CN112164717A - 一种常关型GaN/AlGaN HEMT器件及其制备方法 - Google Patents

一种常关型GaN/AlGaN HEMT器件及其制备方法 Download PDF

Info

Publication number
CN112164717A
CN112164717A CN202010967172.1A CN202010967172A CN112164717A CN 112164717 A CN112164717 A CN 112164717A CN 202010967172 A CN202010967172 A CN 202010967172A CN 112164717 A CN112164717 A CN 112164717A
Authority
CN
China
Prior art keywords
gan
layer
algan
normally
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010967172.1A
Other languages
English (en)
Inventor
宋伟东
罗幸君
李述体
陈钊
曾庆光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN202010967172.1A priority Critical patent/CN112164717A/zh
Publication of CN112164717A publication Critical patent/CN112164717A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体工艺和器件领域,公开了一种常关型GaN/AlGaN HEMT器件及其制备方法。所述常关型GaN/AlGaN HEMT器件,包括:衬底、半极性微米线阵列、SiO2介质层、源电极、漏电极和栅电极;所述衬底表面设置有槽口宽于槽底的梯形凹槽,所述梯形凹槽的斜面上依次生长有AlN缓冲层、本征GaN层和本征AlGaN层,形成半极性微米线阵列;所述半极性微米线阵列的上方设置有SiO2介质层、源电极、漏电极和栅电极。所述常关型GaN/AlGaN HEMT器件的结构简单、性能稳定,且制备方法简便。

Description

一种常关型GaN/AlGaN HEMT器件及其制备方法
技术领域
本发明属于半导体工艺和器件领域,特别涉及一种常关型GaN/AlGaN HEMT器件及其制备方法。
背景技术
高电子迁移率晶体管(HEMT)是一种异质结场效应晶体管。在过去十年里,GaN基HEMT凭借高跨导、高饱和电流、高截止频率、高工作温度和高功率密度等优点在电力电子领域以及高频器件领域得到了非常广泛的应用。
III族氮化物材料在常温下具有稳定的纤锌矿结构,具有中心反演非对称性,并且III族元素的原子和氮原子的电负性相差很大,导致III族氮化物及其异质结在c面(极性面)方向具有很强的自发极化和压电极化。这种极化效应导致了异质结界面处可以产生浓度高达1013/cm2的二维电子气,其电子迁移率可达到2000cm2/Vs左右。也就是说,即使在无故意掺杂的情况下,GaN基HEMT也可获得很高的载流子浓度,从而获得很低的开状态电阻和很高的击穿电压。然而从另一方面来说,异质结界面处的固有载流子浓度越高,就越难获得常闭型HEMT器件。那么,GaN基HEMT由于极化诱导而产生的极化电荷使得常关型GaN基HEMT器件比起GaAs基HEMT器件更难制作,而现有的常关型GaN基HEMT器件制备方法会对器件造成或多或少的损伤,降低器件的稳定性,不利于其在电子电力领域的应用。
因此,提供一种可靠的常关型GaN基HEMT器件及其制备方法是有必要的。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种常关型GaN/AlGaN HEMT器件及其制备方法,所述常关型GaN/AlGaN HEMT器件的结构简单、性能稳定,且制备方法简便。
一种常关型GaN/AlGaN HEMT器件,包括:衬底、半极性微米线阵列、SiO2介质层、源电极、漏电极和栅电极;
所述衬底表面设置有槽口宽于槽底的梯形凹槽,所述梯形凹槽的斜面(即梯形的腰)上依次生长有AlN缓冲层、本征GaN层和本征AlGaN层,形成半极性微米线阵列;
所述半极性微米线阵列的上方设置有SiO2介质层、源电极、漏电极和栅电极。
常规的AlGaN/GaN HEMT为耗尽型器件,若将制备为增强型器件,通常采用的方法有氟离子注入技术、凹槽栅技术和p型栅技术,这些技术工艺复杂,增加了器件制备的难度。本发明通过将AlN缓冲层、本征GaN层和本征AlGaN层设置为半极性微米线阵列,可有效降低GaN/AlGaN异质结界面处的二维电子气,且不会损伤到器件本身,具有良好的安全性和稳定性。同时本发明通过将凹槽设置为梯形凹槽,仅在梯形凹槽的斜面上生长半极性微米线阵列,因此凹槽的槽底会形成一个空腔结构,可进一步降低GaN/AlGaN异质结界面处的二维电子气。
优选的,所述梯形凹槽的形状为等腰梯形。
优选的,所述衬底为Si衬底。
优选的,所述衬底的厚度为0.5-1.5mm。
优选的,所述SiO2介质层的厚度为20-40nm。
优选的,所述AlN缓冲层的厚度为90-140nm。
优选的,所述本征GaN层的厚度为2-4μm。
优选的,所述本征AlGaN层的厚度为25-50nm。
更优选的,所述本征AlGaN层中Al元素的摩尔含量为15-20%。
优选的,所述源电极和所述漏电极均为Ti/Al/Ni/Au电极,所述栅电极为Pt/Au电极。即源电极和漏电极均包括有Ti、Al、Ni和Au四种材料,栅电极包括有Pt、Au两种材料。
所述常关型GaN/AlGaN HEMT器件的制备方法,包括以下步骤:
(1)对衬底经涂胶、光刻、湿法腐蚀处理,得到带有梯形凹槽的衬底;
(2)衬底清洗后装入MOCVD(金属有机化合物化学气相沉淀)反应腔,在梯形凹槽的斜面上依次生长AlN缓冲层、本征GaN层和本征AlGaN层,形成半极性微米线阵列;
(3)将步骤(2)中制得的半极性微米线阵列表面沉积SiO2介质层;通过光刻、刻蚀、蒸镀、退火,形成漏电极和源电极;再在SiO2介质层上通过光刻、蒸镀,形成栅电极;从而制得常关型GaN/AlGaN HEMT器件。
优选的,步骤(1)中所述湿法腐蚀所用药液为BOE(缓冲氧化物刻蚀剂)、HF(氢氟酸)或DHF(氢氟酸与去离子水的混合溶液)。
更优选的,步骤(1)中所述湿法腐蚀所用药液为BOE。
优选的,步骤(2)中半极性微米线阵列的具体制备为:使用三甲基铝和NH3作为源,氮气作为载气在各梯形凹槽的斜面上生长AlN缓冲层;再以三甲基镓和NH3作为源,氮气作为载气,在所述AlN缓冲层上外延生长本征GaN层;再以三甲基镓、三甲基铝和NH3作为源,氮气作为载气,在所述GaN层上外延生长AlGaN层;制得半极性微米线阵列。
优选的,步骤(3)中所述SiO2介质层的沉积方法为原子层沉积(ALD)工艺。
相对于现有技术,本发明的有益效果如下:
本发明通过衬底表面所设置的梯形凹槽的斜面外延出具有半极性面的微米线阵列,相比于极性器件,本发明所形成半极性GaN/AlGaN异质结的极化效应较弱,二维电子气浓度低,能轻松形成常关型器件,且不会损伤到器件本身,具有很好的稳定性。同时,这种微米线阵列器件的尺寸可以小到微米尺度,可适应于未来光电集成系统尺寸的高要求。
附图说明
图1为常关型GaN/AlGaN HEMT器件中半极性微米线阵列的结构示意图;
图2为常关型GaN/AlGaN HEMT器件中源、漏、栅电极的结构示意图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
本实施例提供一种常关型GaN/AlGaN HEMT器件,其结构示意图如图1-2所示,包括:衬底100、半极性微米线阵列200、SiO2介质层300、源电极400、漏电极500和栅电极600;
衬底100表面设置有槽口宽于槽底的梯形凹槽,所述梯形凹槽的斜面(即梯形的腰)上依次生长有AlN缓冲层210、本征GaN层220和本征AlGaN层230,形成半极性微米线阵列200;
SiO2介质层300、源电极400和漏电极500均与半极性微米线阵列200表面接触,SiO2介质层300表面接触设置有栅电极600。
本实施例中常关型GaN/AlGaN HEMT器件的制备方法,包括以下步骤:
(1)在1mm的硅衬底上沉积掩氧化硅,光刻,湿法腐蚀的方法带有等腰梯形凹槽的图形衬底;湿法腐蚀所用药液为BOE(缓冲氧化物刻蚀剂);
(2)将硅衬底清洗干净,并装入MOCVD(金属有机化合物化学气相沉淀)反应腔,首先在1020℃下退火烘烤5min;使用三甲基铝和NH3(1:3)作为源,氮气作为载气在各梯形凹槽的斜面上生长一层厚度为100nm的AlN缓冲层;以三甲基镓和NH3作为源,氮气作为载气,在AlN缓冲层上外延生长一层厚度为2μm的本征GaN层;再以三甲基镓、三甲基铝和NH3作为源,氮气作为载气,在GaN层上外延30nm的本征AlGaN层,其中Al元素的摩尔含量为15%;制得半极性微米线阵列;
(3)将制备的半极性微米线阵列清洗后,通过原子层沉积工艺沉积一层20nm致密的SiO2膜作为介质层;
(4)经涂胶、光刻、湿法腐蚀、在GaN微米线阵列上露出源、漏电极窗口,采用电子束蒸发设备淀积Ti/Al/Ni/Au四层金属;在丙酮中浸泡40min以上后进行超声处理去胶,然后用氮气吹干。将样片放入到快速退火炉,在氮气气氛、温度850℃的条件下进行40s的高温退火,形成源电极和漏电极;
(5)继续在SiO2介质层上涂胶、光刻,露出器件的栅电极窗口,而后采用电子束蒸发设备淀积Pt/Au两层金属,在丙酮中浸泡40min以上后进行超声处理去胶,形成肖特基接触的栅电极,制得常关型GaN/AlGaN HEMT器件。
实施例2
本实施例提供一种常关型GaN/AlGaN HEMT器件,其结构示意图如图1-2所示,包括:衬底100、半极性微米线阵列200、SiO2介质层300、源电极400、漏电极500和栅电极600;
衬底100表面设置有槽口宽于槽底的梯形凹槽,所述梯形凹槽的斜面(即梯形的腰)上依次生长有AlN缓冲层210、本征GaN层220和本征AlGaN层230,形成半极性微米线阵列200;
SiO2介质层300、源电极400和漏电极500均与半极性微米线阵列200表面接触,SiO2介质层300表面接触设置有栅电极600。
本实施例中常关型GaN/AlGaN HEMT器件的制备方法,包括以下步骤:
(1)在1mm的硅衬底上沉积掩氧化硅,光刻,湿法腐蚀的方法带有梯形凹槽的图形衬底;湿法腐蚀所用药液为BOE(缓冲氧化物刻蚀剂);
(2)将硅衬底清洗干净,并装入MOCVD(金属有机化合物化学气相沉淀)反应腔,首先在1020℃下退火烘烤5min;使用三甲基铝和NH3(1:3)作为源,氮气作为载气在各梯形凹槽的斜面上生长一层厚度为120nm的AlN缓冲层;以三甲基镓和NH3作为源,氮气作为载气,在AlN缓冲层上外延生长一层厚度为3μm的本征GaN层;再以三甲基镓、三甲基铝和NH3作为源,氮气作为载气,在GaN层上外延45nm的本征AlGaN层,其中Al元素的摩尔含量为18%;制得半极性微米线阵列;
(3)将制备的半极性微米线阵列清洗后,通过原子层沉积工艺沉积一层20nm致密的SiO2膜作为介质层;
(4)经涂胶、光刻、湿法腐蚀、在GaN微米线阵列上露出源、漏电极窗口,采用电子束蒸发设备淀积Ti/Al/Ni/Au四层金属;在丙酮中浸泡40min以上后进行超声处理去胶,然后用氮气吹干。将样片放入到快速退火炉,在氮气气氛、温度850℃的条件下进行40s的高温退火,形成源电极和漏电极;
(5)继续在SiO2介质层上涂胶、光刻,露出器件的栅电极窗口,而后采用电子束蒸发设备淀积Pt/Au两层金属,在丙酮中浸泡40min以上后进行超声处理去胶,形成肖特基接触的栅电极,制得常关型GaN/AlGaN HEMT器件。

Claims (10)

1.一种常关型GaN/AlGaN HEMT器件,其特征在于,包括:衬底、半极性微米线阵列、SiO2介质层、源电极、漏电极和栅电极;
所述衬底表面设置有槽口宽于槽底的梯形凹槽,所述梯形凹槽的斜面上依次生长有AlN缓冲层、本征GaN层和本征AlGaN层,形成半极性微米线阵列;
所述半极性微米线阵列的上方设置有SiO2介质层、源电极、漏电极和栅电极。
2.根据权利要求1所述的常关型GaN/AlGaN HEMT器件,其特征在于,所述梯形凹槽的形状为等腰梯形。
3.根据权利要求1所述的常关型GaN/AlGaN HEMT器件,其特征在于,所述衬底为Si衬底,所述衬底的厚度为0.5-1.5mm。
4.根据权利要求1所述的常关型GaN/AlGaN HEMT器件,其特征在于,所述SiO2介质层的厚度为20-40nm。
5.根据权利要求1所述的常关型GaN/AlGaN HEMT器件,其特征在于,所述AlN缓冲层的厚度为90-140nm,所述本征GaN层的厚度为2-4μm,所述本征AlGaN层的厚度为25-50nm。
6.根据权利要求1所述的常关型GaN/AlGaN HEMT器件,其特征在于,所述源电极和所述漏电极均为Ti/Al/Ni/Au电极,所述栅电极为Pt/Au电极。
7.权利要求1-6中任一项所述的常关型GaN/AlGaN HEMT器件的制备方法,其特征在于,包括以下步骤:
(1)对衬底经涂胶、光刻、湿法腐蚀处理,得到带有梯形凹槽的衬底;
(2)衬底清洗后装入MOCVD反应腔,在梯形凹槽的斜面上依次生长AlN缓冲层、本征GaN层和本征AlGaN层,形成半极性微米线阵列;
(3)将步骤(2)中制得的半极性微米线阵列表面沉积SiO2介质层;通过光刻、刻蚀、蒸镀、退火,形成漏电极和源电极;再在SiO2介质层上通过光刻、蒸镀,形成栅电极;从而制得常关型GaN/AlGaN HEMT器件。
8.根据权利要求7所述的制备方法,其特征在于,步骤(1)中所述湿法腐蚀所用药液为BOE、HF或DHF;优选的,步骤(1)中所述湿法腐蚀所用药液为BOE。
9.根据权利要求7所述的制备方法,其特征在于,步骤(2)中半极性微米线阵列的具体制备方法为:使用三甲基铝和NH3作为源,氮气作为载气在各梯形凹槽的斜面上生长AlN缓冲层;再以三甲基镓和NH3作为源,氮气作为载气,在所述AlN缓冲层上外延生长本征GaN层;再以三甲基镓、三甲基铝和NH3作为源,氮气作为载气,在所述GaN层上外延生长AlGaN层;制得半极性微米线阵列。
10.根据权利要求7所述的制备方法,其特征在于,步骤(3)中所述SiO2介质层的沉积方法为原子层沉积工艺。
CN202010967172.1A 2020-09-15 2020-09-15 一种常关型GaN/AlGaN HEMT器件及其制备方法 Pending CN112164717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010967172.1A CN112164717A (zh) 2020-09-15 2020-09-15 一种常关型GaN/AlGaN HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010967172.1A CN112164717A (zh) 2020-09-15 2020-09-15 一种常关型GaN/AlGaN HEMT器件及其制备方法

Publications (1)

Publication Number Publication Date
CN112164717A true CN112164717A (zh) 2021-01-01

Family

ID=73857561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010967172.1A Pending CN112164717A (zh) 2020-09-15 2020-09-15 一种常关型GaN/AlGaN HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112164717A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809153A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 碳化硅基铝镓氮/氮化镓微米线hemt功率器件及制备方法
CN113809152A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种基于氮化镓微米线高电子迁移率晶体管阵列及制备方法
CN114023816A (zh) * 2021-09-28 2022-02-08 桂林理工大学 一种新型增强型GaN HEMT器件结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124272A (zh) * 2014-07-14 2014-10-29 华南师范大学 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
CN105118860A (zh) * 2015-08-18 2015-12-02 华南师范大学 一种集成有序GaN基纳米线阵列HEMT及其制备方法
CN105161532A (zh) * 2015-07-15 2015-12-16 华南师范大学 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
CN106082121A (zh) * 2016-06-16 2016-11-09 华南师范大学 纳米线阵列制备方法、纳米线阵列集成器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124272A (zh) * 2014-07-14 2014-10-29 华南师范大学 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
CN105161532A (zh) * 2015-07-15 2015-12-16 华南师范大学 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
CN105118860A (zh) * 2015-08-18 2015-12-02 华南师范大学 一种集成有序GaN基纳米线阵列HEMT及其制备方法
CN106082121A (zh) * 2016-06-16 2016-11-09 华南师范大学 纳米线阵列制备方法、纳米线阵列集成器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEIDONG SONG ET.AL: ""a‑ Axis GaN/AlN/AlGaN Core − Shell Heterojunction Microwires asNormally O ff High Electron Mobility Transistors"", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809153A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 碳化硅基铝镓氮/氮化镓微米线hemt功率器件及制备方法
CN113809152A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种基于氮化镓微米线高电子迁移率晶体管阵列及制备方法
CN113809153B (zh) * 2021-08-11 2024-04-16 浙江芯科半导体有限公司 碳化硅基铝镓氮/氮化镓微米线hemt功率器件及制备方法
CN114023816A (zh) * 2021-09-28 2022-02-08 桂林理工大学 一种新型增强型GaN HEMT器件结构

Similar Documents

Publication Publication Date Title
CN100438100C (zh) Ⅲ族氮化物半导体装置及其制造方法
US6982204B2 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
JP5355888B2 (ja) キャップ層および埋込みゲートを有する窒化物ベースのトランジスタを作製する方法
JP5126733B2 (ja) 電界効果トランジスタ及びその製造方法
CN112164717A (zh) 一种常关型GaN/AlGaN HEMT器件及其制备方法
Egawa et al. Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire
CN108305834B (zh) 一种增强型氮化镓场效应器件的制备方法
JP2016139781A (ja) エンハンスメント型高電子移動度トランジスタおよびその製作方法
CN106298887B (zh) 一种高阈值电压高迁移率凹槽栅mosfet的制备方法
US20050236646A1 (en) Nitride semiconductor device and manufacturing method thereof
JPWO2012172753A1 (ja) 半導体装置及びその製造方法
EP2575179A2 (en) Compound semiconductor device and manufacturing method therefor
CN111916351A (zh) 半导体器件及其制备方法
CN108365008B (zh) 具有p型二维材料栅极增强型氮化镓场效应器件的制备方法
JP2017157589A (ja) 半導体装置および半導体装置の製造方法
JP2017195299A (ja) 半導体装置及び半導体装置の製造方法
US20190051740A1 (en) Manufacturing method of semiconductor device and semiconductor device
CN107785435A (zh) 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
US10566183B2 (en) Method of manufacturing semiconductor device and the semiconductor device
CN113937155B (zh) 一种组份渐变复合势垒层hemt器件及其制备方法
CN102820322B (zh) 含铁电层的GaN基增强型器件及制备方法
CN111613668B (zh) 增强型GaN基MIS-HEMT器件及其制备方法
CN114496788A (zh) 一种p型沟道氮化镓晶体管及其制备方法
US20200127115A1 (en) Manufacturing method of high electron mobility transistor
Kushwah et al. Ultrathin Native Oxide by Barrier Layer Oxidation as Gate Dielectric for AlInN/GaN MIS-HEMTs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210101