CN112125705B - 一种SiC陶瓷的防护涂层及其制备方法 - Google Patents

一种SiC陶瓷的防护涂层及其制备方法 Download PDF

Info

Publication number
CN112125705B
CN112125705B CN202010947693.0A CN202010947693A CN112125705B CN 112125705 B CN112125705 B CN 112125705B CN 202010947693 A CN202010947693 A CN 202010947693A CN 112125705 B CN112125705 B CN 112125705B
Authority
CN
China
Prior art keywords
coating
protective coating
sic ceramic
protective
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010947693.0A
Other languages
English (en)
Other versions
CN112125705A (zh
Inventor
葛芳芳
李朋
史晓光
黄峰
刘海勇
白雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202010947693.0A priority Critical patent/CN112125705B/zh
Publication of CN112125705A publication Critical patent/CN112125705A/zh
Application granted granted Critical
Publication of CN112125705B publication Critical patent/CN112125705B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及高温腐蚀防护涂层领域,公开了一种SiC陶瓷的防护涂层及其制备方法,该防护涂层组成表示为MexO1‑x,其中x为原子百分比,0.6≤x≤1;Me选自Cr、CrAl、CrNi中任一种,所述CrAl为Cr为主元,与Al的固溶体结构,所述CrNi为Cr为主元,与Ni的固溶体结构,所述防护涂层采用磁控溅射法制备,利用射频辅助直流的电源来驱动Me靶,通过调节反应气体O2的有无及O2比例和其他工艺参数,在SiC陶瓷表面沉积得到不同结构的防护涂层。该防护涂层,可显著降低SiC陶瓷的腐蚀失重,失重率减少88%~97%。

Description

一种SiC陶瓷的防护涂层及其制备方法
技术领域
本发明涉及高温腐蚀防护涂层领域,具体涉及一种SiC陶瓷的防护涂层及其制备方法,应用于核电或工业窑炉领域。
背景技术
SiC陶瓷是键合力很强的Si-C共价键化合物,由碳、硅原子相间排列,构成类金刚石的四面体结构。具有高熔点、高导热系数、高硬度、高温强度和突出的化学惰性等特点,常在工业窑炉、燃气轮机和活塞发动机等热结构部件上有着重要的应用。然而利用燃料燃烧获得热能的同时,也伴随着燃烧副产物硫酸盐和碳酸盐的产生,高温下这些盐类副产物会严重腐蚀SiC(以Na2CO3腐蚀为例,化学反应方程式如下),影响SiC部件的寿命乃至生产的安全性。
SiC+3/2O2=SiO2+CO
SiO2+Na2CO3=Na2SiO3+CO2
现阶段,对热工用SiC陶瓷的耐腐蚀性研究主要集中在SiC陶瓷自身结构改善和成分调控等。如制备单晶结构或(0001)晶面择优取向的SiC陶瓷,SiC基复合材料(耐火纤维增强的SiC复合材料,SiCf/SiC复合材料等),制备高Si含量的碳化硅,和掺杂Y、Nb等元素进行改性等。
CN108046815A公开了一种耐腐蚀的碳化硅砖,包含以下重量份数的组分:硅石细粉70-90份,碳化硅微粉100-150份,金刚石微粉20-24份,云母粉1-2份,氧化铜粉1-5份,矿化剂5-8份,复合添加剂5-8份。本发明提出的碳化硅砖,不但具有高温强度大、热震稳定性好、导热率高、热膨胀系数小的特点,而且具有优异的耐腐蚀性能。
CN103819219A公开了一种耐酸碱腐蚀的碳化硅多孔支撑体,其配方主要由碳化硅粉粗颗粒和细颗粒混合料、液相烧结助剂、硅溶胶及造孔剂、润滑剂、有机结合剂组成,通过混料、泥料挤出成型、低温煅烧脱脂、高温分段煅烧得到碳化硅多孔支撑体。用本发明方法得到的碳化硅多孔支撑体全部为开口气孔,孔形貌较好,气孔率在35~55%之间,抗弯强度为40~110MPa,在20wt%的硫酸溶液中90℃腐蚀100h后强度保持率大于88%,在20wt%的氢氧化钠溶液中90℃腐蚀100h后强度保持率大于92%。
然而,利用涂层技术对SiC陶瓷进行耐腐蚀性防护的报道相对较少,尤其是高温硫酸盐、碳酸盐腐蚀介质存在的苛刻环境下。涂层防护是通过在SiC陶瓷表面制备形成具有耐腐蚀性能的涂层,利用涂层把腐蚀介质与SiC陶瓷之间隔离开来,进而避免腐蚀介质对SiC陶瓷的直接腐蚀,起到防护作用。涂层防护技术,对涂层的耐高温和与SiC陶瓷在高温下具有好的结合力性能要求较高。该技术具体表现在涂层的选用,涂层结构设计以及制备工艺开发等方面。
发明内容
本发明旨在提供一种防护涂层,该涂层能够在高温硫酸盐、碳酸盐或其它腐蚀介质存在下,表现出较好的耐腐蚀性能,并与SiC陶瓷在高温环境下具有好的结合力,可用于SiC陶瓷的高温腐蚀防护。
为实现上述目的,本发明采用的技术方案是:
一种SiC陶瓷的防护涂层,所述防护涂层组成表示为MexO1-x,其中x为原子百分比,0.6≤x≤1;Me选自Cr、CrAl、CrNi中任一种,所述CrAl为Cr为主元,与Al的固溶体结构,所述CrNi为Cr为主元,与Ni的固溶体结构。
当x≠1时,所述防护涂层为非晶MeO与晶态Me的两相复合。
优选地,所述防护涂层为非晶MeO与晶态Me的两相复合时,晶态Me相的晶粒大小为10~20nm,且均有分布在非晶MeO相中,晶态Me相与非晶MeO复合涂层的结构致密,涂层不存在贯穿性空隙。
当x=1时,所述防护涂层为Me涂层,为柱状晶结构,沿涂层生长方向柱状晶被打断,不存在贯穿性柱缝。
优选的,所述柱状晶结构的宽度为300nm~500nm,结构致密,其密度大于Me理论密度的93%;进一步优选地,防护涂层的密度为6.9~7.1g/cm3
进一步优选地,所述防护涂层为Me涂层时,X射线衍射在2θ=20°~80°范围内测试,所述防护涂层在44.4°和64.6°处分别出现Cr的(110)、(200)衍射峰。更优选,其中Cr(200)峰最强。发明人经实验发现,致密结构且隔离效果较好的Cr涂层,利用X射线衍射仪测试,发现Cr涂层的(110)衍射峰最强。
优选地,所述防护涂层的厚度为4~7μm。
从元素选择角度:要获得耐高温硫酸盐、碳酸盐腐蚀涂层,首先是挑选元素组成,Cr、Al、Ni因其腐蚀后能够形成稳定且致密的氧化层Cr2O3、Al2O3、NiO,该致密氧化层能够显著降低O和腐蚀介质向SiC陶瓷基体的扩散速率,且形成的氧化层在高温下不与硫酸盐、碳酸盐发生化学反应,使得涂层起隔离腐蚀介质的作用,缓解或者改善高温硫酸盐、碳酸盐对SiC陶瓷的腐蚀。
从涂层结构角度:要求涂层致密,不存在贯穿涂层的空隙,从而使得涂层起到较好的隔离效果。为了实现致密且无贯穿性空隙的涂层,一方面采取非晶的MeO与晶态的Me的两相复合,非晶的涂层无晶界,结构相对致密,加之均匀分布在MeO的Me相,Me在腐蚀过程中形成的MeO氧化物会进一步填充涂层中的微空隙,或者填充涂层后期受力过程中产生的微裂,起到自作用修复,这样可以显著提高涂层的隔离效果。另一方面,当涂层为纯Me时,提高涂层的密度和控制生长结构,提高涂层密度可使涂层变密实,沿涂层生长方向打断柱状晶,阻止柱缝这种贯穿性空隙形成,进而使涂层起到很好的隔离效果。这两种方式都是为了减少腐蚀介质沿空隙扩散至SiC基体,对SiC基体进行腐蚀,起到有效的防护作用。
本发明还提供一种SiC陶瓷的防护涂层的制备方法,所述防护涂层通过物理气相沉积法制备。
优选地,所述物理气相沉积法为磁控溅射法,其中Me靶为射频辅助的直流电源驱动,Me靶选自Cr、CrAl、CrNi的合金靶或Cr与Al或Ni的共溅射来实现二元成分调控。
当所述防护涂层为Me涂层时,制备方法包括步骤:采用的磁控溅射法沉积防护涂层,保护气体为氩气,Me靶的溅射功率密度为3.2W/cm2~4.6W/cm2
具体过程为:当腔室的真空度低于6×10-5时,充入Ar气,调整Me靶的溅射功率密度为3.2W/cm2~4.6W/cm2,之后开启样品挡板,对基体表面进行沉积,得到Me涂层。
当所述防护涂层为非晶MeO与晶态Me的两相复合时,制备方法包括步骤:采用的磁控溅射法沉积防护涂层,保护气体为氩气和氧气的混合气体,氩气与氧气的体积比为4~5:1,Me靶的溅射功率密度为4W/cm2~6W/cm2
具体过程为:当腔室的真空度低于6×10-5时,充入Ar和O2的混合气体,Ar和O2的比值为4~5,并控制总气压为0.4~0.7Pa,调整Me靶的溅射功率密度为4W/cm2~6W/cm2,之后开启样品挡板,对基体表面进行沉积,得到Me与MeO的两相复合涂层。
优选地,在样品沉积前,对样品表面进行前处理,前处理方法包括等离子体辉光刻蚀清洗。
优选地,所述前处理方法为等离子体辉光刻蚀清洗,具体过程为:当真空度低于1×10-3Pa以后,通入氩气并维持气压0.3~2.0Pa,然后开启电源并同时给基板施加负偏压,利用氩气产生的等离子体对基底刻蚀10~20min。经等离子体辉光刻蚀清洗后,基体表面附着的水分子、气体分子或者微尘颗粒被完全轰击掉,降低Me或MeO的沉积涂层的杂质,提高其成膜质量和密度。
进一步优选地,射频辅助的频率10-15MHz,利用射频可以产生辅助等离子体,可使成膜原子数量、能量大幅度提高,在满足高成膜速率的同时保持较好的成膜质量,制备的涂层致密,不存在贯穿性空隙。
优选地,在制备过程中对样品进行额外辅热,目的是对促进沉积原子的扩散,让涂层变致密,辅热温度为300~450℃。
优选地,在制备过程中进行辅助轰击,轰击负偏压为-5~-20V。对基体施加了负偏压,基体施加负偏压可以在涂层制备过程中提高等离子对涂层的轰击力,提高涂层的密实度且让涂层形成的柱状晶被打断,阻止柱缝这种贯穿性空隙的形成。
本发明采用磁控溅射法制备涂层,因为该方法是个快速冷却的过程,原子往往由于扩散不足,在晶态材料中常伴随柱状晶的出现,多存在贯穿性的空隙(如晶界)。本发明利用非晶涂层结构和打断柱状晶来减少磁控溅射法制备涂层常存在的贯穿性空隙,从而获得较好的防护性能,这些与本发明特定的涂层成分组成和制备工艺直接相关。
与现有技术相比,本发明具有以下有益效果:
(1)本发明提供的SiC陶瓷的防护涂层,具有优异的耐高温硫酸盐、碳酸盐腐蚀作用,可显著降低SiC陶瓷因腐蚀所产生的失重,同等条件下防护涂层可将SiC腐蚀失重减少88%~97%。
(2)本发明提供的SiC陶瓷的防护涂层通过准确控制制备工艺,可有效避免涂层的贯穿性空隙,获得较好的防护性能,制备方法高效,易于实现工业化。
附图说明
图1为本发明实施例3和8制备的防护涂层的XRD结构,(a)实施例3,(b)实施例8。
图2为实施例3、8和对比例1的样品经高温熔岩腐蚀前后的微观形貌图,(a)对比例1的SiC块材经过高温熔盐腐蚀后的微观形貌;(b)实施例8制备的涂层制备态的截面形貌图;(b-1)实施例8制备的涂层经过高温熔盐腐蚀后的截面形貌图;(b-2)实施例8制备涂层经过高温熔盐腐蚀后的表面形貌图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围内。
以下实例中的涂层成分、涂层晶体结构、涂层形貌、涂层硬度均按下述方法测定:
1、涂层成分
利用FEI QuantaTM 250FEG的X射线能谱仪(EDAX)分析涂层成分及其分布。成分测定后,以Cr2O3、NiO、Al2O3作为标样,用标准ZAF方法对涂层中各元素的含量进行校正。每个样品选定一个面积不小于30mm2区域,测量其成分的平均值。
2、涂层晶体结构
采用德国Bruker D8 Advance X射线衍射仪(XRD),利用Cu Kα射线入射,波长为0.154nm,θ/θ模式,X射线管控制在40kV和40mA,测量涂层的晶体结构,利用镍滤波装置过滤掉Kβ射线,设置探测角2θ为20°~80°,步长设定为0.01°。
3、涂层形貌
采用日立S-4800扫描电镜(SEM,发射枪电压8KV),对涂层的表面、截面形貌特征和高温熔盐腐蚀后的涂层形貌特征进行观察;
4、涂层硬度
采用MTS NANO G200纳米压痕仪、Berkovich金刚石压头,为了消除基片效应和表面粗糙度的影响,压入深度为在涂层厚度的10%~20%处,每个样品测量10个矩阵点后取平均值。
5、耐熔盐腐蚀性能
将具体实施方式中制备的涂层及SiC块材的耐熔盐腐蚀测试是在高温熔融无水硫酸钠下进行的,将要评价的样品放入石英坩埚中,加入无水硫酸钠至样品完全包覆在其中。之后将坩埚放入管式炉中,接着将管式炉密封、抽真空至1.0*10-4Pa,炉子加热到900℃,并保温2-8h,通过测量高温熔盐腐蚀前后的样品质量变化,依据公式1计算出失重率,以此来测试样品的耐熔盐腐蚀性能,
失重率=(mB-mA)/mA×100% (公式1)
其中mA为样品在腐蚀之前的总质量,mB为样品在腐蚀之后的总质量。
实施例1-9
制备过程总体如下,制备主要工艺参数见表1。
(1)基体清洗
化学清洗:选用抛光后的SiC块材为基体,对其进行清洗,依次放入浓度为40%去污粉水溶液,饱和Na2CO3水溶液、丙酮、无水乙醇、去离子水中各超声清洗15min,然后在温度为100℃的干燥箱里鼓风干燥2h。
等离子体辉光刻蚀清洗:
将化学清洗好的SiC基体,装入真空室中的样品台上,当真空低于1×10-3Pa以后,通入氩气并维持气压在1Pa,然后开启电源并同时给基板施加负偏压,利用氩气产生的利用等离子体辉光对其刻蚀清洗10min。
(2)连接电源
将Me靶与射频辅助的直流电源相连,Me靶选自Cr、Cr与Al、或Cr与Ni中的一种,其中选用Cr与Al或Cr与Ni二元靶材时,组成为CraAl1-a,CrbNi1-b,其中a,b为原子比,0.6≤a≤1,0.9≤b≤1。
(3)沉积涂层:
第一种沉积方式:沉积Me与MeO的两相复合涂层,制备实施例1-3、6、7
将清洗后的SiC基体装入真空腔室中,当腔室的真空度为6×10-5Pa时,充入氩气和O2的混合气体,Ar和O2的比例为4~5,并控制总气压为0.4~0.7Pa,调整Me靶的溅射功率密度为4W/cm2~6W/cm2,之后开启样品挡板,对基体表面进行沉积,得到所述Me与MeO的两相复合涂层,其中沉积时对样品进行了辅热,辅热温度为300~450℃,对样品进行了辅助轰击,轰击负偏压为-5~-20V。
第二种沉积方式:沉积纯Me层制备实施例4、5、8、9
将清洗后的SiC基体装入真空腔室中,当腔室的真空度为6×10-5Pa时,充入Ar气,调整Me靶的溅射功率密度为3.2W/cm2~4.6W/cm2,其中沉积时对样品进行了辅热,辅热温度为300~450℃,对样品进行了辅助轰击,轰击负偏压为-5~-20V,之后开启样品挡板,对基体表面进行沉积,得到所述Me涂层。
表1实施例1-9制备过程主要沉积工艺参数
Figure BDA0002675872310000081
Figure BDA0002675872310000091
(4)涂层结构表征与性能测试
对实施例1-9所制备涂层经过涂层成分、晶体结构、形貌表征,涂层硬度测试与耐熔盐腐蚀性能8h后的失重率测试,结果如表2所示。
表2实施例1-9制备的防护涂层的性能测试
Figure BDA0002675872310000092
如图1所示,其中(a)和(b)分别为实施例3和实施例8制备的耐高温熔盐腐蚀防护涂层的XRD谱图,(a)图可以看出其制备的涂层为非晶与纳米晶的两相复合。(b)可以看出其制备的Cr涂层主要沿(200)晶面生长,一般沿此晶面生长的涂层都比较致密。
如图2所示,图2(b)为实施例8制备的纯Cr涂层截面形貌图,从其形貌图可以看出,涂层呈柱状晶结构,沿涂层生长方向柱状晶被打断,柱与柱之间不存在贯穿性柱缝。图2(b-1)为涂层经过高温熔盐腐蚀后的截面形貌图,可以看出,腐蚀后涂层变得更加密实,这说明腐蚀后形成的氧化物使得涂层变得更为致密,起到了有效隔离腐蚀介质与SiC块材,进而产生防护作用。图2(b-2)为涂层经过高温熔盐腐蚀后的表面形貌图,可以看出涂层高温熔盐腐蚀后,并未发生明显的腐蚀坑,说明涂层起到抗熔盐腐蚀的效果。以下对比例中同样对如实施例1-9的基体清洗过程。
对比例1
对未有防护涂层的SiC块材进行高温熔融无水硫酸钠(900℃)腐蚀测试,测定其腐蚀前后的重量变化,发现腐蚀2h后SiC块材的失重为9.2%,腐蚀4h后SiC块材的失重为17.4%,腐蚀8h后SiC块材的失重为31.3%。图2(a)展示了腐蚀6h后,SiC块材的表面形貌图,可以看出腐蚀后的SiC块材出现大量的腐蚀坑。
对比例2
当Me选用Cr、CrAl或CrNi靶材时,其中选用CrAl或CrNi二元靶材时,Al的含量为>30at.%,Ni的含量为>8at.%时,当背底真空低于于6×10-5Pa时,充入Ar和O2的混合气体,Ar和O2的比例为<3时,并控制总气压为0.5Pa,调整Me靶的溅射功率密度为4W/cm2,之后开启样品挡板,对基体表面进行沉积,得到结构不致密的非晶MeO与晶态Me两相复合涂层,涂层的Me晶粒比较大,晶粒大小为60~100nm,存在贯穿于涂层的贯穿性空隙缺陷。对该种结构的防护涂层进行高温熔融无水硫酸钠(900℃)腐蚀测试,腐蚀8小时后SiC块材的失重为18.3%,可见该种结构的涂层相比未有涂层的SiC块材,仍起到了一定腐蚀防护作用。
对比例3
沉积纯Me层,当腔室的真空度低于6×10-5Pa时,充入Ar气,采用直流电源驱动Me靶,调整Me靶的溅射功率密度为4.6W/cm2,溅射气压为0.3Pa,对基体不施加负偏压和额外辅热,之后开启样品挡板,对基体表面进行沉积,得到所述Me涂层。得到的Me涂层为柱状晶结构,结构相对致密,但存在贯穿性柱缝。对该种结构的防护涂层进行高温熔融无水硫酸钠(900℃)腐蚀测试,腐蚀8小时后SiC块材的失重为6.3%,可见该种结构的涂层相比未有涂层的SiC块材,仍起到了腐蚀防护作用。

Claims (7)

1.一种SiC陶瓷的防护涂层,其特征在于,所述防护涂层组成表示为MexO1-x,其中x为原子百分比,0.6≤x≤1;Me选自Cr、CrAl、CrNi中任一种,所述CrAl以Cr为主元,与Al的固溶体结构,所述CrNi以Cr为主元,与Ni的固溶体结构;
当x≠1时,所述防护涂层为非晶MeO与晶态Me的两相复合,所述防护涂层为非晶MeO与晶态Me的两相复合时,晶态Me相的晶粒大小为10~20nm,且均匀 分布在非晶MeO相中,涂层不存在贯穿性空隙;
当x=1时,所述防护涂层为Me涂层,为柱状晶结构,沿涂层生长方向柱状晶被打断,不存在贯穿性柱缝。
2.根据权利要求1所述的SiC陶瓷的防护涂层,其特征在于,所述柱状晶结构的宽度为300nm~500nm,其密度大于Me理论密度的93%以上。
3.根据权利要求1所述的SiC陶瓷的防护涂层,其特征在于,所述防护涂层采用X射线衍射2θ=20°~80°范围内测试,在44.4°和64.6°处分别出现Cr的(110)、(200)衍射峰。
4.一种根据权利要求1-3任一项所述的SiC陶瓷的防护涂层的制备方法,其特征在于,所述防护涂层通过物理气相沉积法制备。
5.根据权利要求4所述的SiC陶瓷的防护涂层的制备方法,其特征在于,
当所述防护涂层为Me涂层时,制备方法包括步骤:采用的磁控溅射法沉积防护涂层,保护气体为氩气,Me靶的溅射功率密度为3.2W/cm2~4.6W/cm2
当所述防护涂层为非晶MeO与晶态Me的两相复合时,制备方法包括步骤:采用的磁控溅射法沉积防护涂层,保护气体为氩气和氧气的混合气体,氩气与氧气的体积比为4~5:1,Me靶的溅射功率密度为4W/cm2~6W/cm2
6.根据权利要求4所述的SiC陶瓷的防护涂层的制备方法,其特征在于,制备过程中对样品进行额外辅热,辅热温度为300~450℃。
7.根据权利要求4所述的SiC陶瓷的防护涂层的制备方法,其特征在于,制备过程中进行辅助轰击,轰击负偏压为-5~-20V。
CN202010947693.0A 2020-09-10 2020-09-10 一种SiC陶瓷的防护涂层及其制备方法 Active CN112125705B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010947693.0A CN112125705B (zh) 2020-09-10 2020-09-10 一种SiC陶瓷的防护涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010947693.0A CN112125705B (zh) 2020-09-10 2020-09-10 一种SiC陶瓷的防护涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN112125705A CN112125705A (zh) 2020-12-25
CN112125705B true CN112125705B (zh) 2022-08-30

Family

ID=73845435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010947693.0A Active CN112125705B (zh) 2020-09-10 2020-09-10 一种SiC陶瓷的防护涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN112125705B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003152B (zh) * 2023-03-13 2024-01-30 昆明理工大学 抗高温水蒸气氧化的碳化硅陶瓷连接件及其制法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075405B2 (ja) * 1986-01-24 1995-01-25 株式会社日立製作所 非酸化物系セラミックスのメタライズ方法
US5418012A (en) * 1993-11-04 1995-05-23 The Babcock & Wilcox Company Conversion coatings on silicon carbide
CN101126159A (zh) * 2007-10-09 2008-02-20 北京科技大学 一种高性能NiCr基纳米涂层制备方法
CN103373860A (zh) * 2012-04-27 2013-10-30 比亚迪股份有限公司 陶瓷基体表面金属化涂层组合物、陶瓷基体表面金属化方法及其制备的涂层和陶瓷
CN103590002A (zh) * 2012-08-17 2014-02-19 中国科学院金属研究所 一种镍基高温合金Al-Cr涂层的制备方法
CN105420659A (zh) * 2015-11-03 2016-03-23 江苏奇纳新材料科技有限公司 一种抗熔盐腐蚀的陶瓷氧化膜制备工艺
CN109943813B (zh) * 2019-04-28 2023-03-14 北京航空航天大学 一种Al-Cr金属复合涂层的高通量制备方法

Also Published As

Publication number Publication date
CN112125705A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN108486537B (zh) 一种用于锆合金的非晶防护涂层及其制备方法和应用
Ren et al. Ablation resistance of HfC coating reinforced by HfC nanowires in cyclic ablation environment
CN107620033B (zh) 一种高纯强致密max相涂层的制备方法
Lee et al. Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide (SiC) coating
CN114395753B (zh) 一种多层结构的Fe-Cr-Al基防护涂层及其制备方法
CN110616400B (zh) 一种具有耐高温水蒸气氧化和强韧性的叠层防护涂层及制备方法和应用
CN114196914B (zh) 一种碳化物高熵陶瓷材料、碳化物陶瓷层及其制备方法和应用
Liu et al. Influences of modulation period on structure and properties of AlTiSiN/AlCrSiN nanocomposite multilayer coatings
CN112125705B (zh) 一种SiC陶瓷的防护涂层及其制备方法
CN109338303B (zh) 一种用于锆合金防护的非晶与纳米晶复合涂层及其制备方法
Ren et al. Microstructure and ablation performance of HfC/PyC core-shell structure nanowire-reinforced Hf1-xZrxC coating
Xin et al. Anti-oxidation behavior of chemical vapor reaction SiC coatings on different carbon materials at high temperatures
Hu et al. Oxidation inhibition behaviors of environmental barrier coatings with a Si-Yb2SiO5 mixture layer for SiCf/SiC composites at 1300° C
Lue et al. Thermal shock behavior of LaMgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer
Tu et al. Structure, composition and mechanical properties of reactively sputtered (TiVCrTaW) Nx high-entropy films
CN112853288A (zh) 一种具有长时间耐高温水蒸汽氧化的Fe-Cr-Al基防护涂层及其制备方法
CN112391592A (zh) 一种高温抗氧化钽铪碳三元陶瓷碳化物涂层及其制备方法
RU et al. Microstructure, formation mechanism and properties of plasma-sprayed Cr7C3—CrSi2—Al2O3 coatings
CN113430488B (zh) 一种核反应堆燃料包壳纳米复合涂层及其制备方法
CN109487209B (zh) 一种高硬度max相陶瓷涂层及其制备方法
CN109182989B (zh) 一种ScB2-B超硬复合薄膜及其制备方法
Chen et al. Ultra-high temperature ablation behavior of CVD-Hf5TaC6 solid solution ceramic coating for C/C composites: Experiment and first-principle calculation
Han et al. Influence of nitrogen flow rate on the microstructure and properties of N and Me (Me= Cr, Zr) co-doped diamond-like carbon films
JPH0499243A (ja) 耐熱性複合材料に用いるコートされた補強材及びそれから作られた複合材料
Tong et al. Effect on BN interphase thickness upon SiCnws@ BN/HfC coating performance under impact and ablation environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant