CN112142026A - 一种铅-氟磷灰石固溶体制备方法及其应用 - Google Patents
一种铅-氟磷灰石固溶体制备方法及其应用 Download PDFInfo
- Publication number
- CN112142026A CN112142026A CN202010925375.4A CN202010925375A CN112142026A CN 112142026 A CN112142026 A CN 112142026A CN 202010925375 A CN202010925375 A CN 202010925375A CN 112142026 A CN112142026 A CN 112142026A
- Authority
- CN
- China
- Prior art keywords
- lead
- solution
- fluorapatite
- fluorine
- leaching concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/37—Phosphates of heavy metals
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/583—Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/62—Heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
- C02F2101/14—Fluorine or fluorine-containing compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种水热法合成铅‑氟磷灰石固溶体的方法。通过配制硝酸铅和氟化钠溶液作为Pb和F源,利用500mL硝酸铅溶液作为基础液,然后利用100mL滴定管将氟化钠溶液以连续均一的速率完全加入至硝酸铅溶液中,再将磷酸氢二胺以5mL/s的速度连续加入至硝酸铅和氟化钠的混合溶液中并以600rmp的速度搅拌,最后加入浓氨水,调节pH至8.0后持续在室温下搅拌,将其放入100℃水浴2d,最后取出样品,用优级纯乙醇洗涤样品,得到结晶度高、稳定性好的铅‑氟磷灰石固溶体。利用该方法合成的铅‑氟磷灰石固溶体具有低成本,易操控,能够实现铅、磷和氟在环境中的长期稳定化推存等优点。
Description
技术领域
本发明属于材料安全领域,涉及铅-氟磷灰石固溶体合成方法及其应用。该方法利用铅离子和氟离子可以替代钙离子和羟基(-OH)进入羟基磷灰石晶格,形成铅-氟磷灰石的完全类质同像固溶体。
背景技术
铅(Pb)是一种最软的重金属元素,呈灰白色,位于元素周期表第六周期ⅣA族,原子序数为82。铅有+2和+4两种价态,由于四价铅离子具有强氧化性,不能在环境中稳定存在,因此,土壤和天然水体中铅主要以二价铅离子(Pb2+)的形态存在,其含量和形态明显受SO4 2-、CO3 2-、HCO3 -、SiO3 2-、PO4 3-、F-和OH-等影响。同时,铅能以PbHPO4、Pb3(PO4)2、Pb(OH)2、Pb(OH)3 -、PbF2等多种形态存在环境中。铅及其铅的化合物性质稳定,属于不可降解的污染物,它们能通过三废(废水、废气和废渣)进入环境,并在环境中积累。世界范围内,土壤中铅含量范围为2~200mg/kg,平均值为35mg/kg。土壤中的铅及其化合物会被植物吸收,并通过食物链进入动物和人体中。铅进入人体后,会阻碍血液的合成,对人体的骨髓、造血系统、神经系统和免疫系统等造成严重危害,从而导致肢体酸痛、贫血动脉硬化和消化道溃疡等疾病。儿童对铅比成年人更敏感,铅进入儿童体内容易造成脑组织损伤,从而导致发育迟缓、食欲不振、听觉障碍和智力低下等疾病。铅进入孕妇体内则会通过胎盘屏障,影响胎儿发育,造成畸形等。
铅-氟磷灰石属于磷酸盐类矿物,其可以发生同价或异价类质同象替换形成不同类型矿物。有研究者进行研究,结果表明生成的矿物能够稳定存在,可以成为固定重金属的一种新方法。本发明提供一种以水热合成法合成铅-氟磷灰石,除去并固定废水中的铅、磷和氟。
发明内容
本发明目的是提供一种水热合成铅-氟磷灰石固溶体的方法。对制备固溶体经过X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)表征,测试在pH为2.00,温度分别为25、35和45℃条件下对于铅、磷和氟的浸出浓度,对溶解度和稳定性进行详细实验分析,为固定铅、磷和氟提供数据支撑。
1.一种铅-氟磷灰石混合晶体固溶体合成方法,其特征在于具体步骤为:
(1)首先通过煮沸对超纯水进行脱气,然后配制0.2mol/L Pb(NO3)2溶液,0.2mol/LNaF溶液,0.2mol/L(NH4)2HPO4溶液;
(2)在干净的烧杯中准备500mL 0.2mol/L Pb(NO3)2溶液,并将其转移至干净的聚乙烯瓶中;
(3)将聚乙烯瓶放置于磁力搅拌器上,设置搅拌速度为550~600rmp,温度为25℃,搅拌时长为4~5min,并测其pH;
(4)利用100mL滴定管向(2)中连续均一的速率加入100mL 0.2mol/L NaF溶液,待加完氟化钠溶液后持续搅拌1~3min;
(5)以5mL/s的速度连续将300mL 0.2mol/L(NH4)2HPO4溶液加入聚乙烯瓶中并以550~600rmp的速度搅拌,最后向聚乙烯瓶中加入浓氨水,快速将pH调至8.0后持续在25℃下搅拌10~15min;
(6)待溶液完全混匀后,盖好瓶盖并放入100℃水浴(陈化)2d;
(7)取出样品自然冷却,过滤,用超纯水洗涤3次,在用优级纯乙醇洗涤1次,得到铅-氟磷灰石固溶体。
本发明的铅-氟磷灰石固溶体的应用于实现铅、磷和氟在环境中长期稳定化推放,则具体步骤为:
在100℃下反应完成后进行固液分离,所得固相沉淀物经超纯水反复洗涤至中性并离心分离得到白色沉淀物,然后将洗涤后的固相物置于瓷盘中并放于70℃烘箱干燥72h,所得的产物进行推存,即实现铅、磷和氟在环境中长期稳定化推存。
本发明利用铅离子和氟离子可以替代钙离子和羟基进入羟基磷灰石晶格,形成铅-氟磷灰石的完全类质同像固溶体。利用该方法合成的铅-氟磷灰石固溶体具有低成本,易操控,能够实现铅、磷和氟在环境中的长期稳定化推存等优点。
附图说明
图1为本发明铅-氟磷灰石固溶体XRD图,其中铅-氟磷灰石标准卡片PDF#023-0348。
图2为本发明铅-氟磷灰石固溶体扫描电镜图。
图3为本发明铅-氟磷灰石固溶体傅里叶变换红外光谱图。
图4为本发明铅-氟磷灰石固溶体在pH=2.0,温度分别为25、35和45℃条件下浸出铅、磷和氟的浓度变化图。
具体实施方式
实施例1
首先通过煮沸对超纯水进行脱气,然后配制0.2mol/L Pb(NO3)2溶液,0.2mol/LNaF溶液,0.2mol/L(NH4)2HPO4溶液,然后,取500mL 0.2mol/L Pb(NO3)2溶液于聚乙烯瓶中,将磁力搅拌器转速设为550~600rmp,温度为25℃,把聚乙烯瓶放于搅拌器上搅拌4~5min,利用100mL滴定管向聚乙烯瓶中连续均一的速率加入100mL 0.2mol/L NaF溶液,将其搅拌1~3min充分混匀,再以5mL/s的速度加入300mL 0.2mol/L(NH4)2HPO4溶液并以550~600rmp的速度搅拌,最后向聚乙烯瓶中加入浓氨水,快速将pH调至8.0后持续在25℃下搅拌10~15min,待溶液完全混匀后,盖好瓶盖并放入100℃水浴(陈化)2d,待反应完全后,取出样品自然冷却,即可制得铅-氟磷灰石固溶体。将制得的沉淀物进行固液分离,固相沉淀物用超纯水反复洗涤至中性,然后在70℃下干燥72h,得到高度结晶的铅-氟磷灰石固溶体。
浸出测试:pH为2.00,温度为25℃条件下溶解300d,铅浸出浓度1.3793mmol/L;
pH为2.00,温度为25℃条件下溶解300d,磷浸出浓度0.9085mmol/L;
pH为2.00,温度为25℃条件下溶解300d,氟浸出浓度0.0031mmol/L;
pH为2.00,温度为35℃条件下溶解300d,铅浸出浓度1.5328mmol/L;
pH为2.00,温度为35℃条件下溶解300d,磷浸出浓度1.1016mmol/L;
pH为2.00,温度为35℃条件下溶解300d,氟浸出浓度0.0029mmol/L;
pH为2.00,温度为45℃条件下溶解300d,铅浸出浓度1.9701mmol/L;
pH为2.00,温度为45℃条件下溶解300d,磷浸出浓度1.4134mmol/L;
pH为2.00,温度为45℃条件下溶解300d,氟浸出浓度0.0037mmol/L。
Claims (1)
1.一种铅-氟磷灰石固溶体合成方法,其特征在于具体步骤为:
(1)首先通过煮沸对超纯水进行脱气,然后配制0.2mol/L Pb(NO3)2溶液,0.2mol/L NaF溶液,0.2mol/L(NH4)2HPO4溶液;
(2)在干净的烧杯中准备500mL 0.2mol/L Pb(NO3)2溶液,并将其转移至干净的聚乙烯瓶中;
(3)将聚乙烯瓶放置于磁力搅拌器上,设置搅拌速度为600rmp,温度为25℃,搅拌时长为5min,并测其pH;
(4)利用100mL滴定管向(2)中连续均一的速率加入100mL 0.2mol/LNaF溶液,待加完氟化钠溶液后持续搅拌3min;
(5)以5mL/s的速度连续将300mL 0.2mol/L(NH4)2HPO4溶液加入聚乙烯瓶中并以600rmp的速度搅拌,最后向聚乙烯瓶中加入浓氨水,快速将pH调至8.0后持续在25℃下搅拌15min;
(6)待溶液完全混匀后,盖好瓶盖并放入100℃水浴(陈化)2d;
(7)取出样品自然冷却,过滤,用超纯水洗涤3次,在用优级纯乙醇洗涤1次,然后将洗涤后的固相物置于瓷盘中并放于70℃烘箱干燥72h,得到铅-氟磷灰石固溶体进行推存,即实现铅、磷和氟在环境中长期稳定化推存;
(8)将(7)得到的固溶体进行在pH=2.0,温度为25、35和45℃条件下应用;分别称量2.0000g铅-氟磷灰石材料于3个100mL聚乙烯瓶中,然后向聚乙烯瓶中分别加入pH=2.0的硝酸溶液,将聚乙烯瓶密封后分别置于温度为25、35和45℃的恒温水浴锅中进行溶解,最终测试其上清液的Pb、P和F的浓度;
(9)在不同温度下溶解300d后应用的结果为:pH=2.0,温度为25℃,铅浸出浓度为1.3793mmol/L,磷浸出浓度为0.9085mmol/L,氟浸出浓度为0.0031mmol/L;pH=2.0,温度为35℃,铅浸出浓度为1.5328mmol/L,磷浸出浓度为1.1016mmol/L,氟浸出浓度为0.0029mmol/L;pH=2.0,温度为45℃,铅浸出浓度为1.9701mmol/L,磷浸出浓度为1.4134mmol/L,氟浸出浓度为0.0037mmol/L;
其以上结果可知,初始pH为2.00,温度为25、35和45℃条件下0.2mol/L铅和氟溶液被矿化后,溶解300d后氟的浸出浓度低于地表水环境质量标准(GB 3838-2002)Ⅰ类水氟离子的浓度限值,证明铅-氟磷灰石对固定氟具有较好的效果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010925375.4A CN112142026A (zh) | 2020-09-06 | 2020-09-06 | 一种铅-氟磷灰石固溶体制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010925375.4A CN112142026A (zh) | 2020-09-06 | 2020-09-06 | 一种铅-氟磷灰石固溶体制备方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112142026A true CN112142026A (zh) | 2020-12-29 |
Family
ID=73890558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010925375.4A Withdrawn CN112142026A (zh) | 2020-09-06 | 2020-09-06 | 一种铅-氟磷灰石固溶体制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112142026A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1535823A1 (ru) * | 1988-04-04 | 1990-01-15 | Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции | Способ получени синтетического кальциевого фторапатита, содержащего карбонатные и гидроксидные группы |
US20090087369A1 (en) * | 2007-10-01 | 2009-04-02 | Hoya Corporation | Fluoroapatite dried particles and adsorption apparatus |
US20090148376A1 (en) * | 2007-08-03 | 2009-06-11 | Hoya Corporation | Method of producing fluoroapatite, fluoroapatite, and adsorption apparatus |
CN103569991A (zh) * | 2012-11-21 | 2014-02-12 | 济南大学 | 一种纳米氟磷灰石粉体的微波辅助合成法 |
CN103569986A (zh) * | 2012-11-21 | 2014-02-12 | 济南大学 | 一种铅羟基磷灰石的微波辅助合成法 |
CN105271160A (zh) * | 2015-09-24 | 2016-01-27 | 河南科技大学 | 一种纳米氟磷灰石生物材料的制备方法 |
-
2020
- 2020-09-06 CN CN202010925375.4A patent/CN112142026A/zh not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1535823A1 (ru) * | 1988-04-04 | 1990-01-15 | Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции | Способ получени синтетического кальциевого фторапатита, содержащего карбонатные и гидроксидные группы |
US20090148376A1 (en) * | 2007-08-03 | 2009-06-11 | Hoya Corporation | Method of producing fluoroapatite, fluoroapatite, and adsorption apparatus |
US20090087369A1 (en) * | 2007-10-01 | 2009-04-02 | Hoya Corporation | Fluoroapatite dried particles and adsorption apparatus |
CN103569991A (zh) * | 2012-11-21 | 2014-02-12 | 济南大学 | 一种纳米氟磷灰石粉体的微波辅助合成法 |
CN103569986A (zh) * | 2012-11-21 | 2014-02-12 | 济南大学 | 一种铅羟基磷灰石的微波辅助合成法 |
CN105271160A (zh) * | 2015-09-24 | 2016-01-27 | 河南科技大学 | 一种纳米氟磷灰石生物材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mortada et al. | Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell | |
Vallet-Regi et al. | Synthesis and characterisation of calcium deficient apatite | |
CN108455679B (zh) | 一种三维球状臭葱石晶体的制备方法及其应用 | |
JP2007522069A (ja) | 可溶性生物起源シリカ及びこれを使用する用途 | |
Biswas et al. | Systematic changes of bone hydroxyapatite along a charring temperature gradient: An integrative study with dissolution behavior | |
JP6318282B1 (ja) | リン酸四カルシウムを調製する方法 | |
CN108726499B (zh) | 一种食品级磷酸氢钙及其制备方法 | |
CN112142026A (zh) | 一种铅-氟磷灰石固溶体制备方法及其应用 | |
CN117603464A (zh) | 一种铜(ii)-杯芳烃配合物单晶及其制备方法和应用 | |
DE2854722C2 (de) | Verfahren zur Herstellung von faserförmigem und/oder kugelförmigem α-Calciumsulfathalbhydrat | |
CN112158821B (zh) | 一种镉-氟磷灰石固溶体制备方法及其应用 | |
CN103570767B (zh) | 一种离子热法合成微孔zni型沸石咪唑骨架物种的方法 | |
Aranda et al. | Characterization of manganese (III) orthophosphate hydrate | |
CN113713752B (zh) | 一种微米花状氧化铋材料及其制备方法和在吸附放射性阴离子中的应用 | |
CN112158820B (zh) | 一种氟磷灰石固溶体制备方法及其应用 | |
Musa et al. | Synthesis and Characterizations of Hydroxyapatite Derived Blood Clam Shells (Anadara Granosa) and Its Potency to Dental Remineralizations | |
CN102133230B (zh) | 一种复合型四角蛤蜊有机钙制剂及其制备方法 | |
Jaswal et al. | Synthesis of nanocrystalline hydroxyapatite biomaterial from waste eggshells by precipitation method | |
CN108218682A (zh) | 草酸钙废渣固-固转化回收草酸的方法 | |
Yuan et al. | Synthesis and characterization of nano hydroxylapatite by reaction precipitation in impinging streams | |
CN115154651A (zh) | 一种生物矿化的牛血清白蛋白@钙硒纳米球、制备方法及应用 | |
Kabir et al. | Synthesis and characterization of Fe-doped hydroxyapatite | |
JP5562606B2 (ja) | 放射性アンモニア含有排液の処理方法 | |
CN112079341B (zh) | 一种铅-钙-氟磷灰石固溶体制备方法及其应用 | |
Mayer et al. | Manganese in apatites, chemical, ligand-field and electron paramagnetic resonance spectroscopy studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20201229 |