CN112216772A - 一种iii族氮化物纳米线柔性发光二极管及其制备方法 - Google Patents

一种iii族氮化物纳米线柔性发光二极管及其制备方法 Download PDF

Info

Publication number
CN112216772A
CN112216772A CN202010933632.9A CN202010933632A CN112216772A CN 112216772 A CN112216772 A CN 112216772A CN 202010933632 A CN202010933632 A CN 202010933632A CN 112216772 A CN112216772 A CN 112216772A
Authority
CN
China
Prior art keywords
layer
emitting diode
nitride nanowire
nanowires
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010933632.9A
Other languages
English (en)
Other versions
CN112216772B (zh
Inventor
朱玲
吴懿平
吕卫文
祝超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yuanxin Guanglu Technology Co ltd
Original Assignee
Shenzhen Yuanxin Guanglu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yuanxin Guanglu Technology Co ltd filed Critical Shenzhen Yuanxin Guanglu Technology Co ltd
Priority to CN202010933632.9A priority Critical patent/CN112216772B/zh
Publication of CN112216772A publication Critical patent/CN112216772A/zh
Application granted granted Critical
Publication of CN112216772B publication Critical patent/CN112216772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种III族氮化物纳米线柔性发光二极管及其制备方法,所述III族氮化物纳米线发光二极管依次顺序包括PDMS基层、金属反射层、p型接触层、III族氮化物纳米线和顶层金属接触点层,所述III族氮化物纳米线覆盖有抗蚀剂。本发明的III族氮化物纳米线发光二极管用PDMS及金属反射层替代硅作为衬底,提高了III族氮化物纳米线发光二极管的输出功率,同时可提高III族氮化物纳米线发光二极管的可拉伸性。本发明的III族氮化物纳米线发光二极管实现了高亮度无磷LED,具有高稳定的白光发射和高达98的显色指数。

Description

一种III族氮化物纳米线柔性发光二极管及其制备方法
技术领域
本发明涉及半导体领域,具体涉及一种III族氮化物纳米线柔性发光二极管及其制备方法。
背景技术
目前,III-氮化物半导体已在光电子器件中进得到了广泛研究。直接能带隙III-氮化物半导体可以有效吸收或发射约0.65eV的宽光谱光(InN)至6.4eV(AlN),涵盖从深紫外到近红外光谱,但是由于缺乏天然衬底,传统的III型氮化物平面异质结构通常显示出非常高的位错密度,从而严重限制了器件的性能和可靠性。另一方面,由于高度有效的侧向应力松弛,纳米线异质结构可以在位错密度大大降低的晶格失配的衬底上生长,如硅和蓝宝石。
当前报道的纳米线LED通常表现出非常低的外部量子效率,这可能归因于缺陷的存在和/或低光提取效率(LEE)。而且,III族氮化物纳米线LED通常生长在Si衬底上,其可以大量吸收从LED有源区发射的光子,从而严重限制了光输出功率。Si半导体表现出低的电导率和热膨胀系数。但是,大功率LED应用需要大面积的芯片,并且可以在高注入电流下工作,这将极大地加热器件。通常,结温升高时,量子效率,输出功率和寿命会迅速降低。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种III族氮化物纳米线柔性发光二极管及其制备方法。
为实现上述目的,本发明采取的技术方案为:一种III族氮化物纳米线发光二极管,所述III族氮化物纳米线发光二极管依次顺序包括PDMS基层、金属反射层、p型接触层、III族氮化物纳米线和顶层金属接触点层,所述III族氮化物纳米线覆盖有抗蚀剂。
上述的III族氮化物纳米线发光二极管用PDMS替代硅作为衬底,提高了III族氮化物纳米线发光二极管的输出功率,改善了III族氮化物纳米线发光二极管的柔性。纳米线采用了自组织的InGaN纳米线。上述的III族氮化物纳米线发光二极管实现了高亮度无磷不需荧光粉LED,具有高稳定的白光发射和高达98的显色指数。
优选地,所述III族氮化物纳米线为自组织的InGaN纳米线,所述自组织的InGaN纳米线顺序包括n-GaN、有源区和p-GaN,所述p-GaN和所述顶层金属接触点层接触,所述n-GaN和所述p型接触层接触。
上述的III族氮化物纳米线为自组织的InGaN纳米线,III族氮化物纳米线发光二极管的有源区由10个垂直排列的InGaN量子点组成,由于InGaN有源区的In成分变化(10%~50%),可以发射白光。
优选地,所述金属反射层为第一Au层,所述p型接触层为Ni层。
上述的III族氮化物纳米线发光二极管用PDMS作为衬底,并且沉积Au层作为金属反射层,衬底Ni层作为金属反射层,提高了III族氮化物纳米线发光二极管的输出功率,可以有效地用作反射器以进一步增强发光二极管的LEE,改善了III族氮化物纳米线发光二极管的散热效果。
优选地,所述第一Au层的厚度为150~160nm,所述Ni层的厚度为10~12nm。
上述的III族氮化物纳米线发光二极管中,与p-GaN接触的Ni的厚度为10~12nm,Au层的厚度为150~160nm,有利于提高III族氮化物纳米线发光二极管的发光效率。
优选地,所述自组织的InGaN纳米线的半径为60~62nm,所述相邻自组织的InGaN纳米线的几何中心轴间距为110~112nm。
发明人通过研究发现,所述自组织的InGaN纳米线的半径为60~62nm,所述相邻自组织的InGaN纳米线的几何中心轴间距为110~112nm时,上述的III族氮化物纳米线发光二极管的LEE(光提取效率)最高。
优选地,所述顶层金属接触点层由外至内依次包括第二Au层、第一Ti层、ITO层、第三Au层和第二Ti层。
上述的III族氮化物纳米线发光二极管用PDMS作为衬底,并且沉积Ti层、Au层、ITO层、Ti层和Au层作为顶层金属接触点层,提高了III族氮化物纳米线发光二极管的输出功率,改善了III族氮化物纳米线发光二极管的散热效果。
优选地,所述第二Au层的厚度为100~110nm,所述第一Ti层的厚度为10~15nm,所述ITO层的厚度为200~210nm,所述第三Au层的厚度为5~10nm,所述第二Ti层的厚度为5~10nm。
上述的III族氮化物纳米线发光二极管的顶层金属接触点层为上述范围时,顶层金属接触点层的透明越好,发光效率更好,有利于提高III族氮化物纳米线发光二极管的转换效率。
优选地,所述抗蚀剂为聚酰亚胺。
优选地,所述PDMS基层的厚度为150~200μm。
本发明还提供了一种上述任一所述III族氮化物纳米线发光二极管的制备方法,所述方法包括以下步骤:
(1)通过MBE在SOI基板上生长纳米线,将聚酰亚胺抗蚀剂旋涂以完全覆盖所述纳米线,进行氧等离子体蚀刻以露出所述纳米线的顶部,所述SOI基板包括SiO2层和两个Si层,所述两个Si层分别在SiO2层两面;
(2)将所述聚酰亚胺在350~380℃烘烤30~45分钟;
(3)在所述纳米线的顶部依次沉积Ni层和Au层,所述Ni层作为p型接触层,所述Au层作为金属反射层,在所述Au层上旋涂PDMS基层;
(4)去除所述SOI基板;
(5)在去除的SOI基板的位置处依次沉积Ti层、Au层、ITO层、Ti层和Au层。
优选地,所述纳米线为自组织的InGaN纳米线,所述自组织的InGaN纳米线通过射频等离子体辅助分子束外延方法在SOI基板上生长。
优选地,通过MBE在SOI基板上生长纳米线的过程中,氮气流量保持在1.0标准立方厘米/分钟(sccm),正向等离子体功率为350W,n-GaN和p-GaN在760~780℃下生长,InGaN/AlGaN活性区在640~680℃下生长。
上述II族氮化物纳米线发光二极管的制备方法中,InGaN活性区在640~680℃下生长,有利于增强In的结合。
本发明的有益效果在于:本发明提供了一种III族氮化物纳米线发光二极管及其制备方法,本发明的III族氮化物纳米线发光二极管用PDMS替代硅作为衬底,提高了III族氮化物纳米线发光二极管的输出功率,改善了III族氮化物纳米线发光二极管的柔性,改善了III族氮化物纳米线发光二极管的散热效果,提高了III族氮化物纳米线发光二极管的可拉伸性。本发明的III族氮化物纳米线发光二极管实现了高亮度无磷不需荧光粉LED,具有高稳定的白光发射和高达98的显色指数。
附图说明
图1为本发明的III族氮化物纳米线发光二极管的结构示意图。其中,1、PDMS基层,2、金属反射层,3、p型接触层,4、III族氮化物纳米线,5、顶层金属接触点层,51、第二Ti层,52、第三Au层,53、ITO层,54、第一Ti层,55、第二Au。
图2为本发明的III族氮化物纳米线发光二极管的制备方法的流程示意图,(a)聚酰亚胺涂层/RIE蚀刻,(b)去除Si和SiO2,(c)厚Ti/Au沉积
图3为本发明的III族氮化物纳米线发光二极管的和对比例的光谱图。(a)PL光谱图,(b)EL光谱图;曲线(1)为实施例1,曲线(2)为对比例1。
图4为本发明的III族氮化物纳米线发光二极管的弯曲试验后的发光性能。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
作为本发明实施例的一种III族氮化物纳米线发光二极管,如图1所示,所述III族氮化物纳米线发光二极管依次顺序包括PDMS基层1、金属反射层2、p型接触层3、III族氮化物纳米线4和顶层金属接触点层5,所述III族氮化物纳米线4覆盖有抗蚀剂6;
所述III族氮化物纳米线4为自组织的InGaN纳米线,所述自组织的InGaN纳米线顺序包括n-GaN41、有源区42和p-GaN43,所述p-GaN43和所述顶层金属接触点层5接触,所述n-GaN41和所述p型接触层43接触;
所述自组织的InGaN纳米线的半径为60~62nm,所述相邻自组织的InGaN纳米线的几何中心轴间距为110~112nm
所述金属反射层2为第一Au层,所述p型接触层3为Ni层,所述第一Au层的厚度为150-160nm,所述Ni层的厚度为10-12nm;
所述顶层金属接触点层5由外至内依次包括第二Au层55、第一Ti层54、ITO层53、第三Au层52和第二Ti层51,所述第二Au层的厚度为100~110nm,所述第一Ti层的厚度为10-15nm,所述ITO层的厚度为200~210nm,所述第三Au层的厚度为5-10nm,所述第二Ti层的厚度为5~10nm;
所述抗蚀剂为聚酰亚胺。
所述PDMS基层1的厚度为150~200μm。
本实施例的III族氮化物纳米线发光二极管的制备方法,包括以下步骤:
(1)通过MBE在SOI基板上生长纳米线,将聚酰亚胺抗蚀剂旋涂以完全覆盖所述纳米线,进行氧等离子体蚀刻以露出所述纳米线的顶部(如图2a),所述SOI基板包括2μm厚的SiO2、50nm厚的Si、725μm厚的Si,2μm厚的SiO2为SOI基板的中间层,其中SiO2在Si刻蚀过程中用作刻蚀停止层;
(2)将所述聚酰亚胺在350~380℃烘烤30~45分钟;
(3)在所述纳米线的顶部依次沉积10-12nmNi层和150-160nmAu层,所述Ni层作为p型接触层,所述Au层作为金属反射层,在所述Au层上旋涂150~200μm的PDMS基层;
(4)进行深度反应离子刻蚀,以12μm/min的刻蚀速率去除SOI基板的Si衬底,通过缓冲的氧化物蚀刻溶液去除SOI基板的SiO2层,并通过氢氧化四甲基铵去除SOI基板的Si顶层,如图2b所示;
(5)在去除的SOI基板的位置处依次沉积5-10nmTi层、5-10nm Au层、200-210nmITO层、10-15nm Ti层和100-110nm Au层以用作顶层金属触点,如图2c所示;
所述纳米线为自组织的InGaN纳米线,所述自组织的InGaN纳米线通过射频等离子体辅助的Veeco Gen II MBE在SOI基板上生长;
通过MBE在SOI基板上生长纳米线的过程中,氮气流量保持在1.0标准立方厘米/分钟(sccm),正向等离子体功率为350W,n-GaN和p-GaN在760-780℃下生长,InGaN/AlGaN活性区(有源区)在640~680℃下生长。
对比例1
作为本发明对比例的一种III族氮化物纳米线发光二极管,本对比例与实施例1的唯一区别为:Si基板替换PDMS基层1。
效果例1
对实施例1的III族氮化物纳米线发光二极管进行表征,III族氮化物纳米线发光二极管的纳米线的半径为60~62nm,纳米线中心间距为110~112nm。
检测实施例和对比例1的样品的光谱,样品的面积大小为面积为1×1mm2
表征方法:通过使用405nm激光作为激发源,显微镜物镜,高分辨率光谱仪和光电倍增管进行PL研究,以收集和检测发光二极管(LED)样品的发射。发光二极管的电流-电压测量是使用电源(Keithley 2402)测量的。通过直接连接到海洋光学光谱仪的光纤收集发光二极管(LED)的EL发射。所有测量均在室温下进行。
实验结果,实施例1与对比例1相比,与在Si上生长的LED纳米线相比,实施例1的光致发光(PL)强度提高了1.5~1.6倍,如图3(a)。在相同电压下,实施例1与对比例1相比,实施例1表现出出色的电流-电压特性,如图3(b)。并且在正向偏压下显示出较低的泄漏电流和略高的电流。
实验结果表明,实施例1的发光二极管与对比例1的发光二极管相比,LEE值多了八倍。实施例1的发光二极管实现了高亮度无磷LED,具有高稳定的白光发射和高达98的显色指数,提高了III族氮化物纳米线发光二极管的输出功率,改善了III族氮化物纳米线发光二极管的柔性。
效果例2
将实施例1所得到的III族氮化物纳米线发光二极管,在不同弯曲周期及半径下测得的IV曲线结果如图4所示,在半径弯曲到8.2mm,在进行了2000多次弯曲操作后,其性能未有明显下降。可说明实施例1得到的III族氮化物纳米线发光二极管具有很好的柔性及可拉伸性,实施例1的发光二极管在一般照明,柔性显示器和可穿戴应用中具有很好的应用前景。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种III族氮化物纳米线柔性发光二极管,其特征在于,所述III族氮化物纳米线发光二极管依次顺序包括PDMS基层、金属反射层、p型接触层、III族氮化物纳米线和顶层金属接触点层,所述III族氮化物纳米线覆盖有抗蚀剂。
2.根据权利要求1所述的III族氮化物纳米线发光二极管,其特征在于,所述III族氮化物纳米线为自组织的InGaN纳米线,所述自组织的InGaN纳米线顺序包括n-GaN、有源区和p-GaN,所述p-GaN和所述顶层金属接触点层接触,所述n-GaN和所述p型接触层接触。
3.根据权利要求2所述的III族氮化物纳米线发光二极管,其特征在于,所述金属反射层为第一Au层,所述p型接触层为Ni层,所述第一Au层的厚度为150~160nm,所述Ni层的厚度为10~12nm。
4.根据权利要求2所述的III族氮化物纳米线发光二极管,其特征在于,所述自组织的InGaN纳米线的半径为60~62nm,所述相邻自组织的InGaN纳米线的几何中心轴间距为110~112nm。
5.根据权利要求1所述的III族氮化物纳米线发光二极管,其特征在于,所述顶层金属接触点层由外至内依次包括第二Au层、第一Ti层、ITO层、第三Au层和第二Ti层。
6.根据权利要求5所述的III族氮化物纳米线发光二极管,其特征在于,所述第二Au层的厚度为100~110nm,所述第一Ti层的厚度为10~15nm,所述ITO层的厚度为200~210nm,所述第三Au层的厚度为5~10nm,所述第二Ti层的厚度为5~10nm。
7.根据权利要求1所述的III族氮化物纳米线发光二极管,其特征在于,所述抗蚀剂为聚酰亚胺。
8.根据权利要求1所述的III族氮化物纳米线发光二极管,其特征在于,所述PDMS的厚度为150~200μm。
9.一种如权利要求1-8任一所述III族氮化物纳米线发光二极管的制备方法,其特征在于,所述方法包括以下步骤:
(1)通过MBE在SOI基板上生长纳米线,将聚酰亚胺抗蚀剂旋涂以完全覆盖所述纳米线,进行氧等离子体蚀刻以露出所述纳米线的顶部,所述SOI基板包括SiO2层和两个Si层,所述两个Si层分别在SiO2层两面;
(2)将所述聚酰亚胺在350~380℃烘烤30~45分钟;
(3)在所述纳米线的顶部依次沉积Ni层和Au层,所述Ni层作为p型接触层,所述Au层作为金属反射层,在所述Au层上旋涂PDMS基层;
(4)去除所述SOI基板;
(5)在去除的SOI基板的位置处依次沉积Ti层、Au层、ITO层、Ti层和Au层。
10.根据权利要求9所述的发光二极管的制备方法,其特征在于,所述纳米线为自组织的InGaN纳米线,所述自组织的InGaN纳米线通过射频等离子体辅助分子束外延方法在SOI基板上生长。
CN202010933632.9A 2020-09-07 2020-09-07 一种iii族氮化物纳米线柔性发光二极管及其制备方法 Active CN112216772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010933632.9A CN112216772B (zh) 2020-09-07 2020-09-07 一种iii族氮化物纳米线柔性发光二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010933632.9A CN112216772B (zh) 2020-09-07 2020-09-07 一种iii族氮化物纳米线柔性发光二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN112216772A true CN112216772A (zh) 2021-01-12
CN112216772B CN112216772B (zh) 2022-03-08

Family

ID=74050123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010933632.9A Active CN112216772B (zh) 2020-09-07 2020-09-07 一种iii族氮化物纳米线柔性发光二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN112216772B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360298A2 (en) * 2000-08-22 2011-08-24 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
CN103069585A (zh) * 2010-06-08 2013-04-24 桑迪奥德股份有限公司 具有侧壁电接触的纳米结构光电装置
CN105304729A (zh) * 2015-09-08 2016-02-03 安阳师范学院 基于石墨烯和II-VI族半导体轴向p-n结纳米线阵列的柔性光电子器件及其制备方法
CN107482088A (zh) * 2017-06-29 2017-12-15 西安交通大学 一种超柔性氮化镓基金字塔结构半导体器件及其制备方法
CN108292694A (zh) * 2015-07-13 2018-07-17 科莱约纳诺公司 纳米线/纳米锥形状的发光二极管及光检测器
KR20190143121A (ko) * 2018-06-20 2019-12-30 전북대학교산학협력단 Iii-v족 화합물 반도체 나노 구조와 그래핀을 이용한 소자 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360298A2 (en) * 2000-08-22 2011-08-24 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
CN103069585A (zh) * 2010-06-08 2013-04-24 桑迪奥德股份有限公司 具有侧壁电接触的纳米结构光电装置
CN108292694A (zh) * 2015-07-13 2018-07-17 科莱约纳诺公司 纳米线/纳米锥形状的发光二极管及光检测器
CN105304729A (zh) * 2015-09-08 2016-02-03 安阳师范学院 基于石墨烯和II-VI族半导体轴向p-n结纳米线阵列的柔性光电子器件及其制备方法
CN107482088A (zh) * 2017-06-29 2017-12-15 西安交通大学 一种超柔性氮化镓基金字塔结构半导体器件及其制备方法
KR20190143121A (ko) * 2018-06-20 2019-12-30 전북대학교산학협력단 Iii-v족 화합물 반도체 나노 구조와 그래핀을 이용한 소자 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, Y; JAHANGIR, S;ET CL.: "InGaN/GaN nanowires grown on SiO2 and light emitting diodes with low turn on voltages", 《OPTICS EXPRESS》 *

Also Published As

Publication number Publication date
CN112216772B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
JP5097532B2 (ja) 化合物半導体発光素子の製造方法
Chang et al. Nitride-based flip-chip ITO LEDs
US8823047B2 (en) Semiconductor light emitting device including first conductive type clad layer
KR101469979B1 (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
US20110180776A1 (en) Optoelectronic device based on nanowires and corresponding processes
JP2005532673A (ja) 垂直構造ダイオードとその製造方法
JP2009076896A (ja) 半導体発光素子
WO2010095531A1 (ja) 半導体発光ダイオード
TWI493747B (zh) 發光二極體及其形成方法
CN111739989A (zh) AlGaN基深紫外LED外延片及制备方法
CN114583026B (zh) 一种半导体深紫外光源结构
CN1354528A (zh) 自钝化非平面结三族氮化物半导体器件及其制造方法
CN102214748A (zh) 一种氮化镓基垂直结构led外延结构及制造方法
US20070269913A1 (en) Method of fabricating light emitting diode
CN110676357A (zh) 一种超薄结构深紫外led及其制备方法
KR20060075539A (ko) 반도체 발광 소자 및 그 제조 방법
KR20120039324A (ko) 질화갈륨계 반도체 발광소자 및 그 제조방법
CN212323022U (zh) AlGaN基深紫外LED外延片
CN101807648B (zh) 引入式粗化氮极性面氮化镓基发光二极管及其制作方法
US10161046B2 (en) Method for forming metal particle layer and light emitting device fabricated using metal particle layer formed by the method
TWI437731B (zh) 一種具有提升光取出率之半導體光電元件及其製造方法
JP5307100B2 (ja) 半導体発光素子
CN112216772B (zh) 一种iii族氮化物纳米线柔性发光二极管及其制备方法
CN101840969A (zh) 一种具有提升光取出率的半导体光电元件及其制造方法
KR20140145742A (ko) 발광소자 및 조명시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant