CN112125675B - 一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法 - Google Patents

一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN112125675B
CN112125675B CN202010817268.XA CN202010817268A CN112125675B CN 112125675 B CN112125675 B CN 112125675B CN 202010817268 A CN202010817268 A CN 202010817268A CN 112125675 B CN112125675 B CN 112125675B
Authority
CN
China
Prior art keywords
sic
zrb
vsi
powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010817268.XA
Other languages
English (en)
Other versions
CN112125675A (zh
Inventor
钱余海
张鑫涛
杨阳
徐敬军
左君
李美栓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202010817268.XA priority Critical patent/CN112125675B/zh
Publication of CN112125675A publication Critical patent/CN112125675A/zh
Application granted granted Critical
Publication of CN112125675B publication Critical patent/CN112125675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明涉及超高温陶瓷基复合材料领域,具体为一种ZrB2‑SiC‑VSi2超高温陶瓷复合材料及其制备方法。采用粉末冶金方法热压烧结制备得到该材料,其中双增强相SiC和VSi2颗粒均匀弥散分布于ZrB2基体中。具体操作步骤如下:1)将ZrB2、SiC和VSi2粉末放入尼龙罐中,以无水乙醇为介质湿法球磨得到粉末浆料;2)将粉末浆料旋转烘干并过筛得到ZrB2‑SiC‑VSi2混合粉末,然后置入石墨模具中冷压成型;3)将成型的坯体连同模具一起放入热压炉内,在真空或者惰性气体保护气氛下热压烧结得到ZrB2‑SiC‑VSi2超高温陶瓷复合材料。该ZrB2‑SiC‑VSi2复合材料不仅烧结制备温度较低,而且具有优异的抗高温氧化性能,此外还具有制备工艺流程简便,制备周期短等优势。

Description

一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法
技术领域
本发明涉及超高温陶瓷基复合材料领域,具体为一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法。
背景技术
超高温陶瓷是指一类熔点超过3000℃的非氧化物陶瓷材料,主要包括早期过渡族金属的硼化物、碳化物和氮化物,如:ZrB2、HfB2、ZrC、HfC、HfN等,它们具有优良的力学和化学稳定性,是理想的超高温热结构及热防护系统的候选材料体系。其中,ZrB2-SiC复合材料因其具有较高的热导率、适中的热膨胀系数和良好的抗氧化烧蚀性能,是最具应用前景的超高温热防护材料之一,因此受到了广泛关注。
然而,由于ZrB2的强共价键以及低晶格扩散系数,导致制备得到致密的材料需要苛刻的条件,包括极高的温度(≥2100℃)、较大的压力(≥30MPa)和较长的保温保压时间(≥2h)。虽然添加SiC可以缩短保温保压时间,但烧结温度仍需高达1950℃左右。ZrB2-SiC制备过程中烧结温度高以及保温时间长,将导致材料中的晶粒粗化从而降低其力学性能,严重限制了这类材料的应用。此外,ZrB2-SiC虽然具有优良的抗氧化烧蚀性能,但是在高温氧化(>1200℃)过程中,在基体材料与氧化层之间容易生成一层贫SiC多孔层,严重影响高温力学性能和抗氧化性能,是目前亟待解决的技术问题。
发明内容
本发明的目的在于提供一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法,拟解决以下问题:1)现有ZrB2-SiC基超高温陶瓷烧结温度高,烧结时间长引起晶粒异常长大而降低力学性能;2)ZrB2-SiC基超高温陶瓷高温氧化后形成多孔贫SiC层,导致其高温力学和抗氧化性能下降。该复合材料具有优异的抗高温氧化性能,可减少甚至避免多孔贫SiC层的形成;该方法可大幅降低烧结温度,具有操作流程简便、周期短等特点,满足大规模批量化制备的需求。
本发明的技术方案如下:
一种ZrB2-SiC-VSi2超高温陶瓷复合材料,该陶瓷复合材料包括的物相主要为ZrB2、SiC和VSi2,其中SiC和VSi2为颗粒增强相,它们均匀弥散分布于ZrB2基体中;基体相ZrB2的体积分数是65~80%,增强相SiC的体积分数是15~30%,增强相VSi2的体积分数是5~16%。
所述的ZrB2-SiC-VSi2超高温陶瓷复合材料的制备方法,该方法的具体操作步骤如下:
1)按照设计比例称量所需的ZrB2、SiC和VSi2粉末,以“多-少-多”的方式依次倒入装有Si3N4研磨球的尼龙罐中,然后加入无水乙醇作为介质,其中研磨球和粉末的质量比为2.5~3.5:1,无水乙醇和粉末的质量比为3~5:10;
2)将装有粉末和无水乙醇介质的尼龙罐固定在行星球磨机中进行球磨混合,球磨时间为8~24h,球磨转速为240~300rpm;
3)将湿法球磨后得到的粉末浆料在旋转蒸发仪中旋转烘干,并过筛得到混合粉末,其中旋转蒸发仪的转速为50~80rpm,蒸发水浴温度为50~70℃,蒸发压力≤10 kPa,筛子目数为80~120目;
4)将得到的混合粉末装入内壁涂有BN的石墨模具内进行冷压成型,施加的压力范围是5~20kN,保压时间是3~10min,石墨模具的直径为25~60mm;
5)将装有混合粉末的石墨模具放置于热压烧结炉中,在真空气氛或者流动的惰性气氛中进行热压烧结,升温速率为5~15℃/min,烧结温度为1550~1650℃,烧结时间为0.5~1h,施加压力为25~35MPa;
6)待保温结束后,以8~15℃/min的速率降温至1000~1200℃,然后随炉冷却至室温,得到致密的ZrB2-SiC-VSi2超高温陶瓷复合材料。
所述的ZrB2-SiC-VSi2超高温陶瓷复合材料的制备方法,步骤1)中ZrB2粉末的平均颗粒尺寸为0.5~2μm,粉末纯度≥99.5wt%;SiC粉末的平均颗粒尺寸为0.5~2μm,粉末纯度≥99wt%,所属晶体结构为α-SiC;VSi2粉末的平均颗粒尺寸为1~3μm,粉末纯度≥99.5wt%。
所述的ZrB2-SiC-VSi2超高温陶瓷复合材料的制备方法,步骤5)中,惰性气氛为Ar、He或N2,其流速范围2~10L/min。
所述的ZrB2-SiC-VSi2超高温陶瓷复合材料的制备方法,步骤6)中,ZrB2-SiC-VSi2超高温陶瓷复合材料的致密度范围为97.0~99.0%。
本发明的设计思想是:
在高温氧化性气氛中,VSi2将与ZrB2反应生成VB,反应方程式如下:
2VSi2+ZrB2+5O2→2VB+ZrO2+4SiO2 (1)
热力学计算表明,该反应在极低的氧分压条件下即可进行,从而可大幅降低氧化层内的氧分压,这将导致ZrB2-SiC氧化过程中多孔的贫SiC层厚度减小甚至消失,确保制备得到的复合材料在高温下仍具有优良的力学及抗氧化性能。另外,二硅化物VSi2可同时作为烧结助剂降低超高温陶瓷材料的烧结温度。基于上述技术原理,本发明设计并制备ZrB2-SiC-VSi2超高温陶瓷复合材料,旨在进一步提高ZrB2-SiC的烧结性能、抗高温氧化性能及高温力学性能。
本发明的优点及有益效果是:
1、本发明所涉及的新型ZrB2-SiC-VSi2超高温陶瓷复合材料,是在二元ZrB2-SiC陶瓷复合材料内引入第三相VSi2陶瓷,VSi2的加入可使该复合材料在1550~1650℃下烧结致密,相较于ZrB2-SiC陶瓷复合材料(烧结温度为1950℃),烧结致密化温度降低300~400℃。
2、相对较低的烧结温度(1550~1650℃)可以抑制晶粒长大,从而有助于提升制备材料的力学性能。
3、本发明可在较低温度下实现烧结致密化,因此所需设备简单,同时烧结制备时间短,烧结温度降低,可大幅降低生产制造成本。
4、中国发明专利(公开号CN104529467A)公开了一种低温制备ZrB2-SiC超高温陶瓷复合材料的方法,其技术原理为:利用超细粉末的高表面能和反应活性来降低烧结温度,具体采用超细亚微米的ZrB2和SiC粉体(粒径分别为80~180nm和50~500 nm)来实现ZrB2-SiC超高温陶瓷复合材料的低温烧结。然而,在实际中,获得亚微米晶粒尺寸的ZrB2和SiC粉体所需成本极高。本发明中添加VSi2即可在低温下使用微米级的粉体烧结得到致密的ZrB2-SiC-VSi2超高温陶瓷复合材料,操作更加简便。
5、本发明ZrB2-SiC-VSi2超高温陶瓷复合材料在高温氧化条件下,VSi2可与ZrB2反应生成VB。热力学计算表明,在极低的氧分压条件下该反应即可发生,从而可大幅降低氧化层内的氧分压,将有效地减小甚至消除多孔贫SiC层的厚度,确保制备得到的复合材料在高温下仍具有优良的力学及抗氧化性能。
附图说明
图1为本发明制备的ZrB2-SiC-VSi2超高温陶瓷复合材料的X射线衍射谱。图中,横坐标2θ代表衍射角(degrees),纵坐标Intensity代表相对强度(arb.units)。
图2为本发明ZrB2-SiC-VSi2超高温陶瓷复合材料的表面形貌照片。
图3为本发明ZrB2-SiC-VSi2超高温陶瓷复合材料在1800℃氧化30min后的截面形貌。其中:Resin、SiO2、ZrO2+SiO2、Matrix分别代表树脂、二氧化硅层、二氧化锆和二氧化硅混合层,以及基体。
具体实施方式
在具体实施过程中,本发明采用粉末冶金方法热压烧结制备得到ZrB2-SiC-VSi2超高温陶瓷复合材料,该方法的具体操作步骤如下:
1)按照设计比例称量所需的ZrB2、SiC和VSi2粉末,将三种粉末以体积“多-少 -多”的方式依次倒入装有Si3N4研磨球的尼龙罐中,采用“多-少-多”方式的作用是:使样品充分接触混合均匀。然后加入无水乙醇作为球磨介质,研磨球和粉末的质量比为2.5~3.5:1,无水乙醇和粉末的质量比为3~5:10;
其中,ZrB2粉末的平均颗粒尺寸为0.5~2μm,粉末纯度≥99.5wt%;SiC粉末的平均颗粒尺寸为0.5~2μm,粉末纯度≥99wt%,所属晶体结构为α-SiC;VSi2粉末的平均颗粒尺寸为1~3μm,粉末纯度≥99.5wt%。
2)将装有粉末和无水乙醇介质的尼龙罐固定在行星球磨机中进行球磨混合,目的是减小粉料颗粒尺寸,暴露出粉末的新鲜活性表面,利于后续热压烧结,球磨时间为 8~24h,球磨转速为240~300rpm;
3)将混合破碎后得到的粉末浆料在旋转蒸发仪上旋转烘干,并过筛得到混合粉末,其中旋转蒸发仪的转速为50~80rpm,蒸发水浴温度为50~70℃,蒸发压力≤10kPa (优选为3~8kPa),筛子目数为80~120目;
4)将得到的混合粉末装入内壁涂有BN的石墨模具内进行冷压成型,所施加的压力范围是5~20kN,保压时间是3~10min,石墨模具的直径为25~60mm;
5)将装有混合粉末的石墨模具放置于热压烧结炉中,在真空气氛或者流动的惰性气氛中(如:Ar、He、N2等,流速范围2~10L/min)进行热压烧结,升温速率为5~15 ℃/min,烧结温度为1550~1650℃,烧结时间为0.5~1h,施加压力为25~35MPa;
6)待保温结束后,以8~15℃/min的速率降温至1000~1200℃,然后随炉冷却至室温,得到致密的ZrB2-SiC-VSi2超高温陶瓷复合材料(致密度可达99.0%)。
该陶瓷复合材料包括的物相主要为ZrB2、SiC和VSi2,其中SiC和VSi2为颗粒增强相,它们均匀弥散分布于ZrB2基体中。基体相ZrB2的体积分数是65~80%,增强相 SiC的体积分数是15~30%,增强相VSi2的体积分数是5~16%。进一步的,通过实施例验证本发明制备的复合材料具有1800℃氧化测试30min的抗超高温氧化能力。
下面,通过实施例和附图进一步详述本发明。但这些实施例不得用于解释为对本发明保护范围的限制,所有在本发明技术方案基本思路范围内或本质上等同于本发明技术方案的改变均为本发明的保护范围。
实施例1
将粒度为0.5μm的ZrB2粉末15.94g、粒度为0.5的SiC粉末2.41g和粒度为1μm 的VSi2粉末1.65g(三种陶瓷粉末的体积分数之比为ZrB2:SiC:VSi2=70:20:10) 放入尼龙球磨罐中球磨12h。在60℃以70rpm的转速在旋转蒸发仪(蒸发压力5kPa) 中旋转烘干后过80目筛,得到混合陶瓷粉末,接着装入直径为25mm内壁涂有BN 的石墨模具中以5kN冷压成型5min。然后,将装有混合陶瓷粉末的石墨模具在流速为3L/min的保护性Ar中热压烧结,以8℃/min的升温速率加热至1600℃,同时压强逐渐加到30MPa,保温0.5h。保温结束后,以10℃/min降温至1200℃,空冷至室温,得到ZrB2-SiC-VSi2超高温陶瓷复合材料。通过阿基米德排水法测试得到复合材料的致密度为99.0%,在1800℃氧化测试30min后复合材料的氧化增重为3.16 mg·cm-2
实施例2
将粒度为2μm的ZrB2粉末15.76g、粒度为2μm的SiC粉末1.79g和粒度为3μm 的VSi2粉末2.45g(三种陶瓷粉末的体积分数之比为ZrB2:SiC:VSi2=70:15:15) 放入尼龙球磨罐中球磨24h。在55℃下以75rpm的转速在旋转蒸发仪(蒸发压力3kPa) 中旋转烘干后过100目筛,得到混合陶瓷粉末,接着装入直径为25mm内壁涂有BN 的石墨模具中以5kN冷压成型8min。然后,将装有混合陶瓷粉末的石墨模具在真空中热压烧结(真空度10-2Pa),以8℃/min的升温速率加热至1550℃,同时压强逐渐加到30MPa,保温1h。保温结束后,以12℃/min降温至1000℃,空冷至室温,得到ZrB2-SiC-VSi2超高温陶瓷复合材料。通过阿基米德排水法测试得到复合材料的致密度为97.2%,在1800℃氧化测试30min后复合材料的氧化增重为3.07mg·cm-2
实施例3
将粒度为1μm的ZrB2粉末15.03g、粒度为1μm的SiC粉末2.45g和粒度为2μm 的VSi2粉末2.52g(三种陶瓷粉末的体积分数之比为ZrB2:SiC:VSi2=65:20:15) 放入尼龙球磨罐中球磨16h。在70℃下以50rpm的转速在旋转蒸发仪(蒸发压力8kPa) 中旋转烘干后过120目筛,得到混合陶瓷粉末,接着装入直径为25mm内壁涂有BN 的石墨模具中以10kN冷压成型5min。然后,将装有混合陶瓷粉末的石墨模具在流速为5L/min的保护性N2中热压烧结,以15℃/min的升温速率加热至1650℃,同时压强逐渐加到35MPa,保温0.5h。保温结束后,以10℃/min降温至1100℃,空冷至室温,得到ZrB2-SiC-VSi2超高温陶瓷复合材料。通过阿基米德排水法测试得到复合材料的致密度为97.8%,在1800℃氧化测试30min后复合材料的氧化增重为2.93 mg·cm-2
实施例4
将粒度为0.5μm的ZrB2粉末17.48g、粒度为0.5μm的SiC粉末1.73g和粒度为 1μm的VSi2粉末0.79g(三种陶瓷粉末的体积分数之比为ZrB2:SiC:VSi2=80:15: 5)放入尼龙球磨罐中球磨8h。在50℃下以80rpm的转速在旋转蒸发仪(蒸发压力 6kPa)中旋转烘干后过100目筛,得到混合陶瓷粉末,接着装入直径为25mm内壁涂有BN的石墨模具中以15kN冷压成型3min。然后,将装有混合陶瓷粉末的石墨模具在真空中热压烧结(真空度10-2Pa),以5℃/min的升温速率加热至1550℃,同时压强逐渐加到25MPa,保温1h。保温结束后,以8℃/min降温至1040℃,空冷至室温,得到ZrB2-SiC-VSi2超高温陶瓷复合材料。通过阿基米德排水法测试得到复合材料的致密度为98.3%,在1800℃氧化测试30min后复合材料的氧化增重为3.28mg·cm-2
比较例
通过热压方法制备ZrB2-SiC超高温陶瓷复合材料。具体实施步骤为,将粒度为2 μm的ZrB2粉末22.08g和粒度为2μm的SiC粉末2.92g(两种陶瓷粉末的体积分数之比为ZrB2:SiC=80:20)放入尼龙球磨罐中湿法球磨12h。热压烧结温度为1950℃,其它制备步骤同实施例1,得到ZrB2-SiC超高温陶瓷复合材料。通过阿基米德排水法测试得到复合材料的致密度为96.4%,在1800℃氧化测试30min后复合材料的氧化增重为3.40mg·cm-2。通过与实施例1比较可以发现ZrB2-SiC-VSi2超高温陶瓷复合材料的烧结致密化温度较ZrB2-SiC超高温陶瓷复合材料降低350℃,且前者的致密度更高;在1800℃氧化测试30min后前者的氧化增重和氧化层厚度更小,且氧化层中多孔的贫SiC层厚度仅为后者的1/3。因此,制备的ZrB2-SiC-VSi2超高温陶瓷复合材料烧结性能和高温下的抗氧化性能均比ZrB2-SiC2超高温陶瓷复合材料有较大幅度的提高。
如图1所示,本发明制备的ZrB2-SiC-VSi2超高温陶瓷复合材料的X射线衍射谱。由图1可以看出,所制备的ZrB2-SiC-VSi2主相由ZrB2和SiC组成,还有微量的VSi2相,同时含有少量的ZrO2杂质相这主要由于气氛中残存或者粉体表面吸附的氧导致 ZrB2在烧结过程中发生氧化而生成的。
如图2所示,本发明ZrB2-SiC-VSi2超高温陶瓷复合材料的表面形貌照片。由图2 可以看出,在样品内各物相呈等轴状均匀分布,结合X射线衍射谱以及能谱分析可以确定,灰色物相为ZrB2,暗黑色物相为SiC,不规则形状的浅白色物相为VSi2
如图3所示,本发明ZrB2-SiC-VSi2超高温陶瓷复合材料在1800℃氧化30min 后的截面形貌。由图3可以看出,1800℃氧化30min后在基体表面生成了SiO2外层以及ZrO2和SiO2混合层。
实施例结果表明,本发明ZrB2-SiC-VSi2复合材料不仅烧结制备温度较低,而且具有优异的抗高温氧化性能,此外还具有制备工艺流程简便,制备周期短等优势。

Claims (3)

1.一种ZrB2-SiC-VSi2超高温陶瓷复合材料,其特征在于,该陶瓷复合材料包括的物相主要为ZrB2、SiC和VSi2,其中SiC和VSi2为颗粒增强相,它们均匀弥散分布于ZrB2基体中;基体相ZrB2的体积分数是65~80%,增强相SiC的体积分数是15~30%,增强相VSi2的体积分数是5~16%;
所述的ZrB2-SiC-VSi2超高温陶瓷复合材料的制备方法,该方法的具体操作步骤如下:
1)按照设计比例称量所需的ZrB2、SiC和VSi2粉末,以“多-少-多”的方式依次倒入装有Si3N4研磨球的尼龙罐中,然后加入无水乙醇作为介质,其中研磨球和粉末的质量比为2.5~3.5:1,无水乙醇和粉末的质量比为3~5:10;
2)将装有粉末和无水乙醇介质的尼龙罐固定在行星球磨机中进行球磨混合,球磨时间为8~24h,球磨转速为240~300rpm;
3)将湿法球磨后得到的粉末浆料在旋转蒸发仪中旋转烘干,并过筛得到混合粉末,其中旋转蒸发仪的转速为50~80rpm,蒸发水浴温度为50~70℃,蒸发压力≤10kPa,筛子目数为80~120目;
4)将得到的混合粉末装入内壁涂有BN的石墨模具内进行冷压成型,施加的压力范围是5~20kN,保压时间是3~10min,石墨模具的直径为25~60mm;
5)将装有混合粉末的石墨模具放置于热压烧结炉中,在真空气氛或者流动的惰性气氛中进行热压烧结,升温速率为5~15℃/min,烧结温度为1550~1650℃,烧结时间为0.5~1h,施加压力为25~35MPa;
6)待保温结束后,以8~15℃/min的速率降温至1000~1200℃,然后随炉冷却至室温,得到致密的ZrB2-SiC-VSi2超高温陶瓷复合材料,ZrB2-SiC-VSi2超高温陶瓷复合材料的致密度范围为97.0~99.0%。
2.按照权利要求1所述的ZrB2-SiC-VSi2超高温陶瓷复合材料,其特征在于,步骤1)中ZrB2粉末的平均颗粒尺寸为0.5~2μm,粉末纯度≥99.5wt%;SiC粉末的平均颗粒尺寸为0.5~2μm,粉末纯度≥99wt%,所属晶体结构为α-SiC;VSi2粉末的平均颗粒尺寸为1~3μm,粉末纯度≥99.5wt%。
3.按照权利要求1所述的ZrB2-SiC-VSi2超高温陶瓷复合材料,其特征在于,步骤5)中,惰性气氛为Ar、He或N2,其流速范围2~10L/min。
CN202010817268.XA 2020-08-14 2020-08-14 一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法 Active CN112125675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010817268.XA CN112125675B (zh) 2020-08-14 2020-08-14 一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010817268.XA CN112125675B (zh) 2020-08-14 2020-08-14 一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112125675A CN112125675A (zh) 2020-12-25
CN112125675B true CN112125675B (zh) 2022-05-31

Family

ID=73850913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010817268.XA Active CN112125675B (zh) 2020-08-14 2020-08-14 一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112125675B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379852A (en) * 1980-08-26 1983-04-12 Director-General Of The Agency Of Industrial Science And Technology Boride-based refractory materials
CN108698940A (zh) * 2015-12-21 2018-10-23 赛峰航空陶瓷技术公司 由化学反应生产陶瓷的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379852A (en) * 1980-08-26 1983-04-12 Director-General Of The Agency Of Industrial Science And Technology Boride-based refractory materials
CN108698940A (zh) * 2015-12-21 2018-10-23 赛峰航空陶瓷技术公司 由化学反应生产陶瓷的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Classification of Oxidation Behavior of Disilicides;Kurokawa K等;《Solid State Phenomena》;20071231;第127卷;第227-232页 *
Improved both mechanical and anti-oxidation performances of ZrB2-SiC ceramics with molybdenum disilicide addition;Xu L等;《Materials Chemistry and Physics》;20181022;第223卷;第53-59页 *
Influence of vanadium content on the characteristics of spark plasma;Nayebi B等;《Journal of Alloys and Compounds》;20191231;第805卷;第725-732 *
ZrB2-SiC复合材料的制备与性能研究;田庭燕;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20061215(第12期);第6页 *

Also Published As

Publication number Publication date
CN112125675A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US20220009838A1 (en) Long-term ablation-resistant nitrogen-containing carbide ultra-high temperature ceramic with ultra-high melting point and application thereof
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN106904985B (zh) 一种钛-硅-碳增强型氧化铝基多相复合材料及其制备方法
CN112500178B (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
KR20110077154A (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN100579935C (zh) 一种聚合物裂解-反应热压制备纳米SiC颗粒增强MoSi2基复合材料的方法
CN115180960B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN110790587A (zh) 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN110590404A (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN112125675B (zh) 一种ZrB2-SiC-VSi2超高温陶瓷复合材料及其制备方法
CN112939608B (zh) 一种白色氮化铝陶瓷及其热压烧结方法和用途
CN112062574B (zh) 一种高性能纳米碳化硅陶瓷及其制备方法和应用
CN109231990A (zh) 一种碳化钨-金刚石复合材料的制备方法
CN111517798A (zh) 一种碳化物基陶瓷材料、制备方法及其应用
CN115677351A (zh) 一种强结合界面的多叠层碳化硼复合陶瓷及其制备方法
CN108558405B (zh) 一种高致密度高纯度碳化硅衬底材料的制备方法
CN113773089B (zh) 一种高熵二硅化物及其制备方法
CN116396090B (zh) 一种碳化硅/碳化硼陶瓷骨架增强碳基复合材料及制备方法和应用
CN114315364A (zh) 一种先驱体加入纳米Si粉制备净SiC陶瓷的方法
KR101860477B1 (ko) 탄화규소-지르코늄 탄질화물 복합 소재 제조용 조성물 및 이를 이용한 탄화규소-지르코늄 탄질화물 복합 소재의 제조방법
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant