CN112251013A - 一种轻质宽带吸波复合材料低rcs测试载体 - Google Patents

一种轻质宽带吸波复合材料低rcs测试载体 Download PDF

Info

Publication number
CN112251013A
CN112251013A CN202011224404.0A CN202011224404A CN112251013A CN 112251013 A CN112251013 A CN 112251013A CN 202011224404 A CN202011224404 A CN 202011224404A CN 112251013 A CN112251013 A CN 112251013A
Authority
CN
China
Prior art keywords
composite material
wave
absorbing composite
light broadband
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011224404.0A
Other languages
English (en)
Inventor
庞超
张国瑞
谢海岩
王慧
张宏亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jiachi Electronic Technology Co ltd
Original Assignee
Chengdu Jiachi Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jiachi Electronic Technology Co ltd filed Critical Chengdu Jiachi Electronic Technology Co ltd
Priority to CN202011224404.0A priority Critical patent/CN112251013A/zh
Publication of CN112251013A publication Critical patent/CN112251013A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及吸波材料技术领域,特别是一种轻质宽带吸波复合材料低RCS测试载体。所述测试载体使用一种轻质宽带吸波复合材料,相对金属而言,在低频测试时,电磁波的边缘绕射明显减弱,测试出来的载体RCS就会比较低,提高电磁散射测试的准确度,且质地较轻,有较好的力学性能,耐热性较好;所述测试载体为低散射外形,降低载体自身的电磁散射,并提供连接部件,消除部件边缘电磁散射、遮挡部件内腔结构电磁散射,增加部件电磁散射测试的准确度。

Description

一种轻质宽带吸波复合材料低RCS测试载体
技术领域
本发明涉及吸波材料技术领域,特别是一种轻质宽带吸波复合材料低RCS测试载体。
背景技术
飞行器在完成总体隐身外形设计后,将要考虑各个部件的隐身性能测试问题。单独部件的隐身性能评估需要使用到低散射载体。目前绝大部分低散射载体都是使用的金属材料,主要通过外形结构,降低载体自身的电磁散射,并提供连接部件,消除部件边缘电磁散射、遮挡部件内腔结构电磁散射,增加部件电磁散射测试的准确度。但是金属载体在低频测试时,电磁波的边缘绕射明显增强,测试出来的载体RCS就会比较高,影响电磁散射测试的准确度。
发明内容
本发明的目的在于克服现有技术在低散射测试载体,低频测试准确度不够的的缺点,提供一种轻质宽带吸波复合材料低RCS测试载体。
本发明的目的通过以下技术方案来实现:一种轻质宽带吸波复合材料低RCS测试载体,使用一种轻质宽带吸波复合材料,加工成一种低散射外形。使用的吸波复合材料可以尽可能减少低频电磁波的边缘绕射,大大降低测试载体在低频时的RCS,增加低频测试的准确度;所述测试载体包括使用一种轻质宽带吸波复合材料制作而成,载体外形为低散射外形。
所述轻质宽带吸波复合材料的合成步骤包括:
S1.将树脂、分散剂、高性能吸收剂按一定比例混合均匀后,经过双螺杆挤出加工得到含有高性能吸收剂母料,各组分的重量百分比为:树脂50-80%,高性能吸收剂20-50%,分散剂0.1%-1%。
S2.将树脂、成核剂、含有高性能吸收剂的母料熔融共混得到吸波树脂微粒,各组分的重量百分比为:树脂30-60 %、成核剂0.1-1%、含有高性能吸收剂的母料40-70%。
S3.将步骤S2制得的吸波树脂微粒与分散介质和表面活性剂一起投入发泡反应釜中,然后向发泡反应釜中持续通入发泡剂并加热加压,达到设定温度和压力时,迅速泄压,得到吸波树脂发泡珠粒,各组分的重量百分比为:吸波树脂微粒40%-60%、分散介质40%-60%、发泡剂0.1-1%。
S4.先对成型模具进行预热,将步骤S3制得的吸波树脂发泡珠粒,通过料枪加入到预热完成的模具中,
S5.将蒸汽通入模具中加热珠粒。
S6.冷却、脱模。
所述设定温度为160-170℃,压力为2-4MPa。
所述S4步骤中预热温度在100-140℃之间,预热时间为0.5-2小时之间。
所述步骤S5中蒸汽温度在120-140℃,压力在1-2Mpa。
所述高性能吸收剂为石墨烯、导电炭黑、炭纳米管等介电损耗型吸收剂的任意一种或几种;所述分散剂为:高岭土、二氧化钛、碱式碳酸镁、碱式碳酸锌、碳酸钙、二氧化硅和硼酸锌中的任意一种或几种;所述树脂均为同一种树脂,树脂为聚氨酯、聚乙烯、聚丙烯、聚醚砜、PS5S5K中的任意一种;所述成核剂为碳酸钙、硫酸镁、滑石粉、氢氧化铝、二氧化硅、硼酸锌中的任意一种或任意几种;所述表面活性剂为:硬脂酸、十二烷基苯磺酸钠、甜菜碱和脂肪酸甘油酯中的任意一种或任意几种;所述分散介质为:去离子水、无水乙醇中的任意一种;所述发泡剂为:二氧化碳、氮气、空气、戊烷和氧气中的任意一种或任意几种。
优选的低散射外形为类似杏仁体,所述载体尺寸为长度方向最长不超过487mm,宽度方向最宽不超过250mm,厚度方向最厚不超过63mm,所述载体左右对称、前后对称,长宽比例在1.5-2.5 之间。
优选的轻质宽带吸波复合材料的吸波性能,在载体的使用尺寸下,吸波性能可以在2~18GHz频段内小于-8dB。
本发明具有以下优点:
1、本发明的轻质宽带吸波复合材料低RCS测试载体相对现有的金属载体,具有更低的RCS,低频效果更加明显,载体的使用尺寸下,吸波性能可以在2~18GHz频段内小于-8dB。
2、本发明的轻质宽带吸波复合材料低RCS测试载体具有质轻的特点,其密度在55-65kg/m3;在25%形变量时压缩强度为380KPa,具有较好的力学强度,拉伸强度为750KPa,弯曲强度为740KPa,拉伸断裂伸长率17%,以及具有较好的耐热性,热变形温度高于150℃。
附图说明
图1是本发明制备的轻质宽带吸波复合材料低RCS测试载体外形;
图2是本发明制备的轻质宽带吸波复合材料低RCS测试载体平板反射率测试曲线;
图3是本发明制备的轻质宽带吸波复合材料低RCS测试载体与金属载体在3GHz平面波入射下的水平极化的单站RCS结果对比。
具体实施方式
下面结合附图对本发明做进一步的描述,但本发明的保护范围不局限于以下所述。
如图1所示,一种轻质宽带吸波复合材料低RCS测试载体,所述测试载体包括使用一种轻质宽带吸波复合材料制作而成,载体外形为类杏仁体的低散射外形。
实施例
轻质宽带吸波复合材料低RCS测试载体,主要使用轻质宽带吸波复合材料代替金属制作低RCS测试载体,制作成类杏仁体外形,如图1所示;密度在55-65kg/m3;在25%形变量时压缩强度为380KPa,具有较好的力学强度,拉伸强度为750KPa,弯曲强度为740KPa,拉伸断裂伸长率17%,以及具有较好的耐热性,热变形温度高于150℃。
轻质宽带吸波复合材料低RCS测试载体的制备方法,包括以下步骤:
S1.将树脂、分散剂、高性能吸收剂按一定比例混合均匀后,经过双螺杆挤出加工得到含有高性能吸收剂母料,各组分的重量百分比为:树脂50-80%,高性能吸收剂20-50%,分散剂0.1%-1%。
S2.将树脂、成核剂、含有高性能吸收剂的母料熔融共混得到吸波树脂微粒,各组分的重量百分比为:树脂30-60 %、成核剂0.1-1%、含有高性能吸收剂的母料40-70%。
S3.将步骤S2制得的吸波树脂微粒与分散介质和表面活性剂一起投入发泡反应釜中,然后向发泡反应釜中持续通入发泡剂并加热加压,达到设定温度和压力时,迅速泄压,得到吸波树脂发泡珠粒,各组分的重量百分比为:吸波树脂微粒40%-60%、分散介质40%-60%、发泡剂0.1-1%。
S4.先对成型模具进行预热,将步骤S3制得的吸波树脂发泡珠粒,通过料枪加入到预热完成的模具中,
S5.将蒸汽通入模具中加热珠粒。
S6.冷却、脱模。
步骤S3中所述设定温度为160-170℃,压力为2-4MPa。
步骤S4中预热温度在100-140℃之间,预热时间为0.5-2小时之间。
步骤S5中蒸汽温度在120-140℃,压力在1-2Mpa。
所述高性能吸收剂为石墨烯、导电炭黑、炭纳米管等介电损耗型吸收剂的任意一种或几种;所述分散剂为:高岭土、二氧化钛、碱式碳酸镁、碱式碳酸锌、碳酸钙、二氧化硅和硼酸锌中的任意一种或几种;所述树脂均为同一种树脂,树脂为聚氨酯、聚乙烯、聚丙烯、聚醚砜、PS5S5K中的任意一种;所述成核剂为碳酸钙、硫酸镁、滑石粉、氢氧化铝、二氧化硅、硼酸锌中的任意一种或几种;所述表面活性剂为:硬脂酸、十二烷基苯磺酸钠、甜菜碱和脂肪酸甘油酯中的任意一种或几种;所述分散介质为:去离子水、无水乙醇中的任意一种;所述发泡剂为:二氧化碳、氮气、空气、戊烷和氧气中的任意一种或几种。
所述轻质宽带吸波复合材料低RCS测试载体具有良好的电磁波宽频带吸收效果,是降低载体低频RCS的关键。轻质宽带吸波复合材料选用测试载体使用尺寸下,电磁波在2-18GHz频段内都有良好的吸收效果,吸收效果如图2所示。使用电磁仿真软件,在相同结构外形下,3GHz平面波入射下的水平极化的单站RCS结果对比如图3所示,0-180度内,RCS减缩10dBsm以上,达到了良好的RCS减缩效果。

Claims (10)

1.一种轻质宽带吸波复合材料低RCS测试载体,其特征在于:所述载体为轻质宽带吸波复合材料制成,外形为类杏仁体的低散射外形;所述载体尺寸为长度方向最长不超过487mm,宽度方向最宽不超过250mm,厚度方向最厚不超过63mm,所述载体左右对称、前后对称,长宽比例在1.5-2.5 之间。
2.根据权利要求1所述的一种轻质宽带吸波复合材料低RCS测试载体,其特征在于:所述轻质宽带吸波复合材料密度在55-65kg/m3;压缩强度为380Kpa时形变量不超过25%,拉伸强度为750KPa,弯曲强度为740KPa,拉伸断裂伸长率17%,以及热变形温度高于150℃。
3.根据权利要求1所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:包括以下步骤:
S1.将树脂、分散剂、高性能吸收剂按一定比例混合均匀后,经过双螺杆挤出加工得到含有高性能吸收剂母料,各组分的重量百分比为:树脂50-80%,高性能吸收剂20-50%,分散剂0.1%-1%,
S2.将树脂、成核剂、含有高性能吸收剂的母料熔融共混得到吸波树脂微粒,各组分的重量百分比为:树脂30-60 %、成核剂0.1-1%、含有高性能吸收剂的母料40-70%,
S3.将步骤S2制得的吸波树脂微粒与分散介质和表面活性剂一起投入发泡反应釜中,然后向发泡反应釜中持续通入发泡剂并加热加压,达到设定温度和压力时,迅速泄压,得到吸波树脂发泡珠粒,各组分的重量百分比为:吸波树脂微粒40%-60%、分散介质40%-60%、发泡剂0.1-1%,
S4.先对成型模具进行预热,将步骤S3制得的吸波树脂发泡珠粒,通过料枪加入到预热完成的模具中,
S5.将蒸汽通入模具中加热珠粒,
S6.冷却、脱模。
4.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:步骤S3中所述设定温度为160-170℃,压力为2-4Mpa;所述S4步骤中预热温度在100-140℃之间,预热时间为0.5-2小时之间;步骤S5中蒸汽温度在120-140℃,压力在1-2Mpa。
5.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:所述高性能吸收剂为石墨烯、导电炭黑、炭纳米管等介电损耗型吸收剂的任意一种或任意几种混合材料。
6.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:所述分散剂为高岭土、二氧化钛、碱式碳酸镁、碱式碳酸锌、碳酸钙、二氧化硅和硼酸锌中的任意一种或任意几种混合材料。
7.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:所述树脂均为同一种树脂,树脂为聚氨酯、聚乙烯、聚丙烯、聚醚砜、PS5S5K等中的任意一种。
8.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:所述成核剂为碳酸钙、硫酸镁、滑石粉、氢氧化铝、二氧化硅、硼酸锌中的任意一种或任意几种混合材料。
9.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:所述表面活性剂为硬脂酸、十二烷基苯磺酸钠、甜菜碱和脂肪酸甘油酯中的任意一种或任意几种混合材料。
10.根据权利要求3所述的一种轻质宽带吸波复合材料的制备方法,其特征在于:所述分散介质为去离子水、无水乙醇中的任意一种;所述发泡剂为二氧化碳、氮气、空气、戊烷和氧气中的任意一种或任意几种混合材料。
CN202011224404.0A 2020-11-05 2020-11-05 一种轻质宽带吸波复合材料低rcs测试载体 Pending CN112251013A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011224404.0A CN112251013A (zh) 2020-11-05 2020-11-05 一种轻质宽带吸波复合材料低rcs测试载体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011224404.0A CN112251013A (zh) 2020-11-05 2020-11-05 一种轻质宽带吸波复合材料低rcs测试载体

Publications (1)

Publication Number Publication Date
CN112251013A true CN112251013A (zh) 2021-01-22

Family

ID=74268277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011224404.0A Pending CN112251013A (zh) 2020-11-05 2020-11-05 一种轻质宽带吸波复合材料低rcs测试载体

Country Status (1)

Country Link
CN (1) CN112251013A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532865A (zh) * 2021-06-24 2021-10-22 中国航发沈阳发动机研究所 一种适用于多种发动机的低散射载体
CN114355311A (zh) * 2022-03-10 2022-04-15 成都飞机工业(集团)有限责任公司 一种翼面前缘吸波结构rcs测试的低散射载体及测试方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220536A (ja) * 1988-07-08 1990-01-24 Sanwa Kako Kk 導電性ポリオレフィン発泡体の製造方法
JP2004247336A (ja) * 2003-02-10 2004-09-02 Mie Tlo Co Ltd 電波吸収体
CN201107406Y (zh) * 2007-11-23 2008-08-27 中国航天科工集团第二研究院二○七所 低rcs测试用金属支架
CN105431473A (zh) * 2013-08-01 2016-03-23 道达尔研究技术弗吕公司 用于制备具有增强的导电性质的复合材料的母料、工艺和制造的复合材料
CN105602245A (zh) * 2016-02-23 2016-05-25 广东思汗新材料有限公司 阻燃导电尼龙66材料及其制备方法
CN107082953A (zh) * 2017-05-05 2017-08-22 衡水兴洲新材料有限公司 吸波、导波聚丙烯发泡材料及其制备方法
CN107603004A (zh) * 2016-07-12 2018-01-19 中国科学院宁波材料技术与工程研究所 电磁屏蔽聚合物发泡材料及其制备方法
CN107828134A (zh) * 2017-10-16 2018-03-23 无锡会通轻质材料股份有限公司 一种高导电高阻燃型聚丙烯发泡珠粒的制备方法
US20180127599A1 (en) * 2014-11-12 2018-05-10 Robert Lee Wentz Method of passive reduction of radar cross-section using radar absorbing materials on composite structures
CN109054185A (zh) * 2018-08-23 2018-12-21 成都新柯力化工科技有限公司 一种吸波复合塑料用石墨烯母料及制备方法
CN111055396A (zh) * 2019-11-05 2020-04-24 江苏昊晟塑业科技有限公司 一种高导电高阻燃发泡聚丙烯材料成型方法
CN111504952A (zh) * 2020-04-15 2020-08-07 成都飞机工业(集团)有限责任公司 一种兼顾水平和垂直极化的低散射载体及其测试方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220536A (ja) * 1988-07-08 1990-01-24 Sanwa Kako Kk 導電性ポリオレフィン発泡体の製造方法
JP2004247336A (ja) * 2003-02-10 2004-09-02 Mie Tlo Co Ltd 電波吸収体
CN201107406Y (zh) * 2007-11-23 2008-08-27 中国航天科工集团第二研究院二○七所 低rcs测试用金属支架
CN105431473A (zh) * 2013-08-01 2016-03-23 道达尔研究技术弗吕公司 用于制备具有增强的导电性质的复合材料的母料、工艺和制造的复合材料
US20180127599A1 (en) * 2014-11-12 2018-05-10 Robert Lee Wentz Method of passive reduction of radar cross-section using radar absorbing materials on composite structures
CN105602245A (zh) * 2016-02-23 2016-05-25 广东思汗新材料有限公司 阻燃导电尼龙66材料及其制备方法
CN107603004A (zh) * 2016-07-12 2018-01-19 中国科学院宁波材料技术与工程研究所 电磁屏蔽聚合物发泡材料及其制备方法
CN107082953A (zh) * 2017-05-05 2017-08-22 衡水兴洲新材料有限公司 吸波、导波聚丙烯发泡材料及其制备方法
CN107828134A (zh) * 2017-10-16 2018-03-23 无锡会通轻质材料股份有限公司 一种高导电高阻燃型聚丙烯发泡珠粒的制备方法
CN109054185A (zh) * 2018-08-23 2018-12-21 成都新柯力化工科技有限公司 一种吸波复合塑料用石墨烯母料及制备方法
CN111055396A (zh) * 2019-11-05 2020-04-24 江苏昊晟塑业科技有限公司 一种高导电高阻燃发泡聚丙烯材料成型方法
CN111504952A (zh) * 2020-04-15 2020-08-07 成都飞机工业(集团)有限责任公司 一种兼顾水平和垂直极化的低散射载体及其测试方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
梁爽等: "RCS测试中的低散射载体设计及仿真分析", 《计算机测量与控制》 *
涂志刚等: "《塑料软包装材料》", 31 July 2018, 文化发展出版社 *
许小剑: "《雷达目标散射特性测量与处理新技术》", 31 December 2017, 国防工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532865A (zh) * 2021-06-24 2021-10-22 中国航发沈阳发动机研究所 一种适用于多种发动机的低散射载体
CN113532865B (zh) * 2021-06-24 2022-06-07 中国航发沈阳发动机研究所 一种适用于多种发动机的低散射载体
CN114355311A (zh) * 2022-03-10 2022-04-15 成都飞机工业(集团)有限责任公司 一种翼面前缘吸波结构rcs测试的低散射载体及测试方法
CN114355311B (zh) * 2022-03-10 2022-08-12 成都飞机工业(集团)有限责任公司 一种翼面前缘吸波结构rcs测试的低散射载体及测试方法

Similar Documents

Publication Publication Date Title
CN112251013A (zh) 一种轻质宽带吸波复合材料低rcs测试载体
CN112341662A (zh) 一种皮芯结构的灰色抗静电聚丙烯复合发泡珠粒及其模塑制品
CN113942284B (zh) 一种改善斜入射吸波性能的蜂窝夹层吸波材料及其制备方法
CN112280179A (zh) 一种轻质宽带吸波复合材料的制备方法
CN114644795A (zh) 吸波材料及其制备方法和应用
CN110205096B (zh) 一种可调控微孔吸波超材料及其制备方法和应用
CN113801492B (zh) 一种吸波复合泡沫材料及其制备方法
CN111117036A (zh) 一种聚乙烯组合物及其制备方法
CN113980475A (zh) 低密度宽频段高屏蔽效能耐油氟硅橡胶材料及其制备方法
CN109228000A (zh) 车载雷达天线专用吸波材料及其制备方法
CN110808465B (zh) 一种高透波率雷达罩及其制备工艺
CN117245995A (zh) 一种快速成型抗冲击蜂窝吸波复合材料及其制备方法
CN114806052B (zh) 一种吸波/轻质结构一体化泡沫材料及其制备方法和用途
CN111002678A (zh) 一种低密度复合材料吸波板的制备方法
KR20170043157A (ko) 전자파 차폐성과 흡수능을 갖는 고분자 복합체 및 그 제조방법
JP2001164124A (ja) 樹脂複合体及びこれを用いた電波吸収体並びにその製造方法
CN112563760B (zh) 一种仿蝶翼宽频复合吸波超材料结构及制造方法
CN110358305B (zh) 一种耐候性优异的镀镍粉体填充弹性体及其制备方法
RU2243980C1 (ru) Композиционный материал для экранирования электромагнитного излучения и способ его получения
CN113583400A (zh) 一种可降解发泡材料及其制备方法
Zhang et al. MXenes for electromagnetic interference shielding: Insights from structural design
CN114316452B (zh) 一种超疏水发泡聚丙烯及其制备方法
CN117023570A (zh) 一种基于氧化石墨烯的电磁辐射消除方法
CN110818950A (zh) 一种磁性吸波树脂的制备方法
CN112812236B (zh) 一种5g通讯用smc天线外罩及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 611730 No.288, west section of Wenming street, new economic Industrial Park, south area of Chengdu modern industrial port, Pidu District, Chengdu City, Sichuan Province

Applicant after: Chengdu Jiachi Electronic Technology Co.,Ltd.

Address before: 611730 No.288, west section of Wenming street, new economic Industrial Park, south area of Chengdu modern industrial port, Pidu District, Chengdu City, Sichuan Province

Applicant before: CHENGDU JIACHI ELECTRONIC TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20210122

RJ01 Rejection of invention patent application after publication