CN112111049B - 一种含氮二维聚合物薄膜及其制备方法和应用 - Google Patents

一种含氮二维聚合物薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN112111049B
CN112111049B CN201910530543.7A CN201910530543A CN112111049B CN 112111049 B CN112111049 B CN 112111049B CN 201910530543 A CN201910530543 A CN 201910530543A CN 112111049 B CN112111049 B CN 112111049B
Authority
CN
China
Prior art keywords
polymer film
nitrogen
dimensional polymer
formula
alkaline solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910530543.7A
Other languages
English (en)
Other versions
CN112111049A (zh
Inventor
黎明
程鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201910530543.7A priority Critical patent/CN112111049B/zh
Publication of CN112111049A publication Critical patent/CN112111049A/zh
Application granted granted Critical
Publication of CN112111049B publication Critical patent/CN112111049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种含氮二维聚合物薄膜,其结构单元的通式为:
Figure DDA0002099605630000011
Figure DDA0002099605630000012
Figure DDA0002099605630000013

Description

一种含氮二维聚合物薄膜及其制备方法和应用
技术领域
本发明涉及功能材料技术领域,具体涉及一种含氮二维聚合物薄膜及其制备方法和应用。
背景技术
二维聚合物薄膜具有纳米尺度的厚度、巨大的比表面积、多活性中心、多孔结构等性质,这些性质使得二维聚合物薄膜在能源存储、电子信息、化工环保等领域具有重要的应用。
目前,具有大横向面积的二维聚合物薄膜主要通过界面法制备,该类界面包括金属固体界面和液体界面(如甲苯)。传统金属固体界面稳定,但制备的材料难以完整地从界面上分离下来,并且金属固体界面价格昂贵,每次制备完一张膜后,不易进行下一步清洗以备重复使用。液体界面一般价格低廉,制备所得的膜也容易从界面上转移出来,但液体界面不稳定,容易受到外界的干扰。
为了综合利用固体界面和液体界面的优势,有必要开发一种兼具固体界面和液体界面优势的新型界面,该界面在单体聚合的时候,保持固态,在聚合生成二维聚合物薄膜后,可以轻易地转化为液态。
发明内容
基于上述现有技术,本发明提供了一种含氮二维聚合物薄膜及其制备方法和应用,该聚合物薄膜横向尺度大、厚度薄,可用于制备场效应晶体管,还可以作为电催化水裂解产氢的催化剂。
该聚合物薄膜制备方法条件温和,操作简单。
实现本发明上述目的所采用的技术方案为:
一种含氮二维聚合物薄膜,其结构单元的通式为:
Figure BDA0002099605610000021
式(Ⅰ)和式(Ⅱ)中,n为正整数,且1≤n≤10,虚线为结构单元之间的连接键;式(Ⅲ)和(Ⅳ)中,
Figure BDA0002099605610000022
只能和/>
Figure BDA0002099605610000023
连接。
所述的含氮二维聚合物薄膜为单层结构,或者由单层结构周期性紧密堆积而成的多层结构。
一种含氮二维聚合物薄膜的制备方法,包括如下步骤:
1、将三聚氯氰单体溶解在与水互不相溶的有机溶剂中,得到有机溶液;
2、将碱和胺类单体溶解在水中,得到碱性溶液,将碱性溶液进行冷冻结冰;
3、将有机溶液置于结冰的碱性溶液上,形成界面,在碱性溶液结冰的温度下静置1-60天,在界面处生成所述的含氮二维聚合物薄膜,将结冰的碱性溶液融化,得到所述的含氮二维聚合物薄膜。
进一步,当结构单元的通式为式(Ⅰ)和式(Ⅱ)时,胺类单体的结构通式为:
Figure BDA0002099605610000031
其中,m为正整数,且1≤m≤21;
当结构单元的通式为式(Ⅲ)和式(Ⅳ)时,胺类单体的结构通式为:
Figure BDA0002099605610000032
其中,X为CH或N。
进一步,所述的碱为Cs2CO3、K2CO3、Na2CO3、Li2CO3、CaCO3、MgCO3、CsOH、CsHCO3、KHCO3、NaHCO3、LiHCO3、KOH、NaOH、LiOH、Ca(OH)2、Mg(OH)2、三乙胺、吡啶或派啶。
进一步,所述的有机溶剂为碳原子数为5-25的烷烃、甲苯、乙苯、二甲苯、三甲苯、石油醚、氯苯、二氯苯、三氯苯、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、三氯乙烷、四氯化碳、乙酸乙酯或乙酸甲酯。
一种含氮二维聚合物薄膜在制备场效应晶体管中的应用。
一种含氮二维聚合物薄膜在作为电催化水裂解产氢催化剂中的应用。
与现有技术相比,本发明的有益效果和优点在于:
1、本发明的聚合物薄膜横向尺度大、厚度薄,且不需要依赖于基底,可以独立稳定存在,该聚合物薄膜可用于制备场效应晶体管,还可以作为电催化水裂解产氢的催化剂。
2、该聚合物的制备方法中,利用冰面作为界面,冰面廉价环保,又可以方便地变成液态水界面,其兼具了固体界面和液体界面的优点。
附图说明
图1为实施例1制备的含氮二维聚合物薄膜的光学照片。
图2为实施例1制备的含氮二维聚合物薄膜的原子力显微镜图(标尺:1um)。
图3为实施例1制备的含氮二维聚合物薄膜的扫描电子显微镜图(标尺:20um)。
图4为实施例1制备的含氮二维聚合物薄膜的电子能谱面扫描图。
图5为实施例1制备的含氮二维聚合物薄膜的透射电子显微镜图(标尺:2um)。
图6为实施例1制备的含氮二维聚合物薄膜的红外光谱图和拉曼光谱图。
图7为实施例1制备的聚合物薄膜中C元素的X射线光电子能谱图。
图8为实施例1制备的聚合物薄膜中N元素的X射线光电子能谱图。
图9为实施例1制备的聚合物薄膜的紫外-可见光谱图。
图10为实施例2制备的含氮二维聚合物薄膜的光学照片。
图11为实施例2制备的含氮二维聚合物薄膜的原子力显微镜图(标尺:2um)。
图12为实施例2制备的含氮二维聚合物薄膜的扫描电子显微镜图(标尺:2um)。
图13为实施例2制备的含氮二维聚合物薄膜的电子能谱面扫描图。
图14为实施例2制备的含氮二维聚合物薄膜的透射电子显微镜图(标尺:5um)。
图15为实施例2制备的含氮二维聚合物薄膜的红外光谱图和拉曼光谱图。
图16为实施例2制备的聚合物薄膜中C元素的X射线光电子能谱图。
图17为实施例2制备的聚合物薄膜中N元素的X射线光电子能谱图。
图18为实施例2制备的聚合物薄膜的紫外-可见光谱图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
实施例1
1、在容器A中,将92.3mg三聚氯氰(CAS号:108-77-0,阿拉丁试剂)溶于100mL-16℃的甲苯中,得到有机溶液;
2、在容器B中,将81.1mg对苯二胺(CAS号:106-50-3,阿拉丁试剂)和200mg氢氧化钾溶解在100mL水中,得到碱性溶液,将碱性溶液-16℃下快速冷冻结冰;
3、将容器A中的有机溶液倒入容器B中,将容器B在-16℃下静置30天,静置完成后,倒出容器B中冰面上方的溶液,用50mL-16℃的甲苯轻轻洗涤容器B中的冰面三次,将容器B中的冰融化,即可得到悬浮在水面上的含氮二维聚合物薄膜。
4、按照上述的方法一次做多个平行样品,便于后面一系列的测试。
将上述步骤3所得的含氮二维聚合物薄膜进行拍照,所得的光学照片如图1所示,从图1可知,所得的含氮二维聚合物薄膜的横向尺寸可达20cm,可达分米级别。
用表面平整的硅圆将其中一个容器B中的聚合物薄膜捞出来,并使用乙醇和水依次清洗三次,自然晾干后在室温下真空干燥,用原子力显微镜观察,所得的原子力显微镜图如图1所示,由图2可知,所得的聚合物薄膜表面平整,厚度约为3.5nm。
用铜网将其中一个容器B中的聚合物薄膜捞出来,并使用乙醇和水依次清洗三次,自然晾干后在室温下真空干燥,用扫描电子显微镜观察,所得的扫描电子显微镜图如图3所示,从图3可以看出,所得的聚合物薄膜可以独立稳定的悬挂在铜网上。
对聚合物薄膜位于图3中方框的位置进行电子能谱扫描,所得C和N元素的电子能谱面扫描图如图4所示,图4显示材料由碳和氮元素组成,并且这两种元素在材料内分布均匀。
用微栅碳铜网将其中一个容器B中的聚合物薄膜捞出来,并使用乙醇和水依次清洗三次,自然晾干后在室温下真空干燥,用透射电子显微镜观察,所得的透射电子显微镜图如图5所示,从图5可以看出,所得的聚合物薄膜具有层状结构。
对所得的聚合物薄膜进行红外光谱分析和拉曼光谱分析,所得的红外光谱图和拉曼光谱图如图6所示,红外光谱图显示,所得的聚合物薄膜具有三嗪环(1450cm-1)、对位取代的苯环(2924、1611、880、1760cm-1)、连接三嗪环和苯环的NH(3430、702cm-1)及C-N(1240、2480cm-1);拉曼光谱图显示,所得的聚合物薄膜具有响应的C=C和C=N。
对所得的聚合物薄膜进行X射线光电子能谱分析,所得的C元素的X射线光电子能谱图和N元素的X射线光电子能谱图分别如图7和图8所示,由图7可知,碳元素可以分为三种价态,位于284.5、285.6和287.8eV价态的碳的摩尔比为2:1:1,这三种碳分别对应于苯环上与取代基邻位的碳、苯环上与取代基相连的碳以及三嗪环上的碳;由图8可知,氮元素可以分为两种价态,位于398.7和399.9eV价态的氮的摩尔比为1:1,这两种氮分别对应于连接三嗪环和苯环的NH和三嗪环上的氮。
对所得的聚合物薄膜进行紫外-可见吸收光谱分析,所得的紫外-可见吸收光谱图如图9所示,由图9可知,所得的聚合物薄膜具有三嗪环(204nm)和苯环(204、251nm)的特征吸收峰,另外,其具有宽吸收特征峰(276、314nm),说明其具有大共轭结构。
以上所有的分析表明,本实施例所制备的聚合物薄膜具有以下结构单元:
Figure BDA0002099605610000051
将本实施例制备的聚合物薄膜作为沟道材料制备场效应晶体管,测得所得的场效应晶体管的载流子迁移率为1.2×10-3cm2/V·s。
将本实施例制备的聚合物薄膜作为催化剂沉积在铜片上,作为试验工作电极,采用线性扫描伏安法测试试验工作电极的电催化水裂解产氢性能;
测试条件为:电解液为0.5M的硫酸溶液、参比电极为饱和甘汞电极、对电极为碳棒,使用试验工作电极时,电流密度为10mA/cm2时产氢所需的过电位为463mV,优于相同测试条件下N掺杂的石墨烯材料的490mV和P掺杂的石墨烯材料的553mV(参考Y.Zheng,Y.Jiao,L.H.Li,T.Xing,Y.Chen,M.Jaroniec and S.Z.Qiao,ACS Nano,2014,8,5290-5296)。
测试条件为:电解液为1M的氢氧化钾溶液、参比电极为Ag/AgCl电极、对电极为碳棒,使用试验工作电极时,电流密度为10mA/cm2时产氢所需的过电位为422mV,优于大多数碳基无金属催化剂,如N,P-石墨烯(580mV),N-石墨烯(640mV),S-石墨烯(720mV),N-carbon(780mV)和多壁碳纳米管(800mV)(参考K.Qu,Y.Zheng,Y.Jiao,X.Zhang,S.Dai and S.-Z.Qiao,Adv.Energy Mater.,2017,7,1602068)。
实施例2
1、在容器A中,将92.3mg三聚氯氰(CAS号:108-77-0,阿拉丁试剂)溶于100mL-16℃的甲苯中,得到有机溶液;
2、在容器B中,将116.3mg 1,3,5-三氨基苯三盐酸盐(CAS号:638-09-5,阿拉丁试剂)和200mg氢氧化钾溶解在100mL水中,得到碱性溶液,将碱性溶液-16℃下快速冷冻结冰;
3、将容器A中的有机溶液倒入容器B中,将容器B在-16℃下静置30天,静置完成后,倒出容器B中冰面上方的溶液,用50mL-16℃的甲苯轻轻洗涤容器B中的冰面三次,将容器B中的冰融化,即可得到悬浮在水面上的含氮二维聚合物薄膜。
4、按照上述的方法一次做多个平行样品,便于后面一系列的测试。
将上述步骤3所得的含氮二维聚合物薄膜进行拍照,所得的光学照片如图10所示,从图10可知,所得的含氮二维聚合物薄膜的横向尺寸可达20cm,可达分米级别。
用表面平整的硅圆将其中一个容器B中的聚合物薄膜捞出来,并使用乙醇和水依次清洗三次,自然晾干后在室温下真空干燥,用原子力显微镜观察,所得的原子力显微镜图如图11所示,由图11可知,所得的聚合物薄膜表面平整,厚度约为10nm。
用铜网将其中一个容器B中的聚合物薄膜捞出来,并使用乙醇和水依次清洗三次,自然晾干后在室温下真空干燥,用扫描电子显微镜观察,所得的扫描电子显微镜图如图12所示,从图12可以看出,所得的聚合物薄膜可以独立稳定的悬挂在铜网上。
对聚合物薄膜位于图12中方框的位置进行电子能谱扫描,所得C和N元素的电子能谱面扫描图如图13所示,图13显示材料由碳和氮元素组成,并且这两种元素在材料内分布均匀。
用微栅碳铜网将其中一个容器B中的聚合物薄膜捞出来,并使用乙醇和水依次清洗三次,自然晾干后在室温下真空干燥,用透射电子显微镜观察,所得的透射电子显微镜图如图14所示,从图14可以看出,所得的聚合物薄膜具有层状结构。
对所得的聚合物薄膜进行红外光谱分析和拉曼光谱分析,所得的红外光谱图和拉曼光谱图如图15所示,红外光谱图显示,所得的聚合物薄膜具有三嗪环(1416cm-1)、1,3,5-三取代的苯环(1176cm-1;2352cm-1);拉曼光谱图显示,所得的聚合物薄膜具有响应的C=C和C=N。
对所得的聚合物薄膜进行X射线光电子能谱分析,所得的C元素的X射线光电子能谱图和N元素的X射线光电子能谱图分别如图16和图17所示,由图16可知,碳元素可以分为三种价态,位于283.5、284.9和287.0eV价态的碳的摩尔比为1:1:1,这三种碳分别对应于苯环上、苯环上与取代基相连的碳以及三嗪环上的碳;由图15可知,氮元素可以分为两种价态,位于397.9和399.1eV价态的氮的摩尔比为1:1,这两种氮分别对应于连接三嗪环和苯环的NH和三嗪环上的氮。
对所得的聚合物薄膜进行紫外-可见吸收光谱分析,所得的紫外-可见吸收光谱图如图8所示,由图8可知,所得的聚合物薄膜具有三嗪环和苯环(245nm)的特征吸收峰,另外,其具有宽吸收特征峰(285nm),说明其具有大共轭结构。
以上所有的分析表明,本实施例所制备的聚合物薄膜具有以下结构单元:
Figure BDA0002099605610000071
将本实施例制备的聚合物薄膜作为沟道材料制备场效应晶体管,测得所得的场效应晶体管的载流子迁移率为2.6×10-3cm2/V·s。
将本实施例制备的聚合物薄膜作为催化剂沉积在铜片上,作为试验工作电极,采用线性扫描伏安法测试试验工作电极的电催化水裂解产氢性能;
测试条件为:电解液为0.5M的硫酸溶液、参比电极为饱和甘汞电极、对电极为碳棒,使用试验工作电极时,电流密度为10mA/cm2时产氢所需的过电位为424mV,优于相同测试条件下N掺杂的石墨烯材料的490mV和P掺杂的石墨烯材料的553mV(参照Y.Zheng,Y.Jiao,L.H.Li,T.Xing,Y.Chen,M.Jaroniec and S.Z.Qiao,ACS Nano,2014,8,5290-5296)。
测试条件为:电解液为1M的氢氧化钾溶液、参比电极为Ag/AgCl电极、对电极为碳棒,使用试验工作电极时,电流密度为10mA/cm2时产氢所需的过电位为375mV,优于大多数碳基无金属催化剂,如N,P-石墨烯(580mV),N-石墨烯(640mV),S-石墨烯(720mV),N-carbon(-0.78V)和多壁碳纳米管(800mV)(参照K.Qu,Y.Zheng,Y.Jiao,X.Zhang,S.Dai and S.-Z.Qiao,Adv.Energy Mater.,2017,7,1602068),甚至优于部分含金属的二维材料,如二维钴-卟啉聚合物1mA/cm2时367mV的过电位(参照H.Sahabudeen,H.Qi,B.A.Glatz,D.Tranca,R.Dong,Y.Hou,T.Zhang,C.Kuttner,T.Lehnert,G.Seifert,U.Kaiser,A.Fery,Z.Zhengand X.Feng,Nat.Commun.,2016,7,13461.)。

Claims (4)

1.一种含氮二维聚合物薄膜的制备方法,其特征在于包括如下步骤:
1.1、将三聚氯氰单体溶解在与水互不相溶的有机溶剂中,得到有机溶液;
1.2、将碱和胺类单体溶解在水中,得到碱性溶液,将碱性溶液进行冷冻结冰;
1.3、将有机溶液置于结冰的碱性溶液上,形成界面,在碱性溶液结冰的温度下静置1-60天,在界面处生成所述的含氮二维聚合物薄膜,将结冰的碱性溶液融化,得到所述的含氮二维聚合物薄膜;所述的含氮二维聚合物薄膜,其结构单元的通式为:
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004
(Ⅰ) (Ⅱ)
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
(Ⅲ) (Ⅳ);
式(Ⅰ)和 式(Ⅱ)中,n为正整数,且1≤n≤10,虚线为结构单元之间的连接键;式(Ⅲ)和(Ⅳ)中,
Figure DEST_PATH_IMAGE010
只能和
Figure DEST_PATH_IMAGE012
连接。
2.根据权利要求1所述的含氮二维聚合物薄膜的制备方法,其特征在于:
当结构单元的通式为式(Ⅰ)和式(Ⅱ)时,胺类单体的结构通式为:
Figure DEST_PATH_IMAGE014
其中,m为正整数,且1≤m≤21;
当结构单元的通式为式(Ⅲ)和式(Ⅳ)时,胺类单体的结构通式为:
Figure DEST_PATH_IMAGE016
其中,X为CH或N。
3.根据权利要求1所述的含氮二维聚合物薄膜的制备方法,其特征在于:所述的碱为Cs2CO3、K2CO3、Na2CO3、Li2CO3、CaCO3、MgCO3、CsOH、CsHCO3、KHCO3、NaHCO3、LiHCO3、KOH、NaOH、LiOH、Ca(OH)2、Mg(OH)2、三乙胺、吡啶或派啶。
4.根据权利要求1所述的含氮二维聚合物薄膜的制备方法,其特征在于:所述的有机溶剂为碳原子数为5-25的烷烃、甲苯、乙苯、二甲苯、三甲苯、石油醚、氯苯、二氯苯、三氯苯、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、三氯乙烷、四氯化碳、乙酸乙酯或乙酸甲酯。
CN201910530543.7A 2019-06-19 2019-06-19 一种含氮二维聚合物薄膜及其制备方法和应用 Active CN112111049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910530543.7A CN112111049B (zh) 2019-06-19 2019-06-19 一种含氮二维聚合物薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910530543.7A CN112111049B (zh) 2019-06-19 2019-06-19 一种含氮二维聚合物薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112111049A CN112111049A (zh) 2020-12-22
CN112111049B true CN112111049B (zh) 2023-03-24

Family

ID=73795394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910530543.7A Active CN112111049B (zh) 2019-06-19 2019-06-19 一种含氮二维聚合物薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112111049B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920973A (zh) * 2017-03-02 2017-07-04 华东师范大学 一种氮掺杂碳非贵金属氧还原电催化材料的合成方法
CN108033436A (zh) * 2018-01-09 2018-05-15 西北师范大学 一种基于有机共价框架的氮掺杂多孔碳材料的制备方法
CN108117651A (zh) * 2018-01-09 2018-06-05 西北师范大学 一种具有三嗪结构的多孔有机共价框架材料的合成方法
CN108754662A (zh) * 2018-05-16 2018-11-06 福州大学 共价类三嗪结构发光有机半导体聚合物纳米纤维的制备方法及其光催化产氢应用
CN109180912A (zh) * 2018-09-21 2019-01-11 台州学院 基于三聚氯氰和二苯并噻吩的共轭微孔聚合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920973A (zh) * 2017-03-02 2017-07-04 华东师范大学 一种氮掺杂碳非贵金属氧还原电催化材料的合成方法
CN108033436A (zh) * 2018-01-09 2018-05-15 西北师范大学 一种基于有机共价框架的氮掺杂多孔碳材料的制备方法
CN108117651A (zh) * 2018-01-09 2018-06-05 西北师范大学 一种具有三嗪结构的多孔有机共价框架材料的合成方法
CN108754662A (zh) * 2018-05-16 2018-11-06 福州大学 共价类三嗪结构发光有机半导体聚合物纳米纤维的制备方法及其光催化产氢应用
CN109180912A (zh) * 2018-09-21 2019-01-11 台州学院 基于三聚氯氰和二苯并噻吩的共轭微孔聚合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1,4-Phenylenediamine based covalent triazine framework as an electro catalyst;Gopi S et al;《Polymer》;20161223;第315-320页 *
Gopi S et al.1,4-Phenylenediamine based covalent triazine framework as an electro catalyst.《Polymer》.2016,第315-320页. *
Two-Dimensional Growth of Large-Area Conjugated Polymers on Ice Surfaces: High Conductivity and Photoelectrochemical Applications;Barpuzary D, et al;《ACS Naono》;20190402;第13卷;第3953-3963页 *

Also Published As

Publication number Publication date
CN112111049A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
Vedhanarayanan et al. Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications
Shinde et al. Influence of Mn incorporation on the supercapacitive properties of hybrid CuO/Cu (OH) 2 electrodes
US11976078B2 (en) Synthetically modifiable ion channels
Wuttke et al. Bringing Porous Organic and Carbon‐Based Materials toward Thin‐Film Applications
CN109564948B (zh) 有机铅卤化物钙钛矿薄膜及制造其的方法
Gatti et al. Interfacial morphology addresses performance of perovskite solar cells based on composite hole transporting materials of functionalized reduced graphene oxide and P3HT
Wen et al. Hydrothermal synthesis of WSe 2 films and their application in high-performance photodetectors
CN109524546A (zh) 一种基于纳米格子分子的有机场效应晶体管存储器及其制备方法
Murugadoss et al. Caesium− methyl ammonium mixed-cation lead iodide perovskite crystals: analysis and application for perovskite solar cells
CN102205959A (zh) 石墨炔纳米管及其制备方法
Zhao et al. Facile electrochemical synthesis of CeO 2@ Ag@ CdS nanotube arrays with enhanced photoelectrochemical water splitting performance
Zhao et al. Construction of a double-walled carbon nanoring
Zhang et al. Branched tungsten oxide nanorod arrays synthesized by controlled phase transformation for solar water oxidation
CN112111049B (zh) 一种含氮二维聚合物薄膜及其制备方法和应用
Shi et al. Well‐Aligned Quaternary Cu2CoSnS4 Single‐Crystalline Nanowires as a Potential Low‐Cost Solar Cell Material
Zhang et al. Hierarchical architecture of WO 3 nanosheets by self-assembly of nanorods for photoelectrochemical applications
Shi et al. Nanoconfined solvothermal synthesis and characterization of ultrafine Cu2NiSnS4 nanotubes
CN101949026A (zh) 苝酰亚胺衍生物薄膜的制备方法
Tan et al. Supercapacitors based on polyelectrolyte/ferrocenyl-surfactant complexes with high rate capability
Zhao et al. A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent
WO2019021908A1 (ja) カーボンナノチューブ複合体およびその製造方法
JP2016086027A (ja) 無機有機複合熱電変換材料とその製造方法
CN110964178B (zh) 一种二维全共轭聚合物及其制备方法和应用
Nam et al. Low-temperature solution process of al-doped zno nano-flakes for flexible perovskite solar cells
WO2015037200A1 (ja) 光電変換素子の製造方法及び光電変換素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201222

Assignee: Kunming Dechi Environmental Engineering Co.,Ltd.

Assignor: Hubei University

Contract record no.: X2023980040018

Denomination of invention: A nitrogen containing two-dimensional polymer film and its preparation method and application

Granted publication date: 20230324

License type: Common License

Record date: 20230822