CN112186149A - 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法 - Google Patents

一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法 Download PDF

Info

Publication number
CN112186149A
CN112186149A CN202010956859.5A CN202010956859A CN112186149A CN 112186149 A CN112186149 A CN 112186149A CN 202010956859 A CN202010956859 A CN 202010956859A CN 112186149 A CN112186149 A CN 112186149A
Authority
CN
China
Prior art keywords
manganese dioxide
graphite
composite
nanosheet composite
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010956859.5A
Other languages
English (en)
Inventor
秦家千
曹金
张东东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suqian Dete Material Technology Co ltd
Original Assignee
Suqian Dete Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suqian Dete Material Technology Co ltd filed Critical Suqian Dete Material Technology Co ltd
Priority to CN202010956859.5A priority Critical patent/CN112186149A/zh
Publication of CN112186149A publication Critical patent/CN112186149A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开的一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法。所述方法包括:使用机械球磨的制备方法将商业二氧化锰与石墨纳米片复合,使二氧化锰可能能够分散在石墨纳米片的表面,实现导电网络的构建,从而提高电子传输的效率,并且石墨纳米片的加入明显抑制二氧化锰在反应过程中的体积变化,从而得到高性能和持久的锌离子电池征集材料。测试结果表明二氧化锰/石墨纳米片复合物作为电极材料能够表现出优异的电化学性能。二氧化锰/石墨纳米片复合物在电流密度为0.1A/g时,比容量为210 mAh/g,而且在电流密度为1A/g的条件下循环1000次还能保持83.8%。

Description

一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备 方法
技术领域
本发明涉及电化学及纳米材料技术领域,具体涉及一种氧化锰/石墨纳米片复合物的制备方法及其在锌离子电池中的应用。
背景技术
水系锌离子电池(ZIBs)被认为是继锂离子电池(LIBs)之后的另一种有前途的储能设备,因为其较低的氧化还原电势(-0.78 V),较高的理论比容量(820 mAh g-1),此外,锌金属具有出色的导电性和丰富的可用资源。因此近年来对于锌离子正极材料的开发已经成为了研究热门。
近年来,锰氧化物,钒氧化物和普鲁士蓝类似物已经成为了最热门的锌离子电池正极材料,其中锰氧化物备受关注。但由于其在持续充放电过程中的不可逆相变,电极体积会发生明显变化,从而影响其循环性能,同时其较大的内阻也进一步削弱了容量,因此对于二氧化锰的改性研究变得至关重要。
与其他材料复合形成复合物是一种比较合适的方法去抑制二氧化锰体积变化以及提高导电性的方法,而经过文献调研,基于二氧化锰/石墨纳米片复合物来抑制二氧化锰体积变化的研究还未有过报道,因此本发明具有一定的新颖性和实用性。
基于上述理由,提出本申请。
发明内容
本发明的目的在于针对现有锌离子电池正极材料存在的明显不足,提供了一种二氧化锰/石墨纳米片复合物的制备方法及其在锌离子电池中的应用。
为了实现发明的上述其中一个目的,发明人通过大量的实验研究,开
出了一种二氧化锰/石墨纳米片复合物的制备方法,采用球磨的方法将二氧化锰颗粒分散在石墨纳米片表面,经研究发现二氧化锰/石墨纳米片复合物作为锌离子电池的正极材料,石墨纳米片的加入能够明显提高复合物的导电性,从而提高其容量,进一步的石墨纳米片的引入能够有效抑制二氧化锰的体积变化,从而提高锌离子电池的循环性能。
实现本发明目的所采取的技术方案是:
将直径为10nm~1μm的二氧化锰颗粒与石墨纳米片按一定质量比混合,在转速为100~500 rpm的条件下球磨1~5h,最终得到二氧化锰/石墨纳米片复合物,其中二氧化锰颗粒能够均匀分散在石墨纳米片的表面。
本发明所制备的NiO/Mn2O3复合物的表征和性能测试为:
二氧化锰/石墨纳米片复合物的表征:
采用X-射线衍射仪对制备的二氧化锰/石墨纳米片复合物的组成进行表征,并通过透射电镜对二氧化锰/石墨纳米片复合物的形貌进行表征。
二氧化锰/石墨纳米片复合物作为锌离子电池正极材料的电化学性能表征:
使用公知的纽扣电池组装技术组装出纽扣电池,其中正极材料为二氧化锰/石墨纳米片复合物,对照组为纯的二氧化锰,负极材料为锌片,电解液为2mol/L的硫酸锌和0.5mol/L硫酸锰的混合溶液,隔膜为商业玻璃纤维(whatman GF/D 47mm)。组装好的纽扣电池在新威电池测试系统上进行充放电测试,采用的电流密度为0.1-1A/g.
二氧化锰/石墨纳米片复合物作为锌离子电池正极材料的循环性能表征:
使用公知的纽扣电池组装技术组装出纽扣电池,其中正极材料为二氧化锰/石墨纳米片复合物,对照组为纯的二氧化锰,负极材料为锌片,电解液为2mol/L的硫酸锌和0.5mol/L硫酸锰的混合溶液,隔膜为商业玻璃纤维(whatman GF/D 47mm)。组装好的纽扣电池在新威电池测试系统上进行充放电测试,采用的电流密度为1 A/g,循环次数为1000次。
与现有技术相比,本发明的优点和有益效果如下:
本发明所制备的二氧化锰/石墨纳米片复合物的制备方法简单,二氧化锰颗粒能够均匀分散在石墨纳米片表面,实现电子的快速转移和离子的快速扩散,进而提高了材料的电化学性能。同时,由于石墨纳米片的引入抑制了体积变化,能够进一步提高电极材料的循环性能,具有广阔的应用前景。
附图说明
图1-二氧化锰/石墨纳米片复合物的X-射线衍射图谱。
图2-二氧化锰/石墨纳米片复合物的透射电镜照片。
图3-二氧化锰/石墨纳米片复合物和纯二氧化锰在不同电流密度下的充放电曲线。
图4-二氧化锰/石墨纳米片复合物和纯二氧化锰的循环性能测试。
具体实施方式
下面申请人将结合具体的实施案例对本发明的技术方案加以详细说明,以便本领域的技术人员对本发明有更进一步的理解,但以下实施案例不以任何方式解释为对本发明保护范围的限制。
实施例1:
将直径为500nm的电解级二氧化锰颗粒与石墨纳米片按质量比为5:1混合,加入异丙醇作为磨剂,在转速为500 rpm的条件下球磨3h,最终得到二氧化锰/石墨纳米片复合物。
二氧化锰/石墨纳米片复合物的X-射线衍射图谱表明制备的二氧化锰/石墨纳米片复合物由二氧化锰和石墨共同组成,如图1所示。
二氧化锰/石墨纳米片复合物的透射电镜照片表明制备的二氧化锰/石墨纳米片复合物中二氧化锰为颗粒状,且直径约为500nm,如图2所示。
二氧化锰/石墨纳米片复合物的电化学性能测试:
(1)电池正极极片的制备:以正极材料:乙炔黑:PVDF=7:2:1的比例进行匀浆,随后使用减半均匀的正极浆料涂覆到石墨纸上,60℃下真空干燥24小时。
纽扣电池的组装:正极:上述步骤所制备的正极极片;负极:锌片;
电解液:2mol/L的硫酸锌和0.5mol/L的硫酸锰的混合溶液;隔膜:商业玻璃纤维(whatman GF/D 47mm)。
电池测试:二氧化锰/石墨纳米片复合物在25℃下测试,在0.1A/g的电流密度下比容量为210mAh/g,对照组的纯二氧化锰在0.1A/g的比容量为113mAh/g,如图3所示;而且二氧化锰/石墨纳米片复合物在电流密度为1A/g的条件下循环1000次还能保持83.8%,如图4所示,明显优于纯的二氧化锰(51.2% 在1000次循环后),表明二氧化锰/石墨纳米片复合物具有更加优异的电化学性能。
实施例2:
将直径为1μm的电解级二氧化锰颗粒与石墨纳米片按质量比为10:1混合,不加磨剂,使用干磨的球磨方法,在转速为100 rpm的条件下球磨1h,最终得到二氧化锰/石墨纳米片复合物。
二氧化锰/石墨纳米片复合物的电化学性能测试:
(1)电池正极极片的制备:以正极材料:乙炔黑:PVDF=7:2:1的比例进行匀浆,随后使用减半均匀的正极浆料涂覆到石墨纸上,60℃下真空干燥24小时。
纽扣电池的组装:正极:上述步骤所制备的正极极片;负极:锌片;电解液:2mol/L的硫酸锌和0.5mol/L的硫酸锰的混合溶液;隔膜:商业玻璃纤维(whatman GF/D 47mm)。
电池测试:二氧化锰/石墨纳米片复合物在25℃下测试,在0.1A/g的电流密度下比容量为175mAh/g,对照组的纯二氧化锰在0.1A/g的比容量为98mAh/g;而且二氧化锰/石墨纳米片复合物在电流密度为1A/g的条件下循环1000次还能保持75.7%,明显优于纯的二氧化锰(43.9% 在1000次循环后),表明二氧化锰/石墨纳米片复合物具有更加优异的电化学性能。
实施例3:
将直径为10nm的电解级二氧化锰颗粒与石墨烯纳米片按质量比为8:2混合,磨剂为异丙醇,在转速为300 rpm的条件下球磨5h,最终得到二氧化锰/石墨烯微片复合物。
二氧化锰/石墨烯微片复合物的电化学性能测试:
(1)电池正极极片的制备:以正极材料:乙炔黑:PVDF=7:2:1的比例进行匀浆,随后使用减半均匀的正极浆料涂覆到石墨纸上,60℃下真空干燥24小时。
纽扣电池的组装:正极:上述步骤所制备的正极极片;负极:锌片;电解液:2mol/L的硫酸锌和0.5mol/L的硫酸锰的混合溶液;隔膜:商业玻璃纤维(whatman GF/D 47mm)。
电池测试:二氧化锰/石墨烯微片复合物在25℃下测试,在0.1A/g的电流密度下比容量为195mAh/g,对照组的纯二氧化锰在0.1A/g的比容量为102mAh/g;而且二氧化锰/石墨纳米片复合物在电流密度为1A/g的条件下循环1000次还能保持85.1%,明显优于纯的二氧化锰(55.2% 在1000次循环后),表明二氧化锰/石墨烯微片复合物具有更加优异的电化学性能。

Claims (9)

1.一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法,其特征在于:利用机械球磨的方法制备了氧化锰/石墨纳米片复合物,使二氧化锰颗粒均匀的分散到石墨纳米片的表面。
2.根据权利要求1中氧化锰/石墨纳米片复合物的制备方法,其主要特征在于:所述方法具体包含以下步骤:
将一定比例的二氧化锰颗粒与石墨纳米片混合,随后转后球磨罐中,高速下球磨一定时间得到二氧化锰/石墨纳米片复合物。
3.根据权利要求2中所述的二氧化锰/石墨纳米片复合物的制备方法,其特征在于:二氧化锰为商业电解级二氧化锰,二氧化锰颗粒的直径约为10nm~1μm。
4.根据权利要求2中所述的二氧化锰/石墨纳米片复合物的制备方法,其特征在于:石墨纳米片可以为石墨纳米片,石墨微片,石墨烯微片或其他片状石墨产物中的任意一种。
5.根据权利要求2中所述的二氧化锰/石墨纳米片复合物的制备方法,其特征在于:二氧化锰和石墨纳米片的质量比为1:1~9:1。
6.根据权利要求2中所述的二氧化锰/石墨纳米片复合物的制备方法,其特征在于:球磨速度为100~500 rpm。
7.根据权利要求2中所述的二氧化锰/石墨纳米片复合物的制备方法,其特征在于:球磨时间为1~5h。
8.根据权利要求2中所述的二氧化锰/石墨纳米片复合物的制备方法,其特征在于:球磨过程可以采取干磨和湿磨的方法,湿磨磨剂为异丙醇。
9.根据权利要求1~8任一项所述方法制备的二氧化锰/石墨纳米片复合物,其特征在于:可作为正极材料用于水系锌离子电池,并具有较好性能。
CN202010956859.5A 2020-09-12 2020-09-12 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法 Withdrawn CN112186149A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010956859.5A CN112186149A (zh) 2020-09-12 2020-09-12 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010956859.5A CN112186149A (zh) 2020-09-12 2020-09-12 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112186149A true CN112186149A (zh) 2021-01-05

Family

ID=73920681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010956859.5A Withdrawn CN112186149A (zh) 2020-09-12 2020-09-12 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112186149A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517441A (zh) * 2021-03-31 2021-10-19 广西大学 一种石墨烯改性锂锰电池的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517441A (zh) * 2021-03-31 2021-10-19 广西大学 一种石墨烯改性锂锰电池的方法

Similar Documents

Publication Publication Date Title
CN108269982B (zh) 一种复合材料、其制备方法及在锂离子电池中的应用
CN108539147B (zh) 一种锂离子电池负极材料SiO@Al@C的制备方法及应用
CN109037552B (zh) 一种用于钠硫电池的隔膜材料的制备方法
CN108807835A (zh) 一种类金属石墨烯负极材料的制备方法及电池
CN114447305A (zh) 一种多元碳基快充负极复合材料及其制备方法
CN112952048A (zh) 硅碳复合负极材料及其制备方法、电极和二次电池
CN113644252A (zh) 一种硅碳负极材料及制备方法
CN114335477B (zh) 一种硅基材料及含有该材料的电池
CN110336035B (zh) 一种二氧化锡/氧化铝掺杂碳复合材料及其制备方法
CN111326721B (zh) 一种复合负极预嵌锂材料的制备方法
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN113193196B (zh) 一种钠离子电池用多功能水性粘结剂及其应用
CN114300671A (zh) 一种石墨复合负极材料及其制备方法和应用
CN102544511A (zh) 铈掺杂钴酸锶与碳共同包覆磷酸亚铁锂的锂离子电池正极材料及其制备方法
CN112186149A (zh) 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法
CN115986122B (zh) 一种水系钠离子电池电极极片、电池及它们的制备方法
CN111952585A (zh) 一种高压实密度的铷掺杂锂电池正极材料及其制备方法
CN112582602A (zh) 一种二氧化锰/石墨纳米片复合锌离子正极材料及其制备方法
CN107425184A (zh) 一种硅‑多孔碳电极材料及其制备方法和应用
CN109599533B (zh) 一种锂离子电池电极的制备方法
CN112164799A (zh) 一种硼交联粘结剂、电极片及制备方法
CN111342051A (zh) 一种硅氧改性负极复合材料、制备方法及电池
CN117303467B (zh) 羟基氯化物MXene复合负极材料的制备方法及其在钠离子电池中的应用
CN114864903B (zh) 一种内嵌二维金属硒化物的石墨烯基硒正极材料及其制备方法、锂硒电池
CN116417573A (zh) 一种硅基负极极片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210105

WW01 Invention patent application withdrawn after publication