CN112194469A - 一种点阵陶瓷的制备方法 - Google Patents
一种点阵陶瓷的制备方法 Download PDFInfo
- Publication number
- CN112194469A CN112194469A CN202011103172.3A CN202011103172A CN112194469A CN 112194469 A CN112194469 A CN 112194469A CN 202011103172 A CN202011103172 A CN 202011103172A CN 112194469 A CN112194469 A CN 112194469A
- Authority
- CN
- China
- Prior art keywords
- ceramic
- lattice
- sintering
- temperature
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
本发明具体涉及一种点阵陶瓷的制备方法。现有点阵陶瓷的制备方法包括SLS陶瓷3D打印方法及陶瓷注浆脱模制备方法,所述SLS陶瓷3D打印方法存在应用范围窄、成本高的缺陷。常用的陶瓷注浆脱模制备方法中,在低温烧结脱模阶段,往往存在脱模不彻底的技术缺陷,本发明针对该技术问题,提供了一种在低温、低压条件下进行烧结脱模的方法,将注浆后的模具置于低压乃至真空环境中进行烧结,能够有效的脱除模具,降低模具在沟壑处的残留,有效提高点阵陶瓷的制备效果。
Description
技术领域
本发明属于点阵陶瓷制备技术领域,具体涉及一种点阵陶瓷的制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
点阵夹心材料是近年来得到广泛认可和应用的一类多功能超轻材料。这类材料由上下板面和中间的芯子构成。板面间的芯子是模拟分子中的点阵构型,故称之为点阵结构(lattice structure)。目前主流点阵结构包括三角形蜂窝结构、方形蜂窝、六边形蜂窝、金字塔型、钻石型堆栈、钻石形编织、三维Kagome型、正方形堆栈及四面体型等结构(参考附图1)。由于点阵结构能够兼具结构和功能的作用,目前在航空航天、船舶工业等领域具有广泛的应用。
目前,主流的陶瓷点阵成型方法为选择性激光烧结(SLS)3D打印,利用电脑控制激光束按设计路线扫描点阵陶瓷模型,将低熔点粉体熔化粘结成型,如此逐层重复,最终打印出三维模型。基于该制备方法,SLS陶瓷3D打印方法需要在陶瓷粉体中增加粘接剂以便于在激光扫描中通过熔融的粘结剂将陶瓷粘结成型。发明人认为,SLS 3D打印方法需要用到激光器、粉床等专业控制设备,还需要烧结后处理等设备,设备配置成本较高;并且,目前SLS陶瓷3D打印的原材料主要是氧化铝,适合打印的碳化硅、氮化硅陶瓷粉体成本高;其次,SLS3D打印法对陶瓷粉体的要求和打印参数很敏感。另外,向陶瓷中添加粘结剂一定程度上会影响陶瓷的性能。另外,现有研究中还提供了通过制备模具、浇筑陶瓷浆料再进行烧结的方式制备点阵陶瓷,该方法的局限性在于陶瓷浆料注入模具后在烧结脱模的过程中容易产生残留。
发明内容
针对上述现状,本发明目的在于提供一种成本更低的点阵陶瓷制备方法,通过成本更低的3D打印方法制备点阵陶瓷模具,通过注浆后低温烧结的方式制备得到点阵陶瓷结构。
基于上述技术目的,发明提供以下技术方案:
本发明第一方面,提供一种点阵陶瓷制备方法,所述制备方法包括以下步骤:基于目标陶瓷结构进行布尔减运算获得其目标结构的负型,打印所述负型结构得到模具,将陶瓷浆料注入模具中,在低压、低温环境中烧结去除模具,再通过高温烧结使陶瓷成型。
本发明研究过程中发现,由于点阵陶瓷中具有较多的孔道结构,特别是钻石型、堆栈结构的点阵陶瓷,其模具构型复杂、孔道繁多,缝隙处的模具在低温烧结过程中难以被完全的分解去除,会残留在陶瓷表面。后期高温烧结过程中,碳化硅陶瓷会分解在陶瓷表面形成硅层,未去除干净的模具就会被包覆在点阵陶瓷的硅涂层内无法被去除,从而影响产品的效果。
为了克服上述技术问题,本发明联想到在低温烧结阶段营造低气压甚至真空环境进行烧结,这种低温烧结方式能够有效的在低温烧结阶段去除模具残留。依据发明人的猜测,原因可能包括以下方面:(1)低压条件下,模具材料的玻璃态温度及熔点也随之降低,同等加热温度和时间条件下,延长了模具热分解的时间;(2)由于外界气压降低,促使模具材料的热分解不断正向进行;(3)外界的低压乃至真空环境,相比常压烧结减少了气体对模具的压迫作用,相当了增加了将模具从陶瓷表面剥离的作用力。
本发明第二方面,提供第一方面所述点阵陶瓷制备方法制备得到的点阵陶瓷。
以上一个或多个技术方案的有益效果是:
针对模具残留的问题,本发明联想到采用通过低压烧结,通过简单的改进,巧妙地利用了材料的物理性质,实现了良好的脱模效果。另外,本发明优选的技术方案中,采用聚乳酸材料制备模具,原材料易得可再生,适合大规模集约化生产,并且该材料的生物相容性良好。其单体原料L-乳酸是人体内源性活性物质,因此聚乳酸制品对人体无毒、不排斥,并可被人体吸收,能制成医用组织骨架材料和医药载体而安全地用于人体内。基于聚乳酸的良好生物相容性,本发明制备方法应用于工业生产也更加安全。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为背景技术中所述不同类型点阵陶瓷的结构示意图。
图2为实施例1中所述点阵陶瓷的制备流程示意图。
图3为实施例1中所述方法烧结得到的点阵陶瓷实物图。
图4为对比例1中所述方法烧结得到的点阵陶瓷实物图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中采用3D打印方法制备点阵陶瓷还具有诸多的局限性,为了解决如上的技术问题,本发明提出了一种基于凝胶注模的点阵陶瓷制备方法。
本发明第一方面,提供一种点阵陶瓷制备方法,所述制备方法包括以下步骤:基于目标陶瓷结构进行布尔减运算获得其目标结构的负型,打印所述负型结构得到模具,将陶瓷浆料注入模具中,在低压、低温环境中烧结去除模具,再通过高温烧结使陶瓷成型。
优选的,所述点阵陶瓷包括但不限于碳化硅、氧化铝或氮化硅陶瓷。
进一步优选的,所述点阵陶瓷为碳化硅陶瓷。
本发明提供的制备方法,克服了现有SLS 3D打印方法只能制备氧化铝陶瓷的缺陷,可以适用于多种陶瓷材料的制备,基于碳化硅材料会随着加热分泌硅的性能,聚乳酸材料在碳化硅陶瓷表面具有尤为良好的分离效果。
优选的,所述模具制备原料包括但不限于聚乳酸(PLA)材料。
进一步优选的,所述聚乳酸材料为聚L-乳酸(PLLA)材料。
聚乳酸材料具有优良的降解性能,其分解温度较低,约为230-260℃,与结晶度有关,而影响其结晶度的重要因素是原料中L-乳酸和D-乳酸的配比,聚L-乳酸材料的玻璃化转变温度大约是65℃,熔点是180℃,热分解温度相对更低。
优选的,所述负型结构的打印方法为包括但不限于FDM法。
优选的,所述陶瓷浆料注入模具中后,还包括通过震动使浆料分布更加均匀的步骤。
进一步优选的,所述震动频率为30Hz,振幅约为1mm,震动时间为8~12min。通过该震动有利于填料分布均匀。
优选的,所述低压环境为低于大气压乃至真空环境;进一步优选的,所述气压值为0.5KPa。
优选的,所述低温烧结温度为250~300℃。
优选的,所述低温烧结的时间为5~7h;进一步优选的,为6h。
在本发明一种具体的实施方式中,所述低温烧结在真空烧结炉中进行,将注浆后的模具方式烧结炉中,设定气压0.5KPa及温度280℃后进行烧结,所述烧结时间为6h。
优选的,所述高温烧结温度为1500~1800℃。
进一步优选的,所述高温烧结时间为2h。
本发明第二方面,提供第一方面所述点阵陶瓷制备方法制备得到的点阵陶瓷。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例与对比例详细说明本发明的技术方案,以下实施例中所述试剂及、耗材及器械,除特别限定外,均为市售产品。
实施例1
本实施例中,提供一种碳化硅点阵陶瓷制备方法,所述制备方法流程如附图2所示:
(1)首先通过设计获得目标点阵陶瓷结构,如图2a所示;
(2)对图2a所示结构做布尔运算(减法)得到其负型,即图2b,通过FDM法打印该负型结构得到所述目标点阵陶瓷的模具,所述模具原料为聚乳酸材料;
(3)将陶瓷浆料注入模具中静置一段时间,并通过震动辅助的方式使陶瓷浆料分布更加均匀;
(4)将步骤(3)得到的注浆模具放入真空烧结炉中,设定气压为0.5KPa,温度为270℃,进行烧结,待8h后停止;
(5)将步骤(4)脱模后的陶瓷置于高温环境下烧结使陶瓷浆料成型,所述烧结温度为1750℃,烧结时间为2h。
实施例2
本实施例中,提供一种氧化铝点阵陶瓷制备方法,所述制备方法流程包括以下步骤:
(1)首先通过设计获得目标点阵陶瓷结构;
(2)对步骤(1)设计得到的结构做布尔运算(减法)得到其负型,通过FDM法打印该负型结构得到所述目标点阵陶瓷的模具,所述模具原料为聚乳酸材料;
(3)将陶瓷浆料注入模具中静置一段时间,并通过震动辅助的方式使陶瓷浆料分布更加均匀;
(4)将步骤(3)得到的注浆模具放入真空烧结炉中,设定气压为0.5KPa,温度为280℃,进行烧结,待6h后停止;
(5)将步骤(4)脱模后的陶瓷置于高温环境下烧结使陶瓷浆料成型,所述烧结温度为1750℃,烧结时间为2h。
实施例3
本实施例中,提供一种氮化硅点阵陶瓷制备方法,所述制备方法流程包括以下步骤:
(1)首先通过设计获得目标点阵陶瓷结构;
(2)对步骤(1)设计得到的结构做布尔运算(减法)得到其负型,通过FDM法打印该负型结构得到所述目标点阵陶瓷的模具,所述模具原料为聚乳酸材料;
(3)将陶瓷浆料注入模具中静置一段时间,并通过震动辅助的方式使陶瓷浆料分布更加均匀;
(4)将步骤(4)得到的注浆模具放入真空烧结炉中,设定气压为0.5KPa,温度为290℃,进行烧结,待12h后停止;
(5)将步骤(4)脱模后的陶瓷置于高温环境下烧结使陶瓷浆料成型,所述烧结温度为1750℃,烧结时间为6h。
对比例1
本实施例中,提供一种碳化硅点阵陶瓷制备方法,与实施例1不同之处在于:步骤(4)中,将步骤(3)得到的注浆模具放入真空烧结炉中,设定温度为240℃进行烧结,待1h后停止。
图3为实施例1中所述方法制备的点阵陶瓷,从图3中可以看出,由于模具脱离完全,陶瓷烧结完成后只需要清除表面渗出的硅残留即可。图4为采用对比例1中方法制备的点阵陶瓷,从图4中可以明显的看出,由于模具脱离的不完全,点阵陶瓷在脱模后出现了明显了残缺、凹陷等,采用传统制备方法难以维持完整的点阵陶瓷结构。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种点阵陶瓷制备方法,其特征在于,所述制备方法包括以下步骤:基于目标陶瓷结构进行布尔减运算获得其目标结构的负型,打印所述负型结构得到模具,将陶瓷浆料注入模具中,在低压、低温环境中烧结去除模具,再通过高温烧结使陶瓷成型。
2.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述点阵陶瓷包括但不限于碳化硅、氧化铝或氮化硅陶瓷;优选的,所述点阵陶瓷为碳化硅陶瓷。
3.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述模具制备原料包括但不限于聚乳酸材料;优选的,所述聚乳酸材料为聚L-乳酸材料。
4.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述负型结构的打印方法为包括但不限于FDM法。
5.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述陶瓷浆料注入模具中后,还包括通过震动使浆料分布更加均匀的步骤;进一步优选的,所述震动频率为30Hz,振幅约为1mm,震动时间为8~12min。
6.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述低压环境为低于大气压乃至真空环境;进一步优选的,所述气压值为0.5KPa。
7.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述低温烧结温度为250~300℃。
8.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述低温烧结的时间为5~7h;优选的,所述低温烧结在真空烧结炉中进行,将注浆后的模具方式烧结炉中,设定气压0.5KPa及温度280℃后进行烧结,所述烧结时间为6h。
9.如权利要求1所述点阵陶瓷制备方法,其特征在于,所述高温烧结温度为1500~1800℃;优选的,所述高温烧结时间为1500~1800℃。
10.权利要求1-9任一项所述点阵陶瓷制备方法制备得到的点阵陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011103172.3A CN112194469B (zh) | 2020-10-15 | 2020-10-15 | 一种点阵陶瓷的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011103172.3A CN112194469B (zh) | 2020-10-15 | 2020-10-15 | 一种点阵陶瓷的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112194469A true CN112194469A (zh) | 2021-01-08 |
CN112194469B CN112194469B (zh) | 2022-09-23 |
Family
ID=74010171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011103172.3A Active CN112194469B (zh) | 2020-10-15 | 2020-10-15 | 一种点阵陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112194469B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080035A (ja) * | 2009-06-17 | 2011-04-21 | Mitsui Chemicals Tohcello Inc | ポリ乳酸系成形体の製造方法 |
US20140339745A1 (en) * | 2013-05-17 | 2014-11-20 | Stuart URAM | Molds for ceramic casting |
US20140378595A1 (en) * | 2013-06-19 | 2014-12-25 | Lotte Chemical Corporation | Polylactic acid stereocomplex resin composition having improved crystallization rate and method for molding the same |
US20160023375A1 (en) * | 2013-05-17 | 2016-01-28 | Core Cast, Llc | Slip mixture for 3d printed molds and 3d printing ceramic material |
CN108977883A (zh) * | 2018-09-18 | 2018-12-11 | 武汉理工大学 | 一种采用微波烧结制备多孔氧化铝单晶材料的方法 |
CN110451979A (zh) * | 2019-08-19 | 2019-11-15 | 上海应用技术大学 | 一种具有双贯穿型孔洞的网眼多孔陶瓷的制备方法 |
-
2020
- 2020-10-15 CN CN202011103172.3A patent/CN112194469B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080035A (ja) * | 2009-06-17 | 2011-04-21 | Mitsui Chemicals Tohcello Inc | ポリ乳酸系成形体の製造方法 |
US20140339745A1 (en) * | 2013-05-17 | 2014-11-20 | Stuart URAM | Molds for ceramic casting |
US20160023375A1 (en) * | 2013-05-17 | 2016-01-28 | Core Cast, Llc | Slip mixture for 3d printed molds and 3d printing ceramic material |
US20140378595A1 (en) * | 2013-06-19 | 2014-12-25 | Lotte Chemical Corporation | Polylactic acid stereocomplex resin composition having improved crystallization rate and method for molding the same |
CN108977883A (zh) * | 2018-09-18 | 2018-12-11 | 武汉理工大学 | 一种采用微波烧结制备多孔氧化铝单晶材料的方法 |
CN110451979A (zh) * | 2019-08-19 | 2019-11-15 | 上海应用技术大学 | 一种具有双贯穿型孔洞的网眼多孔陶瓷的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112194469B (zh) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112521130B (zh) | 一种基于3d打印技术的陶瓷零件的制备方法 | |
Shahzad et al. | Additive manufacturing of zirconia parts by indirect selective laser sintering | |
CN112789128B (zh) | 从预制件开始通过加压烧结制造复杂形状的部件的方法 | |
US5779833A (en) | Method for constructing three dimensional bodies from laminations | |
CN109261967A (zh) | 一种多孔钨材料的电子束分区扫描成形方法 | |
EP3315478B1 (en) | Precursor material for additive manufacturing of ceramic parts and methods of producing the same | |
KR102195992B1 (ko) | 마이크로 기공 구조형 3차원 다공성 지지체의 제조방법 및 이에 의해 제조된 다공성 지지체 | |
Hensen et al. | Additive manufacturing of ceramic nanopowder by direct coagulation printing | |
CN106726010B (zh) | 具有微沟槽的三维骨修复支架及其制备方法和应用 | |
CN114276145B (zh) | 一种异质双向梯度孔径多孔陶瓷的3d打印制备方法及装置 | |
CN106426506B (zh) | 一种生物陶瓷坯体的制造方法 | |
US12042953B2 (en) | Method for producing a counter-form and method for manufacturing a part having a complex shape using such a counter-form | |
CN112194469B (zh) | 一种点阵陶瓷的制备方法 | |
KR100289459B1 (ko) | 통기성 및 내구성 금형의 제조방법 | |
KR101607655B1 (ko) | 매크로/마이크로 이중기공구조형 3차원 다공성 지지체의 제조 방법 및 이에 의해 제조된 매크로/마이크로 이중기공구조형 3차원 다공성 지지체 | |
CN111015895A (zh) | 一种用于无机胶凝材料制品增材制造的成形装置与方法 | |
TWI592290B (zh) | Method for manufacturing high strength porous porcelain stoneware with 3D printing technology | |
Chaput et al. | Fabrication of ceramics by stereolithography | |
Liu | Fabrication of porous ceramics and composites by a novel freeze casting process | |
KR101494071B1 (ko) | 일방향성 매크로 채널을 가지는 다공성 지지체의 제조 방법 및 이에 의해 제조된 일방향성 매크로 채널을 가지는 다공성 지지체 | |
Blackburn | New processes or old: complex shape processing of advanced ceramics | |
CN115745580A (zh) | 一种利用铝粉做粘结剂成分的氧化铝陶瓷3d打印原料制备方法及应用 | |
CN110903103A (zh) | 一种轻质高强SiC多孔材料及其制备方法 | |
Tiwari et al. | Variation of density in additive manufacturing of ceramic parts: A review | |
DE102021102491A1 (de) | Grünkörper oder daraus hergestellte Sinterkörper und Verfahren zu ihrer Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |