-11-glycosyl-3’-H),3.80–3.84(1H,C-11-glycosyl-4’-CH2-OH),3.73(s,3H,C-14-Ar-OCH3),3.65–3.69(m,1H,C-11-glycosyl-4’-CH2-OH),3.59–3.65(m,3H,C-11-glycosyl-OH),3.32–3.35(6H,C-14-Ar-OCH3,C-12-OCH3).13C NMR(151MHz,DMSO-d6)δ154.9,150.1,149.3,148.4,147.4,147.2,146.8,145.2,134.1,129.5,125.8,124.6,124.3,122.7,120.1,117.0,115.4,113.4,113.2,112.1,108.8,107.3,106.2,106.1,104.3,99.4,70.9,68.7,67.7,65.0,56.5,55.6,55.2.HRMS:(m/z):[M+H]+Calcd.for C33H29NO12:632.1763,found:632.1765.
实施例2
ZL-2,5,8,11的制备过程如图3所示。
化合物20由化合物17经两步反应获得,首先是将C-8位羟基以甲磺酰基保护得到化合物19,再选择性去除C-14位羟基保护基,反应条件为:将化合物17用二氯甲烷溶解,冰浴下加入三乙胺和甲磺酰氯,室温反应3h后纯化。将第一步所得产物化合物19用二氯甲烷溶解,冰浴下加入四氯化钛的二氯甲烷溶液,室温反应20h,纯化得到化合物20,两步产率为84%。
化合物21由化合物20与糖基供体反应获得,反应条件为:将化合物21,糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛和三氟化硼乙醚,室温反应2h,纯化后获得化合物21,最高产率为80%。
合物ZL-2,5,8,11由对应的化合物21a-d去除羟基保护基获得,反应条件为:将化合物21a-d用甲醇溶解,冰浴条件下加入20wt%的氢氧化钠水溶液,50℃反应36h,纯化后获得化合物ZL-2,5,8,11。
化合物ZL-2的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.63(s,1H,C-11-OH),9.08(s,1H,C-14-O-Ar-4’-OH),9.00(d,J=7.3Hz,1H,C-8-H),7.21(s,1H,C-4-H),7.19–7.16(m,2H,C-3-H,C-14-O-Ar-1’-H),7.15(s,1HC-14-O-Ar-1’-H),7.13(s,1H,C-13-H),7.09(d,J=8.0Hz,1H,C-14-O-Ar-5’-H),7.00(dt,J=8.0,2.0Hz,1H,C-14-O-Ar-6’-H),6.77(s,1H,C-1-H),4.97(t,J=7.5Hz,2H,C-3-O-glycosyl-1’-H,C-3-O-glycosyl-3’-H),4.72–4.79(2H,C-3-O-glycosyl-4’-H,C-3-O-glycosyl-2’-H),4.32(s,1H,C-3-O-glycosyl-5’-H),3.75(s,3H,C-2-OCH3),3.67–3.71(1H,C-11-O-glycosyl-5’-CH2-OAc),3.50–3.43(m,1H,C-11-O-glycosyl-5’-CH2-OAc),3.39(d,J=4.7Hz,7H,C-11-O-glycosyl-OH,C-14-Ar-OCH3,C-12-OCH3),3.23–3.30(2H,C-11-O-glycosyl-OH),3.13–3.17(1H,C-11-O-glycosyl-OH).13C NMR(151MHz,DMSO-d6)δ154.8,149.3,148.9,148.7,147.8,147.4,146.4,146.0,134.9,129.0,125.8,125.2,124.3,122.5,118.1,117.0,115.5,113.2,112.1,111.7,111.0,107.2,106.4,105.8,104.7,101.1,76.1,74.0,70.6,68.8,60.9,56.5,55.8,55.1.HRMS:(m/z):[M+H]+Calcd.for C34H31NO13:662.1868,found:662.1879.
化合物ZL-5的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.94(s,0.5H,C-11-OH),9.33(s,1H,C-14-O-Ar-4’-OH),8.98(d,J=7.3Hz,1H,C-8-H),7.28(1H,C-10-H),7.20(d,J=7.4Hz,1H,C-9-H),7.16(s,1H,C-4-H),7.10–7.13(2H,C-13-H,C-14-O-Ar-2’-H),7.08–7.04(m,1H,C-14-O-Ar-5’-H),6.98–7.00(1H,C-14-O-Ar-6’-H),6.73(s,1H,C-1-H),5.37(d,J=4.2Hz,1H,C-3-O-glycosyl-1’-H),5.03(s,1H,C-3-O-glycosyl-2’-H),4.83(1H,C-3-O-glycosyl-4’-H),4.73–4.76(1H,C-3-O-glycosyl-3’-H),4.46–4.50(1H,C-3-O-glycosyl-5’-H),3.80(s,1H,C-11-O-glycosyl-5’-CH2-OAc),3.73(s,3H,C-2-OCH3),3.60–3.64(1H,C-11-O-glycosyl-5’-CH2-OAc),3.56(1H),3.47–3.37(m,4H,C-11-O-glycosyl-OH),3.34(6H,C-14-Ar-OCH3,C-12-OCH3).13C NMR(151MHz,DMSO-d6)δ154.8,149.3,149.2,149.0,147.4,146.7,146.3,146.2,134.8,128.7,125.8,125.2,124.3,122.5,118.1,116.9,115.5,113.3,112.4,111.8,111.4,107.3,106.9,106.3,105.9,100.2,75.8,71.6,70.5,67.1,61.5,56.5,55.7,55.1.HRMS:(m/z):[M+H]+Calcd.forC34H31NO13:662.1868,found:662.1878.
化合物ZL-8的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ10.00(s,1H,C-11-OH),9.37(s,1H,C-14-O-Ar-4’-OH),9.00(d,J=7.4Hz,1H,C-8-H),7.23(s,1H,C-10-H),7.22(s,1H,C-9-H),7.19(s,1H,C-13-H),7.15(s,2H,C-4-H,C-14-O-Ar-1’-H),7.09(1H,C-14-O-Ar-5’-H),7.03–6.98(m,1H,C-14-O-Ar-6’-H),6.75(s,1H,C-1-H),5.14(s,1H,C-3-O-glycosyl-1’-H),4.98(t,J=9.1Hz,1H,C-3-O-glycosyl-3’-H),4.88(s,1H,C-3-O-glycosyl-2’-H),4.72–4.65(m,1H,C-3-O-glycosyl-5’-H),4.54(s,1H,C-3-O-glycosyl-4’-H),3.75(s,3H,C-2-OCH3),3.70(s,1H,C-3-O-glycosyl-5’-CH2),3.65(s,1H,C-3-O-glycosyl-5’-CH2),3.60–3.43(m,4H,C-11-O-glycosyl-OH),3.37(s,6H,C-14-Ar-OCH3,C-12-OCH3).13C NMR(151MHz,DMSO-d6)δ154.8,149.2,149.1,147.7,147.4,146.4,146.0,134.7,128.9,125.8,125.1,124.3,122.5,118.1,117.0,115.5,113.2,112.1,111.7,111.0,107.2,106.4,105.9,104.7,101.1,76.2,74.0,70.6,68.6,60.9,56.5,55.6,55.1HRMS:(m/z):[M+H]+Calcd.for C34H31NO13:662.1868,found:662.1872.
化合物ZL-11的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6,β-anomer)δ9.93(s,1H,,C-11-OH),9.32(s,1H,C-14-O-Ar-4’-OH),8.99–8.95(m,1H,C-8-H),7.21–7.15(m,3H,C-9-H,C-10-H,C-13-H),7.13–7.10(m,2H,C-4-H,C-14-O-Ar-2’-H),7.05(dd,J=8.0,2.0Hz,1H,C-14-O-Ar-6’-H),6.99–6.95(m,1H,C-14-O-Ar-5’-H),6.72-6.74(1H,C-1-H),5.42–5.38(m,1H,C-3-O-glycosyl-1’-H),5.11(dd,J=7.6,3.8Hz,1H,C-3-O-glycosyl-2’-H),5.05(d,J=5.4Hz,1H,C-3-O-glycosyl-4’-H),4.96(d,J=6.6Hz,1H,C-3-O-glycosyl-3’-H),3.80(s,1H,C-3-O-glycosyl-4’-CH2-OH),3.73(s,3H,C-2-OCH3),3.69–3.59(m,4H,C-3-O-glycosyl-4’-CH2-OH,C-3-O-glycosyl-OH),3.34(s,6H,C-14-Ar-OCH3,C-12-OCH3).13C NMR(151MHz,Chloroform-d)δ159.7,154.8,154.0,153.2,152.2,151.9,151.6,149.9,138.8,134.2,130.5,129.3,129.0,127.5,124.9,121.7,120.2,118.2,117.9,116.8,113.5,112.0,111.0,110.8,109.0,104.2,75.8,73.5,72.4,69.7,61.3,60.3,59.9.HRMS:(m/z):[M+H]+Calcd.for C33H29NO12:632.1763,found:632.1773.
实施例3
化合物ZL-3,6,9,12的制备如图4所示。
化合物22由化合物16选择性去除C-20位甲磺酰基得到,反应条件为:将化合物16用四氢呋喃溶解,冰浴下加入四丁基氟化铵的四氢呋喃溶液,室温反应32h,纯化后得到化合物22,产率为84%。
化合物23由化合物22与糖基供体反应获得,反应条件为:将化合物22,糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛和三氟化硼乙醚,室温反应2h,纯化后获得化合物23,最高产率为87%。
化合物ZL-3,6,9,12由对应的化合物23a-d去除羟基保护基获得,反应条件为:将化合物23a-d溶解在二氯甲烷中,冰浴下加入四氯化钛,反应24h后纯化,将纯化后产物用甲醇溶解,冰浴条件下加入20wt%的氢氧化钠水溶液,50℃反应36h,纯化后获得对应化合物ZL-3,6,9,12。
化合物ZL-3的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.84(s,1H,C-11-OH),9.84(s,1H,C-3-OH),9.00(d,J=7.3Hz,1H,C-8-H),7.42(d,J=7.3Hz,1H,C-9-H),7.23(s,1H,C-10-H),7.21(1H,C-14-O-Ar-5’-H),7.18(s,1H,C-4-H),7.11(m,1H,C-14-O-Ar-6’-H),7.08(s,0.5H,C-13-H),7.05(s,0.5H,C-13-H),6.87(d,1H,C-14-O-Ar-1’-H),6.70(s,0.5H,C-1-H),6.67(s,0.5H,C-1-H),5.25–5.19(m,1H,C-14-O-Ar-4’-glycosyl-3’-H),5.04(1H,C-14-O-Ar-4’-glycosyl-2’-H),5.00(d,J=7.3Hz,1H,C-14-O-Ar-4’-glycosyl-1’-H),4.96(d,1H,C-14-O-Ar-4’-glycosyl-4’-H),4.45(m,1H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc),3.78(s,3H,C-2-OCH3),3.70(dd,J=12Hz,1H,C-14-O-Ar-4’-glycosyl-5’-H),3.54(dt,J=12Hz,1H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc),3.40(s,3H,C-14-Ar-OCH3),3.37(s,3H,C-12-OCH3),3.31–3.35(m,4H,C-14-O-Ar-4’-glycosyl-OH).13C NMR(151MHz,DMSO-d6)δ154.9,150.9,149.2,148.9,148.5,147.3,146.9,145.3,134.6,129.5,129.4,125.2,124.2,122.5,118.0,117.8,116.3,113.0,112.1,110.9,108.8,107.1,106.5,104.3,101.4,77.9,78.6,74.8,70.3,61.4,56.8,55.9,55.4.HRMS:(m/z)Calcd.for[M+H]+C34H31NO13:662.1868,found:662.1817.
化合物ZL-6的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6,α-anomer)δ9.91(s,1H,C-11-OH),9.79(s,1H,C-3-OH),8.97(d,J=7.0Hz,1H,C-8-H),7.43(d,J=7.0Hz,1H,C-9-H),7.24(s,1H,C-10-H),7.18(d,J=8.0Hz,1H,C-14-O-Ar-5’-H),7.15(d,J=2.0Hz,1H,C-14-O-Ar-2’-H),7.10(dd,J=8.0,2.0Hz,1H,C-14-O-Ar-6’-H),7.00-7.08(s,1H,C-13-H),6.83(1H,C-4-H),6.58-6.66(1H,C-1-H),5.33(d,J=11.0Hz,1H,C-14-O-Ar-4’-glycosyl-3’-H),5.02(d,1H,,C-14-O-Ar-4’-glycosyl-4’-H),4.84(d,J=5.0Hz,1H,C-14-O-Ar-4’-glycosyl-2’-H),4.77(d,J=5.0Hz,1H,C-14-O-Ar-4’-glycosyl-1’-H),4.41(q,1H,C-14-O-Ar-4’-glycosyl-5’-H),3.90(s,1H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc),3.75(m,4H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc,C-2-OCH3),3.61–3.49(m,4H,C-14-O-Ar-4’-glycosyl-5’-CH2-OH),3.34(6H,C-12-OCH3,C-14-Ar-OCH3).13C NMR(151MHz,DMSO-d6)δ154.9,151.7,149.1,148.9,148.4,146.8,146.0,145.2,134.5,130.4,129.5,125.2,124.2,122.5,120.3,117.9,115.9,113.0,112.1,110.8,108.7,107.0,106.0,105.7,104.3,100.9,75.7,71.2,70.1,67.2,61.6,56.7,55.7,55.2.[M+H]+Calcd.for C34H31NO13:662.1868,found:662.1868.
化合物ZL-9的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6,β-anomer)δ9.84(s,2H,C-11-OH,C-3-OH),8.97(d,J=7.4Hz,1H),7.36(d,J=7.4Hz,1H,C-8-H),7.21(s,1H,C-10-H),7.18(d,J=8.0Hz,1H,C-14-O-Ar-6’-H),7.15(1H,C-14-O-Ar-2’-H),7.08(d,J=8.0Hz,1H,C-14-O-Ar-5’-H),7.06(s,0.5H,C-13-H),6.99(s,0.5H,C-13-H),6.84(1H,C-4-H),6.67(s,0.5H,C-1-H),6.60(s,0.5H,C-1-H),5.15(1H,C-14-O-Ar-4’-glycosyl-1’-H),4.94–4.96(1H,C-14-O-Ar-4’-glycosyl-3’-H),4.86(s,1H,C-14-O-Ar-4’-glycosyl-2’-H),4.60(s,1H,C-14-O-Ar-4’-glycosyl-4’-H),4.53(s,1H,C-14-O-Ar-4’-glycosyl-5’-H),3.73(s,3H,C-2-OCH3),3.71(s,1H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc),3.65–3.50(m,4H,C-14-O-Ar-4’-glycosyl-5’-CH2-OAc,C-14-O-Ar-4’-glycosyl-5’-CH2-OH),3.44–3.40(m,2H,C-14-O-Ar-4’-glycosyl-5’-CH2-OH),3.33–4.34(6H,C-12-OCH3,C-14-Ar-OCH3).13C NMR(151MHz,DMSO-d6)δ154.9,150.8,149.1,148.9,148.5,147.2,146.8,145.2,134.8,129.5,129.1,125.5,124.1,122.6,118.0,117.5,115.9,113.1,112.1,111.3,109.2,107.5,106.5,105.7,104.2,101.6,75.9,74.1,70.8,68.5,60.8,56.6,55.8,55.3.HRMS:(m/z):[M+H]+Calcd.for C34H31NO13:662.1868,found:662.1876.
化合物ZL-12的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6,β-anomer)δ9.74 9.95(2H,,C-11-OH,C-3-OH),8.97(d,J=7.3Hz,1H,C-8-H),7.38(dd,J=8.0,2.0Hz,1H,C-14-O-Ar-6’-H),7.24(s,1H,C-10-H),7.18(d,J=7.4Hz,1H,C-9-H),7.15(s,1H,C-14-O-Ar-2’-H),7.11(d,J=8.0Hz,1H C-14-O-Ar-5’-H),6.99-7.05(1H,C-13-H),6.83(1H,C-4-H),6.57-7.64(1H,C-1-H),5.44–5.47(1H,C-14-O-Ar-4’-glycosyl-1’-H),5.15–5.20(1H,C-14-O-Ar-4’-glycosyl-2’-H),5.06(s,1H,C-14-O-Ar-4’-glycosyl-4’-H),4.98(s,1H,C-14-O-Ar-4’-glycosyl-3’-H),3.87(s,1H,C-14-O-Ar-4’-glycosyl-4’-CH2-OAc),3.74(s,6H,C-14-O-Ar-4’-glycosyl-5’-OH,C-2-OCH3),3.61–3.57(m,1H,C-14-O-Ar-4’-glycosyl-4’-CH2-OAc)3.33(C-14-Ar-OCH3),3.32(C-12-OCH3).13C NMR(151MHz,DMSO-d6)δ154.9,151.7,149.1,148.9,148.2,146.8,145.8,145.2,143.5,130.3,129.4,125.2,124.1,122.5,119.8,119.6,117.9,116.0,113.0,112.1,110.8,107.0,105.9,105.6,104.3,100.4,71.0,69.2,66.0,65.1,56.7,55.5,55.1.HRMS:(m/z):[M+H]+Calcd.forC33H29NO12:632.1763,found:632.1780.
实施例4
化合物ZL-13的制备过程如图5所示。
化合物24由化合物18a选择性去除C-14位异丙基保护基获得,反应条件为:将化合物18a用二氯甲烷溶解,冰浴下加入四氯化钛的二氯甲烷溶液,室温反应20h,纯化得到化合物24,产率为78%。
化合物25由化合物24与糖基供体反应获得,反应条件为:将化合物24,糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛和三氟化硼乙醚,室温反应2h,纯化后获得化合物25,产率为93%。
化合物ZL-13由化合物25去除羟基保护基获得,反应条件为:将化合物25用甲醇溶解,-20℃条件下加入20%的氢氧化钠水溶液,室温反应1h,纯化后获得化合物ZL-13。
化合物ZL-13的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.03(d,J=7.4Hz,1H,C-8-H),7.52(s,1H,C-10-H),7.24(d,J=7.4Hz,1H,C-9-H),7.21(s,1H,C-4-H),7.18(s,1H,C-13-H),7.06–7.12(2H,C-14-O-Ar-2’-H,C-14-O-Ar-6’-H),6.99(d,J=8.0Hz,1H,C-14-O-Ar-5’-H),6.77(s,1H,C-8-H),5.14–5.05(m,3H,glycosyl-H),4.98(t,J=8.1Hz,5H,glycosyl-H),4.44(s,2H,glycosyl-H),3.73(s,3H,C-2-OCH3),3.68(d,J=11.9Hz,2H,glycosyl-H),3.46(s,3H,glycosyl-H,glycosyl-OH),3.37(d,J=7.8Hz,13H,glycosyl-OH,C-14-Ar-OCH3,C-2-OCH3).13C NMR(151MHz,DMSO-d6)δ154.9,149.7,149.3,148.2,147.6,147.5,146.4,146.0,134.2,128.9,124.7,124.2,122.7,119.7,117.0,115.4,113.6,112.4,111.0,107.5,106.4,105.0,104.8,100.4,100.3,77.6,77.4,77.3,73.6,70.2,70.1,61.2,61.1,56.5,55.7,55.1.HRMS:(m/z):HRMS:(m/z):[M+H]+Calcd.forC40H41NO18:827.2396,found:824.2419.
实施例5
化合物ZL-14的制备过程如图6所示。
化合物26由化合物23a选择性去除C-8位苄基保护基获得,反应条件为:将化合物26和10%Pd-C用乙酸乙酯分散,氢气保护下室温反应18h,纯化后获得化合物26,产率为91%。
化合物27由化合物26与糖基供体反应获得,反应条件为:将化合物26,糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛和三氟化硼乙醚,室温反应2h,纯化后获得化合物27,产率为60%。
化合物ZL-14由化合物27去除羟基保护基获得,反应条件为:首先将化合物27用二氯甲烷溶解,冰浴下加入四氯化钛的二氯甲烷溶液,反应16h,然后将纯化后产物用甲醇溶解,-20℃条件下加入20%的氢氧化钠水溶液,室温反应3h,纯化后获得化合物ZL-14,两步产率为32%。
化合物ZL-14的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ9.40(s,1H,C-14-O-Ar-4’-OH),9.03(d,J=7.4Hz,1H,C-8-H),7.54(s,1H,C-10-H),7.25(d,J=7.4Hz,1H,C-9-H),7.22(d,J=2.0Hz,1H,C-14-O-Ar-2’-H),7.15(s,1H,C-4-H),7.12(s,1H,C-13-H),7.08(d,J=8.0Hz,1H,C-14-O-Ar-5’-H),6.99–6.98(1H,C-14-O-Ar-6’-H),6.74(s,1H,C-1-H),5.30(d,J=15.9Hz,2H,C-3-O-glycosyl-3’-H,C-11-O-glycosyl-3’-H),5.03–5.08(m,5H,C-11-O-glycosyl-1’-H,C-11-O-glycosyl-2’-H,C-11-O-glycosyl-4’-H,C-3-O-glycosyl-1’-H,C-3-O-glycosyl-2’-H),5.00(dd,J=11.3,7.5Hz,1H,C-3-O-glycosyl-4’-H),4.61–4.51(m,2H,C-11-O-glycosyl-5’-CH2-OAc),3.72(s,3H,C-2-OCH3),3.69–3.61(m,2H,C-3-O-glycosyl-5’-CH2-OAc).13C NMR(151MHz,DMSO-d6)δ154.9,149.7,149.3,148.2,147.7,146.4,146.0,134.2,128.9,124.7,124.2,122.8,119.8,117.0,115.4,113.6,112.4,111.0,107.6,106.4,105.9,104.8,100.5,100.3,77.6,77.4,77.3,73.6,70.1,61.2,61.1,56.5,55.7,55.1.[M+H]+Calcd.for C40H41NO18:824.2396,found:824.2419.
实施例6
化合物ZL-15的制备过程如图7所示。
化合物28由化合物26经两步反应获得,首先是将C-8位羟基以甲磺酰基保护,而后选择性去除C-14位异丙基保护基获得,反应条件为:将化合物26用二氯甲烷溶解,冰浴下加入三乙胺和甲磺酰氯,室温反应3h,然后将纯化后产物用二氯甲烷溶解,冰浴下加入四氯化钛的二氯甲烷溶液,室温反应20h,纯化后获得化合物28,两步产率为79%。
化合物29由化合物28与糖基供体反应获得,反应条件为:将化合物28,糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛和三氟化硼乙醚,室温反应2h,纯化后获得化合物29,产率为80%。
化合物ZL-15由化合物29去除羟基保护基获得,反应条件为:将化合物29用甲醇溶解,-20℃条件下加入20%的氢氧化钠水溶液,升至50℃反应3h,纯化后获得化合物ZL-15。
化合物ZL-15的氢谱、碳谱和质谱:1H NMR(600MHz,DMSO-d6)δ8.99(d,J=8.0Hz,1H,C-8-H),7.41(d,J=8.0Hz,1H,C-9-H),7.16–7.21(4H,C-10-H,C-4-H,C-14-O-Ar-5’-H,C-14-O-Ar-2’-H),7.10–7.12(1H,C-14-O-Ar-6’-H),7.09(s,0.5H,C-13-H),7.05(s,0.5H,C-13-H),6.74(0.5H,C-1-H),6.70(0.5H,C-1-H),5.08(s,2H,C-14-O-Ar-4’-glycosyl-3’-H,C-3-O-glycosyl-1’-H),4.92–5.00(4H,C-14-O-Ar-4’-glycosyl-1’-H,C-3-O-glycosyl-1’-H,C-14-O-Ar-4’-glycosyl-2’-H,C-3-O-glycosyl-2’-H),4.88(s,2H,C-14-O-Ar-4’-glycosyl-4’-H,C-3-O-glycosyl-4’-H),4.43–4.35(m,2H,C-14-O-Ar-4’-glycosyl-5’-H,C-3-O-glycosyl-5’-H),3.75(s,3H,C-2-OCH3),3.65–3.70(2H,C-3-O-glycosyl-5’-CH2-OH),3.52(1H,C-11-O-glycosyl-5’-CH2-OH),3.45(1H,C-11-O-glycosyl-5’-CH2-OH),3.37(s,6H,C-14-Ar-OCH3,C-2-OCH3),3.28–3.36(m,8H).13C NMR(151MHz,DMSO-d6)δ154.8,151.1,149.8,149.1,148.2,147.5,146.7,146.4,135.0,134.2,129.3,128.8,125.4,124.3,122.5,118.0,116.6,112.4,111.3,107.5,106.3,105.1,101.4,101.0,77.7,77.5,77.4,74.0,73.9,70.4,61.5,61.4,57.0,56.3,55.5.HRMSC44H43NO21S2 m/z calcd 823.7570obsd 824.2419[M+H]+.
实施例7
化合物ZL-16的制备过程如图8所示。
化合物30由化合物27选择性去除C-14位异丙基保护基获得,反应条件为:将化合物27用二氯甲烷溶解,冰浴条件下加入四氯化钛的二氯甲烷溶液,室温反应后纯化获得化合物30。
化合物31由化合物30与糖基供体反应获得,反应条件为:将化合物30,糖基供体溶解在二氯甲烷中,冰浴条件下依次加入分子筛和三氟化硼乙醚,室温反应2h,纯化后获得化合物31。
化合物ZL-16由化合物31去除羟基保护基获得,反应条件为:将化合物31用甲醇溶解,-20℃条件下加入20%的氢氧化钠水溶液,室温反应1h,纯化后获得化合物ZL-16。
实施例8
体外细胞毒活性测定
该实施例对所合成得到的糖基化产物ZL 1-15进行了体外细胞毒活性测试。该实施例采用lamellarin D为阳性对照,并选取人乳腺癌细胞MDA-MB-231,人胃癌细胞HGC27,人肺癌细胞A549,人结肠癌细胞HCT116和人肝癌细胞HepG2考察糖基化对lamellarin D体外细胞毒活性的影响。
实验方法:收集对数生长期细胞,将细胞以5000个细胞每孔的浓度接种在96孔板上,在37℃恒温培养箱中孵育过夜。然后将细胞在含有受试药物的新鲜培养基中进一步培养72h后每孔加入5mg/mL MTT,培养4h,除去培养基并每孔加入100μL的DMSO,作用20min后利用酶标仪在540nm波长处测定吸光度值,通过计算得到IC50(半数致死浓度)值。
实验结果:
表1Lamellarin D的糖基化衍生物对部分肿瘤细胞的增殖抑制活性
Figure BDA0002759018790000171
Figure BDA0002759018790000172
实验结果表明lamellarin D糖基化衍生物的体外肿瘤细胞增殖活性与糖基的类型、糖基连接位置以及糖基的数量有关。化合物ZL-1,ZL-3,ZL-7,ZL-9以及ZL-14具有良好的肿瘤细胞增殖抑制活性,其中,化合物ZL-1以及ZL-3对于HCT116以及HepG2细胞株的增殖抑制活性优于lamellarin D。化合物ZL-4,ZL-6,Zl-10,ZL-11和ZL-12具有中等的抗肿瘤活性(IC50<5μM)。化合物ZL-2,ZL-5,ZL-8,ZL-13以及ZL-15的活性则明显减弱。
实施例9
拓扑异构酶I抑制活性测定
实验方法:在样品管中加入2μL buffer,250ng质粒DNA(pBR322),2u拓扑易购酶I和指定浓度待测样品,定容至20μL,在37℃条件下孵育30min。随后加入2μL 10%的SDS和2μL蛋白激酶K,再孵育15min后加入2μL loading buffer缓冲液,110V条件下电泳1h,4sGreen染色后成像。
实验结果如图9所示,化合物ZL 1-15都保留了拓扑异构酶I抑制活性,除了化合物ZL-2以及化合物ZL-10之外,其余糖基化产物的活性都和lamellarin D相当。
实施例10
细胞周期实验
实验方法:收集对数生长期细胞,将细胞以每孔5×105的浓度接种在6孔板上,37℃条件下孵育过夜。将培养基更换成含有指定浓度待测样品的新鲜培养基,再次孵育24h,弃除培养基,用PBS洗涤细胞,而后加入预冷的70%的乙醇溶液固定过夜。将固定后的细胞用PI染色半小时后用流式细胞仪进行检测并分析。
实验结果如图10所示。该实施例使用了MDA-MB-231细胞对化合物ZL-3以及lamellarin D进行细胞周期分析,分析结果表明,与阴性对照相比,化合物ZL-3以及lamellarin D都导致S期细胞减少,G2/M期细胞增多,且随着化合物浓度的提高,G2/M期细胞占比增大。在同一浓度下,与阳性对照lamellarin D相比,实验组MDA-MD-231细胞的G2/M期细胞占比增多。且随着浓度的升高,化合物ZL-3明显导致了MDA-MB-231细胞的凋亡。
实施例11
水溶性测试,实验方法:
待测样品水饱和溶液的配制:取1mg待测样品用100μL超离子水分散,超声10s助溶,平衡后微孔滤膜过滤得到待测化合物的水饱和溶液。
标准曲线的建立:在制备标准样品水饱和溶液基础之上,配制等倍数稀释的标准曲线溶液,并尽量使得饱和浓度包含在标准曲线浓度范围之内,而后利用HPLC-HRMS法测定不同浓度下的吸收峰面积A,建立标准曲线方程。
溶解度的测定:利用HPLC-HRMS法测定待测样品的水饱和溶液的吸收峰面积A,代入标准曲线方程,计算得到相应浓度。
标准曲线图如图11所示。溶解度实验结果如图12所示。lamellarin D在水中的溶解度为0.563nM,化合物ZL-1、ZL-7和ZL-在水中的溶解度分别为257.78nM,235.82nM和257.55nM,提高了将近500倍,但是化合物ZL-2、ZL-4、ZL-5、ZL-8和ZL-9的则溶解度低于Lamellarin D,说明Lamellarin D糖基化衍生物的溶解度与糖基类型,糖基连接数量和位置都有关。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (6)

1.一类Lamellarin D糖基化衍生物,其特征在于,结构式如下式(I)所示:
Figure FDA0003246095020000011
其中:
R1、R2均为氢原子,R3为葡萄糖基或半乳糖基;
或者,R2、R3均为氢原子,R1为葡萄糖基或半乳糖基;
或者,R1、R3均为葡萄糖基,R2为氢原子。
2.根据权利要求1所述的Lamellarin D糖基化衍生物在制备治疗胃癌、结肠癌、肝癌的药物中的应用,其特征在于,所述Lamellarin D糖基化衍生物中,R2、R3均为氢原子,R1为葡萄糖基。
3.根据权利要求1所述的Lamellarin D糖基化衍生物在制备治疗胃癌、结肠癌、肝癌的药物中的应用,其特征在于,所述Lamellarin D糖基化衍生物中,R1、R2均为氢原子,R3为葡萄糖基。
4.根据权利要求1所述的Lamellarin D糖基化衍生物在制备治疗乳腺癌、胃癌、肝癌的药物中的应用,其特征在于,所述Lamellarin D糖基化衍生物中,R2、R3均为氢原子,R1为半乳糖基。
5.根据权利要求1所述的Lamellarin D糖基化衍生物在制备治疗乳腺癌、胃癌、结肠癌、肝癌的药物中的应用,其特征在于,所述Lamellarin D糖基化衍生物中,R1、R2均为氢原子,R3为半乳糖基。
6.根据权利要求1所述的Lamellarin D糖基化衍生物在制备治疗胃癌的药物中的应用,其特征在于,所述Lamellarin D糖基化衍生物中,R1、R3均为葡萄糖基,R2为氢原子。
CN202011211865.4A 2020-11-03 2020-11-03 Lamellarin D糖基化衍生物及其制备和应用 Active CN112300232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011211865.4A CN112300232B (zh) 2020-11-03 2020-11-03 Lamellarin D糖基化衍生物及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011211865.4A CN112300232B (zh) 2020-11-03 2020-11-03 Lamellarin D糖基化衍生物及其制备和应用

Publications (2)

Publication Number Publication Date
CN112300232A CN112300232A (zh) 2021-02-02
CN112300232B true CN112300232B (zh) 2021-11-09

Family

ID=74332937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011211865.4A Active CN112300232B (zh) 2020-11-03 2020-11-03 Lamellarin D糖基化衍生物及其制备和应用

Country Status (1)

Country Link
CN (1) CN112300232B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835108B1 (en) * 1995-06-29 2001-11-07 Pharma Mar, S.A. Use of lamellarin-class alkaloids in methods of treatment
CA2493725A1 (en) * 2002-08-13 2004-02-19 Pharma Mar, S.A.U. Antitumoral analogs of lamellarins
JP2007210927A (ja) * 2006-02-08 2007-08-23 Nagasaki Univ ラメラリンサルフェートおよび関連化合物の製造方法
CN101230079A (zh) * 2008-01-29 2008-07-30 中国海洋大学 噁唑类化合物的1,2-反式糖苷衍生物及其制备方法
PL200164B1 (pl) * 1998-06-25 2008-12-31 Univ Australian Sposób wytwarzania skondensowanych policyklicznych zawierających pirol związków i związki pośrednie
CN108059634A (zh) * 2016-11-08 2018-05-22 华中师范大学 片螺素类化合物及其中间体的制备方法
CN108658997A (zh) * 2017-03-27 2018-10-16 东海大学 片螺素及其衍生物的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835108B1 (en) * 1995-06-29 2001-11-07 Pharma Mar, S.A. Use of lamellarin-class alkaloids in methods of treatment
PL184667B1 (pl) * 1995-06-29 2002-11-29 Pharma Zastosowanie związku typu lamellaryny przeciwdziałającego nabytej oporności na leki wykazującego efekt przeciwdziałający MDR i kompozycja farmaceutyczna
PL200164B1 (pl) * 1998-06-25 2008-12-31 Univ Australian Sposób wytwarzania skondensowanych policyklicznych zawierających pirol związków i związki pośrednie
CA2493725A1 (en) * 2002-08-13 2004-02-19 Pharma Mar, S.A.U. Antitumoral analogs of lamellarins
CN1688585A (zh) * 2002-08-13 2005-10-26 马尔药品公司 层状素的抗肿瘤类似物
HK1078580A1 (en) * 2002-08-13 2006-03-17 Pharma Mar Sau Antitumoral analogs of lamellarins
JP2007210927A (ja) * 2006-02-08 2007-08-23 Nagasaki Univ ラメラリンサルフェートおよび関連化合物の製造方法
CN101230079A (zh) * 2008-01-29 2008-07-30 中国海洋大学 噁唑类化合物的1,2-反式糖苷衍生物及其制备方法
CN108059634A (zh) * 2016-11-08 2018-05-22 华中师范大学 片螺素类化合物及其中间体的制备方法
CN108658997A (zh) * 2017-03-27 2018-10-16 东海大学 片螺素及其衍生物的制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Lamellarin D Bioconjugates I: Synthesis and Cellular Internalization of PEG-Derivatives;Pla, D et al.;《Bioconjugate Chemistry》;20090527;第20卷(第6期);第1100-1111页 *
Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D: triester derivatives incorporating amino acid residues;Tardy, C et al.;《Bioorganic & Medicinal Chemistry》;20040401;第12卷(第7期);第1697-1712页 *
海洋天然产物Lamellarin D的Mannich衍生物设计、合成与抗肿瘤活性研究;沈立;《中国优秀博硕士学位论文全文数据库(博士)医药卫生科技辑》;20131115(第11期);第E079-9页 *

Also Published As

Publication number Publication date
CN112300232A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
Stirchak et al. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoade otigomers with carbamate internucleoside linkages
Ototani et al. Preparation and antitumor activity of 4'-thio analogs of 2, 2'-anhydro-1-. beta.-D-arabinofuranosylcytosine
CN108969770B (zh) 二肽修饰的1-甲基-3-羟甲基-四氢-β-咔啉,其合成和应用
CN111196801B (zh) 阿朴菲类生物碱衍生物及其制备方法与用途
WO2007009265A1 (en) NOVEL β-CYCLODEXTRIN-BASED MOLECULES AND DRUG DELIVERY COMPOSITIONS
CN112300232B (zh) Lamellarin D糖基化衍生物及其制备和应用
EP0528030A1 (en) Antitumor be-13793c derivative
Sakai et al. Synthesis of Helicobacter pylori lipid A and its analogue using p-(trifluoromethyl) benzyl protecting group
Wang et al. Antitumor agents. 134. New shiraiachrome A and calphostin C-related perylene derivatives as cytotoxic and antiviral agents and inhibitors of protein kinase C
CN113121612B (zh) 一类含氟铂配合物及其应用
CN113880872A (zh) 一种喜树碱硼酸类化合物的制备及其在抗肿瘤方面的用途
CN113880855A (zh) 一种9-氟喜树碱衍生物的制备及其在抗肿瘤方面的用途
CN108329300B (zh) 硝基苯并[d]氮杂*基喹唑啉类化合物及其制备方法和应用
CN108125962B (zh) 苯并[d]氮杂*基喹唑啉类化合物在制备治疗肺癌药物中的应用
CN113234117A (zh) 常春藤皂苷元c-28位聚乙二醇修饰的衍生物及其制备方法
CN115466315A (zh) 抑制侵袭的1-咪唑-β-咔啉-3-甲酰-RGDS及制备,抗癌转移作用和应用
CN113461752A (zh) 新型苯并咪唑衍生物、其制备方法及其的抗癌剂用途
CN112358518A (zh) 一种苯并咪唑衍生物bi277及其制备方法和应用
CN111393482A (zh) 一种新型铂-铱异核金属配合物及其制备方法和应用
CN112920242B (zh) 一种苯并咪唑衍生物bi292及其制备方法和应用
CN116143758B (zh) 一类氮杂黄酮类靶向蛋白嵌合体及其在制备抗肿瘤药物中的应用
CN114437046B (zh) 5-氟尿嘧啶拼接4-苯胺喹唑啉类化合物及其制备方法与应用
CN115304605B (zh) 具有抗肿瘤活性的氧杂环丁烷衍生物及其制备方法和应用
CN113402578B (zh) 薯蓣皂苷元衍生物及其制备方法和医药用途
CN108129460B (zh) 甲氧苯基苯并[d]氮杂*基喹唑啉类化合物及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant