CN112161945A - 一种大豆籽粒嘌呤含量超微量检测方法 - Google Patents

一种大豆籽粒嘌呤含量超微量检测方法 Download PDF

Info

Publication number
CN112161945A
CN112161945A CN202011160649.1A CN202011160649A CN112161945A CN 112161945 A CN112161945 A CN 112161945A CN 202011160649 A CN202011160649 A CN 202011160649A CN 112161945 A CN112161945 A CN 112161945A
Authority
CN
China
Prior art keywords
purine
content
value
soybean
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011160649.1A
Other languages
English (en)
Inventor
王晓波
赵露
张阴
李佳佳
张艳
邱丽娟
万明月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Agricultural University AHAU
Original Assignee
Anhui Agricultural University AHAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Agricultural University AHAU filed Critical Anhui Agricultural University AHAU
Priority to CN202011160649.1A priority Critical patent/CN112161945A/zh
Publication of CN112161945A publication Critical patent/CN112161945A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本发明公开了一种大豆籽粒嘌呤含量超微量检测方法,包括称取豆粉样品置于离心管中;加高氯酸溶液于离心管中,进行恒温水浴,迅速冰浴冷却;加KOH溶液且调pH后定容;离心后取上清液,调节至pH值再次定容;取上清液离心,过滤膜过滤后待测;采用超微量分光光度计在267nm波长的条件下测定待测液的OD值,然后带入y=286.29x‑0.0708,其中式中Y是在267nm处测定的最大吸光值量,X为267nm处测定的最大吸光值量所对应的浓度。本发明与传统方法相比,豆粉用量少,水解时间半,进样量少,测定时间缩短,可有效缩短总提取时间。

Description

一种大豆籽粒嘌呤含量超微量检测方法
技术领域
本发明涉及大豆籽粒嘌呤分析技术领域,具体为一种大豆籽粒嘌呤含量超微量检测方法。
背景技术
痛风是由嘌呤出现障碍致尿酸增多或排除减少所致,由一种单钠尿酸盐沉积的尿酸盐结晶,这些结晶体在人体的组织、关节中诱发的相关性关节病,随着人们生活水平的提高,高蛋白食品的摄取量也随之增多,现代人患痛风的风险也随之增加,豆类的营养价值非常高,每天坚持食用豆类食品,人体可以减少油脂含量,增加免疫力,降低患病的概率。
现有的有多种方法检测嘌呤含量:毛细血管电泳法(侯晓蓉等人.2005)、反相高效液相色谱法(刘绮萍等人.1996)、气相色谱法,气相色谱法可将嘌呤类物质分解为尿酸后再进行检测的方法,目前常用的方法是高效液相色谱法。但此试验考虑到高效液相色谱法需要控制的条件多,时间周期长,不适合高通量的操作,因此亟需大豆籽粒嘌呤含量超微量检测方法建立来解决上述问题。
发明内容
本发明的目的在于提供一种大豆籽粒嘌呤含量超微量检测方法,以解决上述背景技术中提出的现有的高效液相色谱法需要控制的条件也很多,时间需要很长,不适合高通量的操作的问题。
为实现上述目的,本发明提供如下技术方案:
一种大豆籽粒嘌呤含量超微量检测方法,包括以下步骤:
(1)研磨大豆籽粒部分豆粉0.1g后置于50ml离心管中;
(2)加2.5ml的35%的高氯酸溶液于50ml的离心管中,100℃恒温水浴,冰浴冷却至常温;
(3)加60%的KOH溶液1300ul,调pH为6.90-7.10,并定容至15ml;
(4)离心15min,取5ml上清液,用H3PO4溶液调节至pH值2.9-3.0;
(5)取上清液1.5ml,放于小离心机离心8000r/min,离心2min;
(6)取其上清过0.22μm滤膜过滤后获得待测液;
(7)超微量分光光度计测待测液内大豆嘌呤含量。
进一步,步骤(1)中豆粉取自皖黄506或williams 82。
进一步,所述步骤(2)恒温水浴时间为30min。
进一步,所述步骤(3)定容为纯水定容。
进一步,还包括对待测液连续检测3次,每次1μm,以3次检测的嘌呤含量计算仪器的相对标准偏差;准确度:选取同一豆粉,称量0.1g,平行测定3次,以3次测定的嘌呤含量计算对应大豆的相对标准偏差。
与现有技术相比,本发明的有益效果是:
1.超微量法在提取嘌呤含量的方法上:①与传统方法相比,所需豆粉量减少50%,同时取样后的籽粒仍可播种,提高其育种效率。②提取嘌呤时间减少2/3(水浴时间减半,离心所需时间减少,调pH时间缩短)③试剂方面比传统方法节省(70%的高氯酸改为35%的高氯酸)。
2.从检测的方法上:本试验运用的是超微量分光光度计,相对于高效液相色谱仪①出样时间短;高效液相色谱仪出样时间12s,超微量分光光度计法出样时间1s。②成本低:高效液相色谱测时需要调试流速和柱温。超微量不需要。③进样量少,超微量法只需1ul,高效液相色谱仪一般需要10ul~20ul。
附图说明
图1为实施例中所得嘌呤标品不同浓度和波长OD值的曲线图。
图2为实施例中所得嘌呤的标准曲线。
具体实施方式
下面将结合本发明实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种技术方案:大豆籽粒嘌呤含量超微量检测方法,具体为选用大豆品牌为皖黄506和williams 82分别进行以下操作:
(1)碾磨待测大豆表皮获取豆粉(用量待定)后置于50ml离心管中;
(2)加2.5ml的?%(待定)的高氯酸溶液于50ml的离心管中,100℃恒温?min(待定)水浴,冰浴冷却至常温;
(3)加60%的KOH溶液1300ul,调pH为6.90-7.10,并定容至15ml;
(4)离心15min,取5ml上清液,用H3PO4溶液调节至pH值2.9-3.0,并定容至10ml;
(5)取上清液1.5ml,放于离心机离心8000r/min,离心2min;
(6)取其上清过0.22μm滤膜过滤后获得待测液;
(7)超微量分光光度计测待测液内大豆嘌呤含量。
其中在测定嘌呤含量前进行以下操作:
配置浓度梯度分别为0.001mg/ml、0.002mg/ml、0.003mg/ml、0.004mg/ml和0.005mg/ml的总嘌呤标准溶液,采用超微量分光光度计对四种标准溶液在波长240nm~270nm之间每隔5nm进行扫描一次,进行嘌呤含量的扫描,扫描结果如图1。
由图1可得最适波长均在265nm~270nm之间,为了进一步精确最适波长,在265nm~270nm之间每隔1nm进行扫描一次,所得结果如表1,可得最适波长为267nm。
Figure BDA0002744100460000031
表1
对上述五种标准溶液在波长为267nm下分别进行三次OD(吸光度)值测量,然后取三次测量均值,所得均值分别为0.2307、0.4880、0.7816、1.0681、1.3721,以浓度(mg/g)为横坐标,OD值为纵坐标作标准曲线,绘制吸光度-浓度的曲线(图2),嘌呤含量标准曲线的回归方程为y=286.29x-0.0708(R2=0.09992)。
然后使用风光光度计对待测液进行扫描后,根据回归方程计算对应的嘌呤浓度,其中Y是在267nm处测定的最大吸光值量,X为267nm处测定的最大吸光值量所对应的嘌呤浓度。
在本实施例中,为了提高测量结果的精确性,还进行以下操作:
精确度:精确配制0.001mg/ml、0.002mg/ml、0.003mg/ml、0.004mg/ml和0.005mg/ml的嘌呤标准溶液,分别吸取1ul不同浓度标准溶液于超微量分光光度计267nm波长下重复测定三次,以三次测的OD值的相对标准偏差(RSD)
准确度:按照高氯酸浓度为35%,豆粉含量为0.1g,水浴时间温度分别为30min,100℃,进行嘌呤的提取,皖黄506和william 82分别三次重复值。
为了确定最佳的豆粉用量、水浴时间和温度等进行了一下操作:
(1)水解时间及水解温度
取0.1g豆粉,用35%高氯酸进行处理,仅水浴温度和时间有变化,其它不变。
测得结果如下:
两种大豆品种提取嘌呤最适条件的探索(高氯酸浓度为35%)
Figure BDA0002744100460000041
表2
可得:
①100℃水浴30min时,皖黄506、williams82大豆的嘌呤含量分别为1.68mg/g±0.05、1.51±0.11;100℃水浴60min时,皖黄506、williams 82大豆的嘌呤含量分别为1.59mg/g±0.07、1.50mg/g±0.14.由此可知水浴时间为30min比水浴时间为60min的嘌呤含量更高。
②90℃水浴30min,皖黄506和williams 82的嘌呤含量1.20mg/g±0.02、1.19mg/g±0.03,可知水解温度在100℃时嘌呤含量提取的更为充分。综上所述,提取嘌呤的最适提取条件为100℃水浴30min。相比于现有技术,时间节省了一半。
(2)豆粉含量及高氯酸含量
水浴时间为30min,水浴温度为100℃,仅豆粉用量和高氯酸变化,其它不变。
测得结果如下:
不同豆粉量嘌呤含量的比较(70%高氯酸)
Figure BDA0002744100460000051
表3
由表2和表3可知,皖黄506在豆粉量为0.1g,70%的高氯酸与35%的高氯酸提取嘌呤的含量分别为1.64mg/g、1.68mg/g;williams 82在70%的高氯酸与35%的高氯酸提取嘌呤的含量分别为1.55mg/g、1.51mg/g。则70%高氯酸与35%的高氯酸提取嘌呤的效果相同,同时浓度过高的高氯酸会降解嘌呤的含量,使嘌呤的含量提取不充分,提取过程中会产生大量的沉淀物,操作过程中还应防止浓度过高引发的一系列安全措施;
当条件为70%的高氯酸仅豆粉含量变化时,豆粉含量为0.1g、0.2g和0.05g,皖黄506的嘌呤含量分别为1.64mg/g、1.62mg/g、1.58mg/g。Williams 82的嘌呤含量分别为1.55mg/g、1.53mg/g、1.50mg/g。从遗传育种及试验材料上,0.1g较为合适。不采用传统的研磨方法,只需电钻研磨大豆籽粒部分豆粉(除表皮),余下豆子仍具备发芽的能力。综上所述,嘌呤提取的豆粉含量为0.1g,高氯酸的浓度为35%。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种大豆籽粒嘌呤含量超微量检测方法,其特征在于,包括以下步骤:
S1、研磨大豆籽粒部分,获取0.1g豆粉置于50ml离心管中;
S2、加2.5ml的35%的高氯酸溶液于50ml的离心管中,100℃恒温水浴30min,迅速冰浴冷却至常温;
S3、加60%的KOH溶液1300ul,调节pH至6.90-7.10,并定容至15ml;
S4、离心15min,取5ml上清液,用H3PO4溶液调节至pH值2.9-3.0;
S5、取上清液1.5ml,放于小离心机离心8000r/min,离心2min;
S6、取其上清过0.22μm滤膜,获得待测液;
S7、采用超微量分光光度计在267nm波长的条件下测定待测液的OD值,然后带入y=286.29x-0.0708,其中Y是在267nm处测定的OD值,X为267nm处测定的最大吸光值量所对应的浓度。
2.根据权利要求1所述的一种大豆籽粒嘌呤含量超微量检测方法,其特征在于:步骤S1中豆粉取自皖黄506或williams 82。
3.根据权利要求1所述的一种大豆籽粒嘌呤含量超微量检测方法,其特征在于:所述步骤S2恒温水浴时间为30min。
4.根据权利要求1所述的一种大豆籽粒嘌呤含量超微量检测方法,其特征在于:所述步骤S3定容为纯水定容。
5.根据权利要求1所述的一种大豆籽粒嘌呤含量超微量检测方法,其特征在于:还包括对待测液连续检测3次,每次1μm,以3次检测的嘌呤含量计算仪器的相对标准偏差;准确度:选取同一豆粉,称量0.1g,平行测定3次,以3次测定的嘌呤含量计算对应大豆的相对标准偏差。
CN202011160649.1A 2020-10-27 2020-10-27 一种大豆籽粒嘌呤含量超微量检测方法 Pending CN112161945A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011160649.1A CN112161945A (zh) 2020-10-27 2020-10-27 一种大豆籽粒嘌呤含量超微量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011160649.1A CN112161945A (zh) 2020-10-27 2020-10-27 一种大豆籽粒嘌呤含量超微量检测方法

Publications (1)

Publication Number Publication Date
CN112161945A true CN112161945A (zh) 2021-01-01

Family

ID=73864747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011160649.1A Pending CN112161945A (zh) 2020-10-27 2020-10-27 一种大豆籽粒嘌呤含量超微量检测方法

Country Status (1)

Country Link
CN (1) CN112161945A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039352A1 (en) * 1996-04-15 1997-10-23 Fox Chase Cancer Center Assays for detection of purine metabolites
UA17279U (en) * 2006-03-31 2006-09-15 Univ Zaporizhia State Medical Method for determining content of hydroxyguanine 8, as an indicator of oxide damage of nucleic acid, in urine
CN101776589A (zh) * 2010-01-29 2010-07-14 东北农业大学 紫外分光光度计测定嘌呤的方法
CN105699507A (zh) * 2016-01-21 2016-06-22 苏州科铭生物技术有限公司 一种atp含量测定试剂盒及其方法
CN107960478A (zh) * 2017-11-23 2018-04-27 山东渤海实业股份有限公司 一种制备低嘌呤大豆蛋白食品的方法及制成的大豆蛋白食品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039352A1 (en) * 1996-04-15 1997-10-23 Fox Chase Cancer Center Assays for detection of purine metabolites
UA17279U (en) * 2006-03-31 2006-09-15 Univ Zaporizhia State Medical Method for determining content of hydroxyguanine 8, as an indicator of oxide damage of nucleic acid, in urine
CN101776589A (zh) * 2010-01-29 2010-07-14 东北农业大学 紫外分光光度计测定嘌呤的方法
CN105699507A (zh) * 2016-01-21 2016-06-22 苏州科铭生物技术有限公司 一种atp含量测定试剂盒及其方法
CN107960478A (zh) * 2017-11-23 2018-04-27 山东渤海实业股份有限公司 一种制备低嘌呤大豆蛋白食品的方法及制成的大豆蛋白食品

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘少林: "大豆中嘌呤含量的测定及分离研究", 《中国优秀硕士学位论文全文数据库 农业科技辑》 *
刘晓庚等: "荷移光度法测定谷物中嘌呤含量的实验", 《中国粮油学报》 *
李卫东: "遗传学综合双语实验教程", 北京:北京理工大学出版社 *
林先军等: "反相离子对色谱法测定啤酒中的嘌呤类物质", 《食品科学》 *
王海容等: "啤酒中嘌呤类物质的测定研究", 《酿酒科技》 *

Similar Documents

Publication Publication Date Title
EP3734254A1 (en) Method for determining water soluble protein content (wspc) in soybean by near infrared spectroscopy (nirs)
CN103913433B (zh) 一种丹红注射液双效浓缩过程在线检测方法
CN106018335A (zh) 基于近红外光谱的整粒棉籽中植酸含量的无损测定方法
CN112161945A (zh) 一种大豆籽粒嘌呤含量超微量检测方法
CN104007205B (zh) 一种治疗消渴病的药物制剂的检测方法
CN109632997B (zh) 一种百合药材中王百合苷b的提取及测定方法
Chen et al. Determination of marker constituents in radix Glycyrrhizae and radix Notoginseng by near infrared spectroscopy
CN110346323B (zh) 一种基于近红外光谱技术在线检测华盖散浓缩液的方法
VieIra et al. Zinc determined in 10-microL serum or urine samples by flameless atomic absorption spectrometry.
CN114910583A (zh) 一种桔贝合剂的检测方法
CN112816425B (zh) 一种利用hgb校准能力优化全血样本检测流程的方法
CN111983120B (zh) 化风丹药母特征图谱建立及7种核苷类成分含量测定方法
Buta Evaluation of oxalate content in boyna and taro roots grown in Areka (Ethiopia)
Sun et al. pH value monitoring during human albumin purification with near infrared spectroscopy and chemometrics
CN113866320B (zh) 一种用超高效液相色谱检测延胡索生物碱含量的方法
CN106908395A (zh) 水中浮游藻类叶绿素的测定方法
CN105486824B (zh) 一种地沟油的检测方法
CN100371706C (zh) 一种功能红曲中Monacolin类化合物含量的检测方法
CN112881541B (zh) 一种北柴胡与南柴胡配方颗粒的检测方法
CN115420844B (zh) 一种珍珠透骨草配方颗粒的质量控制方法
CN117589857A (zh) 一种土壤有效硼含量的测试方法
CN109824561B (zh) 一种水稻幼苗组织中l-半胱氨酸的提取及其检测方法
CN115219604B (zh) 一种检测婴幼儿奶粉中脂溶性维生素的方法
CN110940747B (zh) 一种马铃薯及其制品中α-茄碱和α-卡茄碱的测定方法
CN107693566A (zh) 一种杜仲炮制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination