CN112229905A - 一种高选择性体声波谐振氢气传感器及其制备方法 - Google Patents

一种高选择性体声波谐振氢气传感器及其制备方法 Download PDF

Info

Publication number
CN112229905A
CN112229905A CN202010933600.9A CN202010933600A CN112229905A CN 112229905 A CN112229905 A CN 112229905A CN 202010933600 A CN202010933600 A CN 202010933600A CN 112229905 A CN112229905 A CN 112229905A
Authority
CN
China
Prior art keywords
layer
hydrogen
acoustic wave
bulk acoustic
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010933600.9A
Other languages
English (en)
Inventor
孙博
何春华
廖广兰
王子奕
林建斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010933600.9A priority Critical patent/CN112229905A/zh
Publication of CN112229905A publication Critical patent/CN112229905A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明属于微纳制造相关技术领域,其公开了一种高选择性体声波谐振氢气传感器及其制备方法,所述氢气传感器包括氢气敏感层、氢气选择层及体声波谐振器,所述氢气敏感层设置在所述体声波谐振器上,所述氢气选择层设置在所述体声波谐振器上,且其与所述体声波谐振器之间形成收容空间,所述氢气敏感层收容在所述收容空间内;其中,所述氢气选择层为一层或者多层只允许氢气分子通过的薄膜。本发明实现了对氢气的选择性吸附,提高了检测的准确性,且所述氢气传感器的结构简单,对氢气检测选择性强,灵敏度高,响应快,且能与集成电路工艺兼容,可实现微型化,产品化,可以应用于复杂气氛环境中氢气的高灵敏检测。

Description

一种高选择性体声波谐振氢气传感器及其制备方法
技术领域
本发明属于微纳制造相关技术领域,更具体地,涉及一种高选择性体声波谐振氢气传感器及其制备方法。
背景技术
作为一种新兴能源载体和化工原料、氢气具有来源广泛、清洁环保、可循环利用等一系列优点,对推进节能减排、调整能源产业结构和应对全球气候变化有重要意义,但是氢气易燃易爆,其空气含量在4%~75%范围内极易发生爆炸。典型的氢气传感技术包括催化、热导、电化学、电阻式及光学方法,这些传感器通常响应速度慢、工作温度高、灵敏度低,无法满足氢气使用过程中的快速高灵敏的检测要求。
微质量传感器是体声波谐振器的一个热点应用,其传感原理为谐振器的频率会随器件吸附的物质的量变化而发生变化,由于体声波谐振器的谐振频率较高,当吸附量发生细微变化,其谐振频率会出现较大变化,因此体声波谐振器用作微质量传感器具有较高的灵敏度,可检测出分子量级的变化。金属钯具有优异的吸氢性能,在常温条件下1体积的金属钯可以吸收900体积的氢气,金属钯在吸收氢气后,其质量增加,金属钯由α相转变为β相,其密度和物理性质也会发生改变,利用金属钯作为检测氢气的敏感材料是一种较优的选择。基于声波谐振器与钯实现氢气的检测,可实现常温下对氢气高灵敏度的快速检测。
目前同类型的利用金属钯作为敏感材料的氢气传感器中,均是在氮氢混合气中进行相关性质的测试,测试环境较为理想,测试结果表明该类型传感器具有较好的氢敏感特性。但是实际应用中,传感器的工作环境更为复杂,工作环境中不仅包含氮气,还包括水、二氧化碳、一氧化碳等气体;金属钯具有优异的吸氢性能,但同时对一氧化碳、水等也具有一定的吸附性,因此利用金属钯作为敏感材料的氢气传感器在复杂气氛环境工作时,在吸附氢气时也会吸附一氧化碳以及水蒸气,使测量的结果与实际情况不相符合,传感器准确性较低。利用金属钯作为敏感材料的氢气传感器在复杂气氛环境工作时,要提高传感器的准确度,对氢气的选择性是一个必须解决的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种高选择性体声波谐振氢气传感器及其制备方法,其设置有氢气选择层,克服了同类型的氢气传感器检测氢气时会对其他气体敏感的缺点,实现了对氢气的选择性吸附,提高了检测的准确性,且所述氢气传感器的结构简单,对氢气检测选择性强,灵敏度高,响应快,且能与集成电路工艺兼容,可实现微型化,产品化,可以应用于复杂气氛环境中氢气的高灵敏检测,解决了现有技术中对氢气选择性较差、需要高温、响应慢等问题。
为实现上述目的,按照本发明的一个方面,提供了一种高选择性体声波谐振氢气传感器,所述氢气传感器包括氢气敏感层、氢气选择层及体声波谐振器,所述氢气敏感层设置在所述体声波谐振器上,所述氢气选择层设置在所述体声波谐振器上,且其与所述体声波谐振器之间形成收容空间,所述氢气敏感层收容在所述收容空间内;
其中,所述氢气选择层为一层或者多层只允许氢气分子通过的薄膜。
进一步地,所述体声波谐振器包括基底、下电极层、压电层及上电极层,所述基底朝向所述下电极层的表面开设有空腔,所述下电极层及所述压电层分别设置在所述基底上,且所述下电极层部分地收容于所述压电层内;所述上电极层设置在所述压电层远离所述基底的表面上;所述氢气敏感层及所述氢气选择层分别设置在所述上电极层上。
进一步地,所述下电极层包括下电极顶层、引线柱及下电极底层,所述下电极顶层及所述下电极底层均水平设置,且在垂直方向部分重叠;所述引线柱相背的两端分别垂直连接所述下电极顶层及所述下电极底层。
进一步地,所述压电层开设有通孔及凹槽,所述凹槽位于所述压电层朝向所述基底的表面,且所述通孔贯穿所述凹槽的底面;所述引线柱收容在所述通孔内,所述下电极底层收容在所述凹槽内。
进一步地,所述上电极层及所述下电极层均由Pd、Al或者Au制备而成。
进一步地,所述压电层是由压电陶瓷材料或铁电材料制成的,其厚度为300nm~900nm。
进一步地,所述氢气敏感层是由金属Pd或Pd系列合金制成的,其厚度为50nm~150nm。
进一步地,所述氢气选择层是由孔径在
Figure BDA0002671126080000031
之间的金属有机骨架材料制成的。
进一步地,所述氢气选择层是由2-甲基咪唑锌盐或2-甲基咪唑钴制成的。
按照本发明的另一方面,提供了一种如上所述的高选择性体声波谐振氢气传感器的制备方法,所述制备方法兼容了集成电路工艺。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的高选择性体声波谐振氢气传感器及其制备方法主要具有以下有益效果:
1.所述氢气传感器设置有氢气选择层,所述氢气选择层为一层或者多层只允许氢气分子通过的薄膜,如此克服了同类型的氢气传感器检测氢气时会对其他气体敏感的缺点,实现了对氢气的选择性吸附,提高了检测的准确性。
2.所述氢气传感器的结构简单,对氢气检测的选择性强,灵敏度高,响应快。
3.所述制备方法兼容了集成电路工艺,可以实现微型化及产品化,可以应用于复杂气氛环境中氢气的高灵敏检测,解决了现有技术中对氢气选择性较差、需要高温、响应慢等问题。
4.所述氢气传感器部件的材料均易于获取,成本较低,且制备简单,有利于推广应用。
附图说明
图1是本发明提供的高选择性体声波谐振氢气传感器的结构示意图;
图2是本发明提供的高选择性体声波谐振氢气传感器的制备方法的流程示意图;
图3中的31-33是图1中的高选择性体声波谐振氢气传感器的空腔结构的制备示意图;
图4是图1中的高选择性体声波谐振氢气传感器的下电极底层的制备示意图;
图5是图1中的高选择性体声波谐振氢气传感器的压电层的制备示意图;
图6中的61-63是图1中的高选择性体声波谐振氢气传感器的下电极引线柱及顶层的制备示意图;
图7是图1中的高选择性体声波谐振氢气传感器的上电极底层的制备示意图;
图8是图1中的高选择性体声波谐振氢气传感器的氢气敏感层的制备示意图;
图9是图1中的高选择性体声波谐振氢气传感器的氢气选择层的制备示意图;
图10中的101-102是图1中的高选择性体声波谐振氢气传感器的空腔结构与氢气选择层的释放示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-基底,2-空腔,3-下电极层,4-压电层,5-上电极层,6-氢气敏感层,7-氢气选择层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1,本发明提供的高选择性性体声波谐振氢气传感器,所述氢气传感器包括氢气敏感层6、氢气选择层7及体声波谐振器,所述氢气敏感层6设置在所述体声波谐振器上,所述氢气选择层7设置在所述体声波谐振器上,且其与所述体声波谐振器之间形成收容空间,所述氢气敏感层收容在所述收容空间内。其中,所述氢气选择层7只允许氢气分子通过。所述氢气选择层7为一层或者多层只允许氢气分子通过的薄膜。
本实施方式中,所述氢气敏感层6可以由金属Pd或Pd系列合金制成,其厚度为50nm~150nm;所述氢气敏感层6选用Pd或Pd系列合金制成时,具有1体积氢气敏感层材料可以吸收900体积氢气的性质;所述氢气选择层7可由孔径在
Figure BDA0002671126080000051
之间的金属有机
Figure BDA0002671126080000052
架材料制成;优选地,所述氢气选择层7可以由2-甲基咪唑锌盐(ZIF-8)或2-甲基咪唑钴(ZIF-67)制成,分子直径为
Figure BDA0002671126080000053
的氢气可以通过氢气选择层,其他气体均会被过滤掉。
所述体声波谐振器包括基底1、下电极层3、压电层4及上电极层5,所述基底1朝向所述下电极层3的表面开设有空腔2,所述下电极层3及所述压电层4分别设置在所述基底1上,且所述下电极层3部分地收容于所述压电层4内。所述上电极层5设置在所述压电层4远离所述基底1的表面上。所述氢气敏感层6及所述氢气选择层7分别设置在所述上电极层5上。
所述下电极层3包括下电极顶层、引线柱及下电极底层,所述下电极顶层及所述下电极底层均水平设置,且在垂直方向部分重叠。所述引线柱相背的两端分别垂直连接所述下电极顶层及所述下电极底层,由此使得所述下电极层3呈Z形。
所述压电层4开设有通孔及凹槽,所述凹槽位于所述压电层4朝向所述基底1的表面,且所述通孔贯穿所述凹槽的底面。所述引线柱收容在所述通孔内,所述下电极底层收容在所述凹槽内。
本实施方式中,所述上电极层5及所述下电极层3均可以由Pd、Al、Au等金属制成,其厚度为100nm~200nm;所述压电层4可以由AlN、ZnO、GaAs、BaTiO3等压电陶瓷材料或铁电材料制成,其厚度为300nm~900nm。
请参阅图2、图3、图4、图5、图6、图7、图8、图9及图10,本发明还提供了一种高选择性体声波谐振氢气传感器的制备方法,所述制备方法主要包括以下步骤:
步骤一,制备体声波谐振器,具体包括以下子步骤:
(11)提供基底,并在所述基底上制备空腔结构。
(12)在所述基底上制备下电极底层。
(13)在步骤(12)得到的样品上制备压电层。
(14)在所述压电层上制备下电极层的引线柱及下电极顶层,由此得到下电极层。
(15)在所述压电层上制备上电极层,由此得到体声波谐振器。
步骤二,在所述体声波谐振器上制备氢气敏感层。
步骤三,在所述体声波谐振器上制备氢气选择层,所述氢气选择层覆盖所述氢气敏感层。
步骤四,释放空腔结构及氢气选择层。
以下以几个具体实施例来对本发明所提供的选择性体声波谐振氢气传感器的制备方法进行进一步的详细说明。
实施例1
本发明实施例1提供的选择性声波谐振氢气传感器的制备方法主要包括以下步骤:
(1)选择大小合适、单面抛光、300nm厚的硅片作为基片,按照RCA清洗流程将基片表面清洗干净,在基片的表面旋涂NR7光刻胶,通过光刻工艺在基片上得到空腔结构图形,洗去图形内部的光刻胶,以在表面光刻胶上形成空腔结构图形凹槽;
(2)采用反应离子刻蚀方法对上述样品表面进行刻蚀,在基片上形成具有空腔图形结构的凹槽,其深度为400nm;
(3)将上述样品放置于丙酮中浸泡15min,以去除表面光刻胶;
(4)采用电子束蒸发方法对上述样品表面镀上一层SiO2,其厚度为700nm,得到的样品,如图3所示;
(5)将上述样品表面进行CMP处理,以去除基片表面的SiO2,去除空腔上部300nm厚度的SiO2,空腔中剩余SiO2的顶部与基片表面的高度差小于10nm。
(6)在上述样品表面旋涂NR7光刻胶,通过光刻工艺在表面得到下电极底层结构图形,洗去图形内部的光刻胶,在表面光刻胶上形成下电极底层图形凹槽;
(7)采用磁控溅射镀膜工艺在上述样品表面沉积一层Mo薄膜,薄膜的厚度为200nm;
(8)将上述样品放置于丙酮中浸泡15min,以去除表面光刻胶以及光刻胶上的Mo薄膜,得到下电极底层,如图4所示。
(9)在上述样品的表面旋涂PR1000光刻胶,通过光刻工艺在表面得到压电层结构图形,洗去图形内部的光刻胶,在表面光刻胶上形成压电层图形凹槽,如图5所示。
(10)采用磁控溅射镀膜工艺使用高纯铝靶材并通入N2和Ar2混合气体进行反应溅射,在上述样品的表面沉积一层AlN薄膜,AlN薄膜的厚度为900nm;
(11)将上述样品放置于丙酮中浸泡15min,以去除表面光刻胶以及光刻胶上的AlN薄膜,由此得到压电层;
(12)将上述样品放置于退火炉中并通入高纯N2、500℃下进行退火处理2h;
(13)将上述样品涂布光刻胶,通过光刻在压电层上形成下电极的引线孔图形,如图6所示。
(14)采用反应离子刻蚀方法对上述样品表面进行刻蚀,以在氮化铝压电层上形成引线孔洞;
(15)将上述样品按照步骤(7)-(8)中的方法获得下电极引线柱,引线柱的高度为900nm;
(16)将上述样品安照步骤(6)-(8)中的方法获得下电极层顶层,顶层厚度与底部相同;
(17)将上述样品按照步骤(6)-(8)中的方法得到上电极层,上电极层得到厚度为100nm,如图7所示。
(18)将上述样品按照步骤(6)-(8)中的方法得到氢气敏感层,氢气敏感层的厚度为50nm,如图8及图9所示。
(19)采用溶液法在上述样品表面生长一层金属有机骨架材料,具体为:称取mIM(99.0%)0.649g,称取[Zn(NO3)2·6H2O](98%)0.293g,溶于30mL的MeOH溶液中,将溶液搅拌均匀,将上述样品放置于溶液中浸泡3h,将样品取出并放置于烘箱在50℃下进行烘干,如图10所示。
(20)将上述样品的上表面旋涂NR7光刻胶,通过光刻工艺在上表面形成一层对氢气选择层的保护层;
(21)将上述样品放置于HF缓冲液中5min,释放空腔中SiO2以及除氢气敏感层区域外的金属有机骨架材料。
(22)获得高选择性声波谐振氢气传感器。
实施例2
本发明实施例2提供的高选择性体声波谐振氢气传感器的制备方法与本发明实施例1提供的高选择性体声波谐振氢气传感器的制备方法基本相同,故实施案例2的制备步骤中只给出与实施案例1制备步骤中不相同的工艺,方法以及参数等,未给出的即默认与实施案例1相同。不同的工艺具体为:
步骤(7)采用电子束蒸发镀膜工艺在样品表面沉积一层Al薄膜,Al薄膜的厚度为100nm;
步骤(10)采用磁控溅射镀膜工艺使用高纯氮化铝靶材并通入高纯Ar2进行溅射,在样品表面层积一层AlN薄膜,AlN薄膜的厚度为800nm;
步骤(12)将样品放置于退火炉中并通入高纯N2、450℃下进行退火处理2h;
步骤(19)采用旋涂法在样品表面生长一层金属有机骨架材料,具体为:称取mIM(99.0%)0.649g,并称取[Zn(NO3)2·6H2O](98%)0.293g,溶于25mL的MeOH溶液中,将溶液搅拌均匀并静置4h,利用旋涂机将静置后的溶液旋涂至样品,采用的旋涂参数为:100rps旋涂15s,400rps旋涂30s,将旋涂后的样品放置于烘箱在50℃下进行烘干,旋涂与烘干过程反复进行三次。
实施例3
本发明实施例3提供的高选择性体声波谐振氢气传感器的制备方法与本发明实施例1提供的高选择性体声波谐振氢气传感器的制备方法基本相同,故实施案例3的制备步骤中只给出与实施案例1制备步骤中不相同的工艺、方法以及参数等,未给出的即默认与实施案例1相同。
步骤(7)采用电子束蒸发镀膜工艺在样品表面沉积一层Pt薄膜,Pt薄膜的厚度为150nm;
步骤(10)采用金属有机化学气相沉积镀膜工艺使用3甲基铝与NH3作为前驱体,在样品表面沉积一层AlN薄膜,AlN薄膜的厚度为700nm;
步骤(12)将样品放置于退火炉中并通入高纯N2、400℃下进行退火处理2h;
步骤(19)采用喷涂法在样品表面生长一层金属有机骨架材料,具体为:称取mIM(99.0%)0.649g,并称取[Zn(NO3)2·6H2O](98%)0.293g,溶于20mL的MeOH溶液中,将溶液搅拌均匀并静置4h,利用喷涂机将静置后的溶液旋涂至样品,单次喷涂5s后将样品放置于烘箱在50℃下进行烘干,喷涂与烘干过程反复进行三次。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高选择性体声波谐振氢气传感器,其特征在于:
所述氢气传感器包括氢气敏感层(6)、氢气选择层(7)及体声波谐振器,所述氢气敏感层(6)设置在所述体声波谐振器上,所述氢气选择层(7)设置在所述体声波谐振器上,且其与所述体声波谐振器之间形成收容空间,所述氢气敏感层(6)收容在所述收容空间内;
其中,所述氢气选择层(7)为一层或者多层只允许氢气分子通过的薄膜。
2.如权利要求1所述的高选择性体声波谐振氢气传感器,其特征在于:所述体声波谐振器包括基底(1)、下电极层(3)、压电层(4)及上电极层(5),所述基底(1)朝向所述下电极层(3)的表面开设有空腔(2),所述下电极层(3)及所述压电层(4)分别设置在所述基底(1)上,且所述下电极层(3)部分地收容于所述压电层(4)内;所述上电极层(5)设置在所述压电层(4)远离所述基底(1)的表面上;所述氢气敏感层(6)及所述氢气选择层(7)分别设置在所述上电极层(5)上。
3.如权利要求2所述的高选择性体声波谐振氢气传感器,其特征在于:所述下电极层(3)包括下电极顶层、引线柱及下电极底层,所述下电极顶层及所述下电极底层均水平设置,且在垂直方向部分重叠;所述引线柱相背的两端分别垂直连接所述下电极顶层及所述下电极底层。
4.如权利要求3所述的高选择性体声波谐振氢气传感器,其特征在于:所述压电层(4)开设有通孔及凹槽,所述凹槽位于所述压电层(4)朝向所述基底(1)的表面,且所述通孔贯穿所述凹槽的底面;所述引线柱收容在所述通孔内,所述下电极底层收容在所述凹槽内。
5.如权利要求2所述的高选择性体声波谐振氢气传感器,其特征在于:所述上电极层(5)及所述下电极层(3)均由Pd、Al或者Au制备而成。
6.如权利要求2所述的高选择性体声波谐振氢气传感器,其特征在于:所述压电层(4)是由压电陶瓷材料或铁电材料制成的,其厚度为300nm~900nm。
7.如权利要求1-6任一项所述的高选择性体声波谐振氢气传感器,其特征在于:所述氢气敏感层(6)是由金属Pd或Pd系列合金制成的,其厚度为50nm~150nm。
8.如权利要求1-6任一项所述的高选择性体声波谐振氢气传感器,其特征在于:所述氢气选择层(7)是由孔径在
Figure FDA0002671126070000021
之间的金属有机骨架材料制成的。
9.如权利要求1-6任一项所述的高选择性体声波谐振氢气传感器,其特征在于:所述氢气选择层(7)是由2-甲基咪唑锌盐或2-甲基咪唑钴制成的。
10.一种如权利要求1-7任一项所述的高选择性体声波谐振氢气传感器的制备方法,所述制备方法兼容了集成电路工艺。
CN202010933600.9A 2020-09-08 2020-09-08 一种高选择性体声波谐振氢气传感器及其制备方法 Pending CN112229905A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010933600.9A CN112229905A (zh) 2020-09-08 2020-09-08 一种高选择性体声波谐振氢气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010933600.9A CN112229905A (zh) 2020-09-08 2020-09-08 一种高选择性体声波谐振氢气传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN112229905A true CN112229905A (zh) 2021-01-15

Family

ID=74116609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010933600.9A Pending CN112229905A (zh) 2020-09-08 2020-09-08 一种高选择性体声波谐振氢气传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN112229905A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924435A (zh) * 2021-01-26 2021-06-08 复旦大学 一种mof薄膜修饰的管状光流体探测器及其制备和应用
WO2024108706A1 (zh) * 2022-11-22 2024-05-30 广州市艾佛光通科技有限公司 一种体声波谐振器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007914A (ko) * 2001-04-06 2003-01-23 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 수소, 암모니아 및 황을 함유한 가스의 검출을 위한 미소가공된 박막 센서 어레이 및 그 제조 방법
CN101614604A (zh) * 2009-07-14 2009-12-30 西北工业大学 基于滑膜差动结构的硅谐振式压力传感器及其制作方法
CN101970339A (zh) * 2007-12-05 2011-02-09 芬兰技术研究中心 压力、声压变化、磁场、加速、振动或气体组成的测量器
CN102023184A (zh) * 2010-10-28 2011-04-20 山东科技大学 双敏感层体声波氢气谐振传感器
CN104034763A (zh) * 2014-05-28 2014-09-10 南京工业大学 一种混杂贵金属掺粒子和金属氧化物薄膜的集成气体传感器及其制备方法
CN205449888U (zh) * 2015-12-30 2016-08-10 桂林斯壮微电子有限责任公司 氢气检测系统
CN207163964U (zh) * 2016-12-01 2018-03-30 深圳市奥电高压电气有限公司 高选择性的氢气传感器
CN109489843A (zh) * 2018-10-29 2019-03-19 武汉大学 高灵敏度传感器及其制备方法
CN109557049A (zh) * 2018-11-21 2019-04-02 暨南大学 一种氢气传感器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007914A (ko) * 2001-04-06 2003-01-23 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 수소, 암모니아 및 황을 함유한 가스의 검출을 위한 미소가공된 박막 센서 어레이 및 그 제조 방법
CN101970339A (zh) * 2007-12-05 2011-02-09 芬兰技术研究中心 压力、声压变化、磁场、加速、振动或气体组成的测量器
CN101614604A (zh) * 2009-07-14 2009-12-30 西北工业大学 基于滑膜差动结构的硅谐振式压力传感器及其制作方法
CN102023184A (zh) * 2010-10-28 2011-04-20 山东科技大学 双敏感层体声波氢气谐振传感器
CN104034763A (zh) * 2014-05-28 2014-09-10 南京工业大学 一种混杂贵金属掺粒子和金属氧化物薄膜的集成气体传感器及其制备方法
CN205449888U (zh) * 2015-12-30 2016-08-10 桂林斯壮微电子有限责任公司 氢气检测系统
CN207163964U (zh) * 2016-12-01 2018-03-30 深圳市奥电高压电气有限公司 高选择性的氢气传感器
CN109489843A (zh) * 2018-10-29 2019-03-19 武汉大学 高灵敏度传感器及其制备方法
CN109557049A (zh) * 2018-11-21 2019-04-02 暨南大学 一种氢气传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. NAU等: "Hydrogen sensor based on metallic photonic crystal slabs", 《OPTICS LETTERS》 *
母坤等: "氢气传感器的技术现状及发展趋势", 《激光杂质》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924435A (zh) * 2021-01-26 2021-06-08 复旦大学 一种mof薄膜修饰的管状光流体探测器及其制备和应用
WO2024108706A1 (zh) * 2022-11-22 2024-05-30 广州市艾佛光通科技有限公司 一种体声波谐振器及其制备方法

Similar Documents

Publication Publication Date Title
Haghighi et al. Nanoporous MIL-101 (Cr) as a sensing layer coated on a quartz crystal microbalance (QCM) nanosensor to detect volatile organic compounds (VOCs)
CN112229905A (zh) 一种高选择性体声波谐振氢气传感器及其制备方法
US20210291152A1 (en) Preparation of nitrogen rich three dimensional mesoporous carbon nitride and its sensing and photocatalytic properties
CN105588860B (zh) 过渡金属氧化物表面异质外延金属有机框架壳层及其制备方法和用途
CN104250723A (zh) 一种基于铅单质薄膜原位大面积控制合成钙钛矿型ch3nh3pbi3薄膜材料的化学方法
US10302583B2 (en) Humidity sensor based on squaraine polymer, preparation method and use thereof
CN110396006A (zh) 一种ZIF-8膜包覆SnO2复合气敏材料及其制备方法和应用
CN101216448A (zh) 基于钯-银丝状电极的氢气传感器
CN109298030B (zh) 一种铌掺杂锐钛矿相二氧化钛薄膜气敏传感器及其制备方法
CN102590179A (zh) 银纳米点阵表面增强拉曼活性基底及其制备方法
CN106348616B (zh) 一种SiO2/TiO2减反射膜的制备方法
CN110270234A (zh) 一种氧化石墨烯/金属有机框架复合膜及其制备方法及应用
CN105699441B (zh) 一种电阻式气体传感器及其制备方法
CN110054791A (zh) MOFs-贵金属有序复合材料及其制备方法和应用
CN108982600A (zh) 基于氧化镓/镓酸锌异质结纳米阵列的柔性气敏传感器及其制备方法
CN111072061B (zh) 一种多孔SnO2氢敏薄膜及其制备与应用
CN114166900A (zh) 一种基于鱼骨状钙钛矿Cs2TeI6的一氧化氮传感器及其制备方法和应用
Anbia et al. Humidity sensing properties of La3+ and K+ co-doped Ti0. 9Sn0. 1O2 thin films
Mao et al. A kinetic/thermodynamic study of transparent co-adsorbents and colored dye molecules in visible light based on microgravimetric quartz-crystal microbalance on porous TiO 2 films for dye-sensitized solar cells
CN114839230B (zh) 一种基于mems技术的半导体可燃气体传感器及其制备方法
CN114460144A (zh) Co-MOF阵列膜衍生氧化钴原型气体传感器及其大面积批量化制备方法和用途
CN115595565A (zh) 一种复相ZnO/ZnS纳米阵列薄膜的制备方法及其应用
CN111017867B (zh) 一种网络结构硅基点阵的制备方法及其应用
CN111847502B (zh) 一种致密CsPbBr3薄膜的制备方法及氧气传感应用
CN114644888B (zh) 一种改性湿敏材料及其制备方法及应用、湿度传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210115