CN112266493A - 一种交联型嵌段共聚物质子交换膜及其制备方法 - Google Patents

一种交联型嵌段共聚物质子交换膜及其制备方法 Download PDF

Info

Publication number
CN112266493A
CN112266493A CN202011172497.7A CN202011172497A CN112266493A CN 112266493 A CN112266493 A CN 112266493A CN 202011172497 A CN202011172497 A CN 202011172497A CN 112266493 A CN112266493 A CN 112266493A
Authority
CN
China
Prior art keywords
cross
block copolymer
reaction
proton exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011172497.7A
Other languages
English (en)
Inventor
董天都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011172497.7A priority Critical patent/CN112266493A/zh
Publication of CN112266493A publication Critical patent/CN112266493A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明属于有机化学应用领域,具体涉及一种交联型嵌段共聚物质子交换膜及其制备方法。本发明的交联型嵌段共聚物质子交换膜是由改性聚苯乙烯与改性聚芳醚酮(砜)反应实现,制成的薄膜具有良好的热力学稳定性,而且在不同湿度条件下功率密度超过商品化Nafion 112膜,与传统的热交联聚合物相比,交联型嵌段共聚物的交联反应温度控制在45‑120℃,远低于热交联的反应温度(≈200℃),反应温度的降低使得该反应在工业上更容易得到推广;交联型嵌段共聚物合成工艺简单,具有较高的磺化度,与现有的无规共聚膜相比,可以形成较高的相分离,电导率不依赖吸水率或者离子交换容量,可以在较低的IEC条件下获得较高的电导率。

Description

一种交联型嵌段共聚物质子交换膜及其制备方法
技术领域
本发明属于有机化学应用领域,具体涉及一种交联型嵌段共聚物质子交换膜及其制备方法。
背景技术
磺酸型质子交换膜在燃料电池、氯碱工业、膜分离技术和航空航天技术等领域有广泛的用途。在氢氧燃料电池组件中,质子交换膜是关键部位之一。现今商品化的质子交换膜有Dupont公司的Nafion膜,这类全氟磺酸型的质子交换膜具有电导率高,化学稳定性好,机械性能强等优点。但是高昂的制备工艺,较为严重的氟污染,以及较高的甲醇透过率限制了Nafion膜的推广与运用。
近年来开发高性能非氟型质子交换膜成为该领域的重要研究方向,经过多年的努力,学者们已经取得了很大的进展。磺化聚苯醚酮是一种性能较为优异的质子交换膜,其电导率高,化学稳定性好,制备工艺简单。然而这类材料的磺酸基团往往直接接在主链上,使得电导率非常依赖本身的离子交换容量水平IEC。很多文献通过提高IEC的值来获得高的电导率,然而当IEC的值增加到一定高度时,就会带来质子交换膜的不可避免的溶胀,过度的尺寸变化则会带来机械性能的急剧下降。
现有的技术中,Young Moo Lee课题组研发了很多交联型磺化聚合物质子交换膜,获得了很高的电导率,但是这种膜刚性太强,以致于膜在后续试验中出现破碎现象[1]。Guiver课题组研发了很多侧链性磺化聚合物质子交换膜,但是他们的膜并非嵌段形式,膜的电导率依赖含水率[2-3]。因此,交联型嵌段共聚物的结构具有得天独厚的优势。
非专利文献:
[1]S.Y.Lee,Y.M.Lee等,Energy and Environmental Science,2012,5,9795.
[2]D.S.Kim,M.D.Guiver等,Macromolecules,2009,42,957.
[3]Y.Gao,M.D.Guiver等,Macromolecules,2004,37,6748.
发明内容
本发明提供了一种交联型嵌段共聚物质子交换膜及其制备方法。与传统的热交联聚合物相比,本发明制备的交联型嵌段共聚物的交联反应温度控制在45-120℃,远低于热交联的反应温度(≈200℃),反应温度的降低使得该反应在工业上更容易得到推广。
为解决现有技术的不足,本发明采用以下技术方案:一种交联型嵌段共聚物质子交换膜,结构式如下:
Figure BDA0002747729500000021
其中,p代表所述低聚物的重复单元数,p=5-50;
Ar1为商品化或非商品化的单体,代表
Figure BDA0002747729500000022
Figure BDA0002747729500000023
Ar2为商品化或非商品化的单体,代表四苯甲氧基双酚A、
Figure BDA0002747729500000024
Figure BDA0002747729500000025
Ar3代表
Figure BDA0002747729500000026
其中k=1-20;
Ar4代表
Figure BDA0002747729500000027
进一步地,所述四苯甲氧基双酚A采用如下合成路线:
Figure BDA0002747729500000028
进一步地,所述Ar5代表
Figure BDA0002747729500000029
Ar5采用如下合成路线:
Figure BDA0002747729500000031
其中m和n分别代表苯乙烯和4-乙酰氧基苯乙烯的重复单元个数,m=1-3,n=3-12。
进一步地,所述交联型嵌段共聚物质子交换膜的合成方法,包括如下步骤:
(1)以苯乙烯和4-乙酰氧基苯乙烯为单体,将其溶于甲苯或三氯甲烷中,惰性气体保护下升温至80-140℃,进行自由基聚合反应,反应时间持续8-12h,反应结束后降至常温后反应液在甲醇或异丙醇中析出,烘干,得到改性聚苯乙烯A;
Figure BDA0002747729500000032
(2)将改性聚苯乙烯A溶于甲苯或三氯甲烷中,加入氢氧化钠或氢氧化钾粉末,并加热至40-80℃,反应时间持续2-6 h,降至常温后反应液在水中析出,烘干,得到带酚羟基的改性聚苯乙烯B;
Figure BDA0002747729500000033
(3)以Ar1和Ar2为前驱体,溶于有机溶剂中,惰性气体保护下升温至130-170℃下进行亲核取代反应,降温至40-60℃,加入Ar4反应持续2-6h,再降至常温后在甲醇和水的混合液中析出得到含甲氧基的聚合物C;
Figure BDA0002747729500000034
(4)聚合物C通过在冰浴下的去甲基化反应,得到含酚羟基的聚合物D;
Figure BDA0002747729500000035
聚合物C聚合物D
(5)将聚合物D溶于有机溶剂中,在0-120℃下与含磺酸单体反应,得到磺化型聚合物E;
Figure BDA0002747729500000041
(6)将改性聚苯乙烯B与聚合物E以一定的比例溶于有机溶剂中,在45-120℃下发生交联反应5-18h,析出至丙酮中,得到黄色纤维状固体聚合物F;
Figure BDA0002747729500000042
(7)将上述聚合物F配成一定浓度的溶液,均匀浇筑在干燥平整的表面皿上,烘干得到相对应的质子交换膜。
进一步地,步骤(3)中Ar2采用四溴双酚A作为前驱体合成四甲氧基苯双酚A时,催化剂使用四三苯基膦钯,反应温度控制在60-130℃,反应时间持续6-12h。
进一步地,步骤(4)中去甲基反应时使用二氯甲烷的质量浓度为17%的三溴化硼作为反应物,反应时间持续6-10h。
进一步地,步骤(5)中,所述有机溶剂采用N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜或N-甲基吡咯烷酮中的一种或几种。
进一步地,步骤(5)中,所述含磺酸单体采用1,3-丙磺酸内酯、1,4-丁磺酸内酯或溴代磺化烷烃,反应时间持续4-12h。
与现有技术相比,本发明具有以下优点:
(1)与传统的热交联聚合物相比,交联型嵌段共聚物的交联反应温度控制在45-120℃,远低于热交联的反应温度(≈200℃),反应温度的降低使得该反应在工业上更容易得到推广。
(2)交联型嵌段共聚物合成工艺简单,具有较高的磺化度,与现有的无归共聚膜相比,可以形成较高的相分离,电导率不依赖吸水率或者离子交换容量,可以在较低的IEC条件下获得较高的电导率。
(3)交联型嵌段共聚物在热力学性能上与非交联型聚合物相比有很大优势。
附图说明
图1是实施例3中两种质子交换膜的透射电镜图。其中a)是未交联型嵌段共聚物质子交换膜的透射电镜图;b)是交联型嵌段共聚物质子交换膜的透射电镜图。
图2是实施例3中两种质子交换膜的热失重曲线。
图3是实施例3中两种质子交换膜的机械性能。
具体实施方式
实施例1
一种交联型嵌段共聚物质子交换膜的制备方法,包括以下步骤:
(1)将除去稳定剂之后的苯乙烯(0.1400mmol)和除去稳定剂之后的4-乙酰氧基苯乙烯(0.1400mmol)滴加进100mL的反应管中,加入甲苯使其质量浓度达到20%,通过排管去除体系中的氧气,再加入偶氮二异丁腈(0.0300mmol),升温至110℃,反应12h,将溶液析出至甲醇中,过滤,烘干,得到乳白色产物聚苯乙烯;
(2)将聚苯乙烯(0.2143mmol)溶于甲苯,配成质量浓度为10%的溶液,再加入NaOH固体(0.4283mmol),升温至80℃,持续8h,析出至水中,过滤,烘干,得到银白色固体羟基型聚苯乙烯;
(3)将甲氧基对苯二酚(0.1256mmol)和4,4-二氟二苯酮(0.1319mmol)溶于N,N-二甲基乙酰胺中配成质量浓度为20%的溶液,再加入甲苯(10mL)和无水碳酸钾(0.0251mmol),升温至145℃后持续1h,接着再升温至165℃后持续4h,最后将反应物析出至盐酸/水中,过滤,烘干,得到淡黄色聚芳醚酮;
(4)将聚芳醚酮(0.2678mmol)溶于无水二氯甲烷中配成质量浓度为5%的溶液,在冰浴下滴加三溴化硼(5.0mL),反应持续8h,接着将混合物析出至热水中,过滤,烘干,得到棕黄色羟基型聚芳醚酮;
(5)将羟基型聚芳醚酮(0.3076mmol)溶于无水二甲基亚砜中配成质量浓度为5%的溶液,加入NaH(0.1024mmol)和1,4-丁磺酸内酯(326μL)并升温至105℃,持续8h,接着将反应液析出至丙酮中,过滤,烘干得到磺酸型聚芳醚酮;
(6)将羟基型聚苯乙烯(0.3694mmol)和磺酸型聚芳醚酮(0.1847mmol)溶于无水二甲基乙酰胺中配成质量浓度为10%的溶液,待聚合物完全溶解后再加入无水碳酸钾(0.0304mmol),升温至80℃,反应9h,将反应液析出至异丙醇中,过滤,烘干得到交联型嵌段共聚物。
本实施例交联型嵌段共聚物质子交换膜的合成路线如下:
Figure BDA0002747729500000061
实施例2
一种交联型嵌段共聚物质子交换膜的制备方法,包括以下步骤:
(1)将除去稳定剂之后的苯乙烯(0.2400mmol)和除去稳定剂之后的4-乙酰氧基苯乙烯(0.5600mmol)加入100mL的反应管中,加入甲苯使其质量浓度达到20%,通过排管去除体系中的氧气,再加入偶氮二异丁腈(0.0800mmol),升温至110℃,反应12h,将溶液析出至甲醇中,过滤,烘干,得到乳白色产物聚苯乙烯;
(2)将聚苯乙烯(0.2264mmol)溶于甲苯,配成质量浓度为10%的溶液,再加入KOH固体(0.4500mmol),升温至80℃,持续8h,析出至水中,过滤,烘干,得到银白色固体羟基型聚苯乙烯;
(3)将甲氧基对苯二酚(0.1139mmol)和4,4-二氟二苯酮(0.1085mmol)溶于N,N-二甲基乙酰胺中,配成质量浓度为20%的溶液,再加入甲苯(10mL)和无水碳酸钾(0.0231mmol),升温至145℃后持续1h,接着再升温至165℃后持续4h,降温至60℃,加入十氟联苯(0.0823mmol)反应3h最后将反应物析出至盐酸/水中,过滤,烘干,得到淡黄色聚芳醚酮;
(4)将聚芳醚酮(0.3264mmol)溶于无水二氯甲烷配成质量浓度为5%的溶液,在冰浴下滴加三溴化硼(6.5mL),反应持续8h,接着将混合物析出至热水中,过滤,烘干,得到棕黄色羟基型聚芳醚酮;
(5)将羟基型聚芳醚酮(0.2811mmol)溶于无水二甲基亚砜中配成质量浓度为5%的溶液,加入NaH(0.0956mmol)和1,4-丁磺酸内酯(231μL)并升温至105℃,持续8h,接着将反应液析出至丙酮中,过滤,烘干得到磺酸型聚芳醚酮;
(6)将羟基型聚苯乙烯(0.3694mmol)和磺酸型聚芳醚酮(0.1847mmol)溶于无水二甲基乙酰胺配成质量浓度为10%的溶液,待聚合物完全溶解后再加入无水碳酸钾(0.0304mmol),升温至80℃,反应9h,将反应液析出至异丙醇中,过滤,烘干得到交联型嵌段共聚物。
本实施例交联型嵌段共聚物质子交换膜的合成路线如下:
Figure BDA0002747729500000071
实施例3
一种交联型嵌段共聚物质子交换膜的制备方法,包括以下步骤:
(1)将除去稳定剂之后的苯乙烯(0.2400mmol)和除去稳定剂之后的4-乙酰氧基苯乙烯(0.5600mmol)加入100mL的反应管中,加入甲苯使其质量浓度达到20%,通过排管去除体系中的氧气,再加入偶氮二异丁腈(0.0800mmol),升温至110℃,反应12h,将溶液析出至甲醇中,过滤,烘干,得到乳白色产物聚苯乙烯;
(2)将聚苯乙烯(0.2264mmol)溶于甲苯,配成质量浓度为10%的溶液,再加入KOH固体(0.4500mmol),升温至80℃,持续8h,析出至水中,过滤,烘干,得到银白色固体羟基型聚苯乙烯;
(3)将甲氧基对苯二酚(0.1694mmol)和4,4-二氟二苯砜(0.1588mmol)溶于N,N-二甲基乙酰胺中,配成质量浓度为20%的溶液,再加入甲苯(10mL)和无水碳酸钾(0.0322mmol),升温至145℃后持续1h,接着再升温至165℃后反应4h,降温至60℃,加入六氟代苯(0.0823mmol)反应3h,最后将反应物析出至盐酸/水中,过滤,烘干,得到淡黄色聚芳醚酮;
(4)将聚芳醚酮(0.3000mmol)溶于无水二氯甲烷配成质量浓度为5%的溶液,在冰浴下滴加三溴化硼(6.1mL),反应持续8h,接着将混合物析出至热水中,过滤,烘干,得到棕黄色羟基型聚芳醚酮;
(5)将羟基型聚芳醚酮(0.4021mmol)溶于无水二甲基亚砜中配成质量浓度为5%的溶液,加入NaH(0.1655mmol)和溴代磺化己烷(8.042mmol)并升温至105℃,持续8h,接着将反应液析出至丙酮中,过滤,烘干得到磺酸型聚芳醚酮;
(6)将羟基型聚苯乙烯(0.2824mmol)和磺酸型聚芳醚酮(0.1412mmol)溶于无水二甲基乙酰胺,配成质量浓度为10%的溶液,待聚合物完全溶解后再加入无水碳酸钾(0.0288mmol),升温至80℃,反应9h,将反应液析出至异丙醇中,过滤,烘干得到交联型嵌段共聚物。
本实施例交联型嵌段共聚物质子交换膜的合成路线如下:
Figure BDA0002747729500000081
对上述实施例3制备的交联型嵌段共聚物膜进行了测试(参比对象为普通未交联型嵌段共聚物膜,由至少两种单体制备而成,采用实施例3步骤3制得的聚芳醚酮制成的质子交换膜),其结果如图1-3和表1:
表1是实施例3交联型和未交联型嵌段共聚物质子交换膜的性能比较
质子交换膜 电导率(80%湿度下) 伸长率(%)
未交联型 0.131 3.2
交联型 0.182 4.6
从图1-3和表1可知:
1、从图1可以看出,图1b)中的离子通道约为20nm,大于图1a)中的离子通道(8nm),由此可知交联结构的存在可以拓宽膜的离子传输通道。
2、从图2可以看出,与未交联型嵌段共聚物质子交换膜相比,交联型质子交换膜在250-400℃的失重过程较为平稳,由此可知交联结构的存在可以改善膜的热学性能。
3.从图3可以看出,交联型质子交换膜的伸长率比非交联型质子交换膜高出50%,由此可知交联结构的存在可以改善机械性能。

Claims (8)

1.一种交联型嵌段共聚物质子交换膜,其特征在于,结构式如下:
Figure FDA0002747729490000011
其中,p代表所述低聚物的重复单元数,p=5-50;
Ar1为商品化或非商品化的单体,代表
Figure FDA0002747729490000012
Figure FDA0002747729490000013
Ar2为商品化或非商品化的单体,代表四苯甲氧基双酚A、
Figure FDA0002747729490000014
Figure FDA0002747729490000015
Figure FDA0002747729490000016
-R=-H、-OCH2-或
Figure FDA0002747729490000017
Ar3代表
Figure FDA0002747729490000018
其中k=1-20;
Ar4代表-O-、
Figure FDA0002747729490000019
2.根据权利要求1所述的交联型嵌段共聚物质子交换膜,其特征在于,所述四苯甲氧基双酚A采用如下合成路线:
Figure FDA00027477294900000110
3.根据权利要求1所述的交联型嵌段共聚物质子交换膜,其特征在于,所述Ar5代表
Figure FDA0002747729490000021
Ar5采用如下合成路线:
Figure FDA0002747729490000022
其中m和n分别代表苯乙烯和4-乙酰氧基苯乙烯的重复单元个数,m=1-3,n=3-12。
4.权利要求1中所述交联型嵌段共聚物质子交换膜的合成方法,其特征在于,包括如下步骤:
(1)以苯乙烯和4-乙酰氧基苯乙烯为单体,将其溶于甲苯或三氯甲烷中,惰性气体保护下升温至80-140℃,进行自由基聚合反应,反应时间持续8-12h,反应结束后降至常温后反应液在甲醇或异丙醇中析出,烘干,得到改性聚苯乙烯A;
Figure FDA0002747729490000023
(2)将改性聚苯乙烯A溶于甲苯或三氯甲烷中,加入氢氧化钠或氢氧化钾粉末,并加热至40-80℃,反应时间持续2-6h,降至常温后反应液在水中析出,烘干,得到带酚羟基的改性聚苯乙烯B;
Figure FDA0002747729490000024
(3)以Ar1和Ar2为前驱体,溶于有机溶剂中,惰性气体保护下升温至130-170℃下进行亲核取代反应,降温至40-60℃,加入Ar4反应持续2-6h,再降至常温后在甲醇和水的混合液中析出得到含甲氧基的聚合物C;
Figure FDA0002747729490000025
(4)聚合物C通过在冰浴下的去甲基化反应,得到含酚羟基的聚合物D;
Figure FDA0002747729490000031
(5)将聚合物D溶于有机溶剂中,在0-120℃下与含磺酸单体反应,得到磺化型聚合物E;
Figure FDA0002747729490000032
(6)将改性聚苯乙烯B与聚合物E以一定的比例溶于有机溶剂中,在45-120℃下发生交联反应5-18h,析出至丙酮中,得到黄色纤维状固体聚合物F;
Figure FDA0002747729490000033
(7)将上述聚合物F配成一定浓度的溶液,均匀浇筑在干燥平整的表面皿上,烘干得到相对应的质子交换膜。
5.根据权利要求4所述交联型嵌段共聚物质子交换膜的合成方法,其特征在于,步骤(3)中Ar2采用四溴双酚A作为前驱体合成四甲氧基苯双酚A时,催化剂使用四三苯基膦钯,反应温度控制在60-130℃,反应时间持续6-12h。
6.根据权利要求4所述交联型嵌段共聚物质子交换膜的合成方法,其特征在于,步骤(4)中去甲基反应时使用二氯甲烷的质量浓度为17%的三溴化硼作为反应物,反应时间持续6-10h。
7.根据权利要求4所述交联型嵌段共聚物质子交换膜的合成方法,其特征在于,步骤(5)中,所述有机溶剂采用N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜或N-甲基吡咯烷酮中的一种或几种。
8.根据权利要求4所述交联型嵌段共聚物质子交换膜的合成方法,其特征在于,步骤(5)中,所述含磺酸单体采用1,3-丙磺酸内酯、1,4-丁磺酸内酯或溴代磺化烷烃,反应时间持续4-12h。
CN202011172497.7A 2020-10-28 2020-10-28 一种交联型嵌段共聚物质子交换膜及其制备方法 Pending CN112266493A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011172497.7A CN112266493A (zh) 2020-10-28 2020-10-28 一种交联型嵌段共聚物质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011172497.7A CN112266493A (zh) 2020-10-28 2020-10-28 一种交联型嵌段共聚物质子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN112266493A true CN112266493A (zh) 2021-01-26

Family

ID=74345799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011172497.7A Pending CN112266493A (zh) 2020-10-28 2020-10-28 一种交联型嵌段共聚物质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112266493A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036868A1 (en) * 2021-09-10 2023-03-16 Reuter Chemische Apparatebau E.K. (het)aryl substituted bisphenol compounds and thermoplastic resins
WO2023038156A1 (en) * 2021-09-10 2023-03-16 Mitsubishi Gas Chemical Company, Inc. (het)aryl substituted bisphenol compounds and thermoplastic resins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036868A1 (en) * 2021-09-10 2023-03-16 Reuter Chemische Apparatebau E.K. (het)aryl substituted bisphenol compounds and thermoplastic resins
WO2023038156A1 (en) * 2021-09-10 2023-03-16 Mitsubishi Gas Chemical Company, Inc. (het)aryl substituted bisphenol compounds and thermoplastic resins

Similar Documents

Publication Publication Date Title
Shang et al. Synthesis and characterization of sulfonated fluorene-containing poly (arylene ether ketone) for proton exchange membrane
CN112175170A (zh) 一种含有柔性链段的基于哌啶酮与芳烃聚合的阴离子交换膜及其制备方法和应用
CN106784946B (zh) 燃料电池用阳离子基团功能化的聚芴醚腈交联型阴离子交换膜材料及其制备方法
US20190288319A1 (en) Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell
CN109904500B (zh) 一种侧链型磺化聚砜/聚乙烯醇质子交换膜及其制备方法
Lee et al. Synthesis and characterization of crosslink-free highly sulfonated multi-block poly (arylene ether sulfone) multi-block membranes for fuel cells
CN113150344B (zh) 一种聚合物主链为芳环结构的质子交换膜及其制备方法
CN112266493A (zh) 一种交联型嵌段共聚物质子交换膜及其制备方法
CN108659243B (zh) 一种支化型聚醚醚酮阴离子交换膜及其制备方法
CN111276724A (zh) 基于聚苯醚/聚乙烯醇的半互穿网络阴离子交换膜及制备方法
CN110041480B (zh) 一种聚合物及其制备方法和在质子交换膜燃料电极催化层中的用途
CN106751839B (zh) 燃料电池用高分子微球/含氨基的磺化聚芳醚酮砜质子交换膜材料、制备方法及其应用
CN114044884B (zh) 一种基于聚芴的高温磷酸质子交换膜及制备方法
Krishnan et al. Synthesis and characterization of sulfonated poly (ether sulfone) copolymer membranes for fuel cell applications
CN114685828A (zh) 金刚烷基嵌段型阴离子交换膜及其制备方法
CN108923056B (zh) 一种高电导率的聚苯醚阴离子交换膜的制备方法
CN103709379B (zh) 芳香磺化聚酮及其制备方法
CN101759832B (zh) 一种主链全氟聚合物及其作为离子交换膜的应用
CN113896923A (zh) 一种基于聚醚砜主链的非对称离子交换膜及其制备方法和应用
CN117430849B (zh) 一种长侧链聚芳烷阴离子交换膜及其制备方法
CN112812350A (zh) 交联型嵌段磺化聚芳醚酮聚合物及其制备方法和应用
CN118146472B (zh) 无醚共聚物、磺化芳香聚合物、离子交换膜及其制备方法
CN114716649B (zh) 含氟的磺化聚芳基高分子结构、高效制备及其应用
Hossain et al. Multi-phenyl structured aromatic hydrocarbon polymer
CN106633083A (zh) 一类侧链型嵌段磺化聚苯醚酮聚合物膜及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210126