CN112098868A - 用于改进电池容量估计的方法和系统 - Google Patents

用于改进电池容量估计的方法和系统 Download PDF

Info

Publication number
CN112098868A
CN112098868A CN202010542609.7A CN202010542609A CN112098868A CN 112098868 A CN112098868 A CN 112098868A CN 202010542609 A CN202010542609 A CN 202010542609A CN 112098868 A CN112098868 A CN 112098868A
Authority
CN
China
Prior art keywords
capacity
energy storage
estimator
electrical energy
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010542609.7A
Other languages
English (en)
Inventor
A·克林特贝里
T·维克
J·斯科特
M·海德盖尔德
L·阿尔姆奎斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Car Corp
Original Assignee
Volvo Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Car Corp filed Critical Volvo Car Corp
Publication of CN112098868A publication Critical patent/CN112098868A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • G01R31/3832Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration without measurement of battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

所公开的主题总体上涉及一种用于以比现有技术中提供的更高的准确性来估计电能存储设备的容量的方法。利用所提出的方法,通过使用偏置补偿的容量估计器代替经常使用的现有技术的容量估计器,至少部分地补偿了在电能存储设备的容量的估计中使用的所测量的电流或电压中的不确定性。因此,电压和/或电流传感器的准确性变得较不重要,这导致可以使用较不复杂且成本较低的传感器并且导致提高所估计的能量存储容量的准确性。以上优点通过提供偏置补偿的容量估计器获得,该偏置补偿的容量估计器包括至少一个偏置项,该偏置项与原始容量估计器的期望值距真实容量值的偏差有关。

Description

用于改进电池容量估计的方法和系统
技术领域
本公开总体上涉及一种用于估计电能存储设备的容量的方法和系统。
背景技术
随着电动车辆的发展,电池在汽车工业中正变得越来越重要。电力的增加使用推动更准确地测量和监控电池特征的方法的发展。例如,期望监控并显示电池的荷电状态,因为这可以被考虑为等同于对于电池的燃料计。自然地,如果电池被用于提供推进动力,则对驾驶员感兴趣的是知道可用于推进的剩余荷电水平。
另一个感兴趣监控的电池参数是电池容量,其被定义为电荷量,例如充满电的电池可以传递的安倍秒数。电池容量提供电池健康的度量,即电池的存储能力由例如老化而已退化到何程度。
感兴趣的是准确地估计退化,使得可以在使用电池的推进范围变得太短之前及时更换电池,并防止由于对电池容量的错误估计而发生二次故障。
估计电池容量的常见方式是使用容量估计器,该容量估计器包括对荷电状态以及从电池中取出或充入电池的电流的测量。该方法通常包括测量电池的电压以估计荷电状态,这不可避免地包括所测量的电压并且由此还有所估计的荷电状态中的不确定性。
因此,在用于估计电池的容量的方法中存在改进的空间。
发明内容
所公开的主题总体上涉及一种以比现有技术中提供的更高准确性的用于估计电能存储设备的容量的方法。
利用所提出的方法,通过使用偏置补偿的容量估计器代替经常使用的现有技术的容量估计器,至少部分地补偿了在对电能存储设备的容量的估计中使用的所测量的电流或电压中的不确定性。因此,利用本文中提出的方法,电压和/或电流传感器的准确性变得较不重要,这导致可以使用较不复杂且成本较低的传感器。此外,与现有技术方法相比,所估计的能量存储容量的准确性得以提高。
以上优点是通过提供偏置补偿的容量估计器而获得的。偏置补偿的容量估计器包括基于所积分的电流与荷电状态的变化之间的比率的容量估计器与至少一个偏置项之间的减法。偏置项与容量估计器的期望值距真实容量值的偏差有关。
发明人实现使用普通的容量估计器,并推导容量估计器的期望值。期望值具有若干项,包括真实值和一组偏差项,例如方差项,即所谓的估计器的偏置项。发明人实现从原始容量估计器中减去从容量估计器的期望值推导出的偏置项,以形成偏置补偿的容量估计器。换句话说,通过从原始容量估计器中减去偏置项补偿了偏置项中反映的来自电流和/或电压的测量的不确定性。
使用电能存储设备的偏置补偿的容量估计器、所积分的电流以及荷电状态的变化估计电能存储设备的容量。
发明人还提出一种用于估计电能存储设备的容量的系统,该系统包括配置成测量电能存储设备的电流的电流传感器以及配置成估计电能存储设备的荷电状态的变化的处理电路,并基于电流的积分、荷电状态的变化以及偏置补偿的容量估计器来估计电能存储设备的容量,偏置补偿的容量估计器包括基于放电电流与荷电状态的变化之间的比率的容量估计器与和容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法。
当研究所附权利要求和以下描述时,本公开的进一步特征和优点将变得显而易见。技术人员认识到,在不脱离本公开的范围的情况下,可以组合本公开的不同特征以创建除了以下描述的那些实施例之外的实施例。
附图说明
现在将参考示出本公开的示例实施例的附图来更详细地描述所公开的主题的这些和其它方面,其中:
图1示出概念性的开路电压对比荷电状态的曲线;
图2示出能量存储设备的等效电路模型;
图3是具有根据本公开的实施例的方法步骤的流程图;
图4是具有根据本公开的实施例的方法步骤的流程图;
图5是根据本公开的实施例的系统的框图;以及
图6示出根据本公开的实施例的概念性车辆。
具体实施方式
在本具体实施方式中,描述了根据本公开的方法和系统的各种实施例。然而,本公开的实施例可以以许多不同的形式实现,并且不应被解释为限于本文中阐述的实施例;相反,这些实施例是为了透彻性和完整性并将本公开的范围完全传达给技术人员而提供的。在一些例子中,以框图形式示出了众所周知的结构和设备以便避免使本文中呈现的示例性实施例的新颖性模糊。类似的附图标记始终指代类似的元件。
图1示意性地示出所谓的开路电压(OCV)曲线,该曲线反映OCV作为电能存储设备(例如电池单元)的荷电状态(SOC)的函数。总体上,电能存储模块可以具有多个电能存储单元以形成完整的电能存储模块,例如牵引电池。本文中提出的方法和系统可以应用于独立单元或应用于两个或更多单元的组合。
OCV是电能存储设备当其处于静止时的电极之间的电位差。总体上,当OCV等于预定义的最大电压时,能量存储设备被充满电。当OCV等于预定义的最小电压时,能量存储设备被完全放电。
因此,能量存储容量是从充满电的能量存储设备直到其完全放电之前可以抽取的安培秒数。
SOC是能量存储设备中的剩余荷电水平的量度,并且可以被定义为直到能量存储设备被完全放电的剩余安培秒数与能量存储设备的容量之间的比率。SOC可以通过对通过能量存储设备的电流进行积分并通过容量进行归一化来计算。换句话说,当前SOC,zSOC(t)可以由下式给出:
Figure BDA0002539441060000031
其中,t是当前时间,t0是先前时刻,ηi是库仑效率,并且Q是电能容量。
通过针对SOC的不同值测量OCV,获得了OCV与SOC之间的映射,并且在图1中示出一个这样的示例OCV曲线。从等式1认识到,重要的是准确地确定容量以获得SOC的准确估计。例如,来自SOC1和SOC2的OCV曲线的相对恒定部分中OCV的小误差将导致从OCV曲线估计的SOC的高度不确定性。本公开的目的是减轻该不确定性的影响。
本文中的容量估计器的讨论基于电能存储设备的所谓等效电路模型。图2示意性地示出等效电路模型200,其指示开路电压(OCV),该开路电压(OCV)是电能存储设备的荷电状态(SOC)的函数。进一步存在串联电阻Rs、与极化电容C1并联连接的极化电阻R1,两者都与串联电阻Rs串联连接。电压V指示电路200的输出电压,并且电流i是通过电路200的电流,例如充电或放电电流。
基于重排方程(1),容量Q可以被表达为:
Figure BDA0002539441060000041
其中zSOC(t)≠zSOC(t0)。出于实际目的,容量估计器以离散形式使用:
Figure BDA0002539441060000042
其中Δt是采样时间,im是所测量的电流,以及
Figure BDA0002539441060000043
是所估计的SOC。
图3是根据本公开的实施例的用于估计电能存储设备的容量的方法步骤的流程图。该方法包括步骤S102,其随时间对电能存储设备的所测量的电流进行积分。该积分实际上是通过将上述公式(3)中的总和乘以时间步长Δt来实现的。在步骤S104中,估计电能存储设备的荷电状态的变化。该变化由等式(3)中的项
Figure BDA0002539441060000044
表示。在步骤S106中,提供偏置补偿的容量估计器,其包括基于所积分的电流与荷电状态的变化之间的比率的容量估计器与和容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法。容量估计器基于所积分的电流与荷电状态的变化之间的比率,并且优选地由等式(3)中的容量估计器
Figure BDA0002539441060000045
给出。偏置项将在下面更详细地讨论,但是总体上涉及造成容量估计器的偏置的距容量估计器
Figure BDA0002539441060000046
的期望值的所估计的偏差。在步骤S108中,使用偏置补偿的容量估计器、所积分的电流以及荷电状态的变化来估计电能存储设备的容量。
本公开的实施例至少部分地基于以下实现:从容量估计器中减去偏置项而以这种方式从容量估计器中消除由例如电流或电压的不准确测量造成的偏置。认识到,期望值包括表示真实值上的偏置的偏差项。可以推导出偏置项并从原始容量估计器中减去偏置项而以这种方式消除偏置,并因此也消除与真实值的偏差。
偏置项可以是表达为随机容量估计器变量的容量估计器的期望值与真实容量值的偏差。典型地,随机变量具有平均值和偏差,例如标准差。在一个实施例中,平均值与真实容量值之间的差异可以表示偏置项。
然而,为了产生更准确的偏置补偿的容量估计器,随机容量估计器变量可以基于两个正态分布的变量的商,其中第一变量是所积分的电流变量并且第二变量是荷电状态变化变量。当使用等式(3)中的容量估计器时,该容量估计器是所积分的电流变量与荷电状态变化变量之间的商,这是更准确的。
现在将参考图4中的流程图描述构造偏置补偿的容量估计器的一个示例方式。在步骤S202中,将容量估计器表达为随机容量估计器变量,其是被高斯电流噪声破坏的正态分布的所积分的电流变量与被高斯荷电状态噪声破坏的正态分布的荷电状态变量之间的比率。更特别地,可以假设所测量的电流(im(k))是未偏置但是通过高斯噪声(w(k))破坏的,即im(k)=i(k)+w(k),其中
Figure BDA0002539441060000051
即具有零均值和标准差σI的正态分布。类似地,所估计的
Figure BDA0002539441060000052
是未偏置但是通过高斯噪声(v(k))破坏的,
Figure BDA0002539441060000053
Figure BDA0002539441060000054
其中
Figure BDA0002539441060000055
即具有零均值和标准差σSOC的正态分布。
利用以上的假设,容量估计器可以被表达为呈以下形式的随机容量变量:
Figure BDA0002539441060000056
等式(4)将随机容量估计器提供为两个正态分布的变量的商,其中第一变量是所积分的电流变量并且第二变量是荷电状态变化变量。
如本领域中已知的,(例如参见Haya等,management science 21(11)(1975)1338-1341),两个正态分布的变量X和Y的商的期望值(E[W],W=Y/X)可以由下式近似给出
Figure BDA0002539441060000057
其中ρXY是X与Y之间的相关系数。
在步骤S204中,推导随机容量估计器变量的期望值。
使用等式(3)和(5),容量估计器
Figure BDA0002539441060000061
的期望值
Figure BDA0002539441060000062
可以由下式给出:
Figure BDA0002539441060000063
从而,等式(6)表示容量估计器
Figure BDA0002539441060000064
的期望值的近似。在等式(6)中,ρ是等式(4)中的分子与分母之间的相关系数。
接下来,在步骤S206中,识别随机容量估计器变量的期望值的偏置项。偏置项是跟随真实值Q并由此表示与真实值Q的偏差的项,即等式(6)中的偏置项为:
偏置项:
Figure BDA0002539441060000065
接下来,在步骤S208中,作为从容量估计器减去偏置项的结果,产生偏置补偿的容量估计器。换句话说,偏置补偿的容量估计器
Figure BDA0002539441060000066
现在被提供为:
Figure BDA0002539441060000067
其中
Figure BDA0002539441060000068
由等式(3)给出。偏置补偿的容量估计器
Figure BDA0002539441060000069
的期望值等于Q。换句话说,偏置补偿的容量估计器的期望值等于真实值Q。从而,以上步骤构造出补偿偏置的偏置补偿的容量估计器,这意味着所提供的偏置补偿的容量估计器对于所测量的电流或电压中的测量误差更鲁棒,并且可以由此提供对所估计的容量的更准确的估计。此外,使用偏置补偿的容量估计器可以允许使用较简单且成本较少的电流和/或电压传感器,只要已知传感器的方差,例如以估计
Figure BDA00025394410600000610
应当注意,无论如何估计SOC,等式(8)中提供的偏置补偿的容量估计器都是有效的。例如,可以通过测量电能存储设备的开路电压并基于该开路电压估计荷电状态的变化来确定SOC。
此外,当从OCV曲线估计SoC时,ρ=0,因为所测量的电流与SOC之间的相关性然后等于零,由此通过消除包括ρ的最后项简化了表达式(8)。
在测量被积分的电流之前,预先构造偏置补偿的容量估计器。换句话说,偏置补偿的容量估计器是在使用之前被构造和准备的而不是在每个周期重新构造。
图5是用于估计包括多个能量存储设备503的电能存储模块502的容量的系统500的框图。电能存储设备503可以是单个能量存储单元,由此电能存储模块502包括串联电连接的多个存储单元503。典型地,取决于所期望的输出电压Vout,串联连接的单元的数量在50-800个单元的范围内。此外,还有可能将并联连接的单元串联连接以便提供更大容量的电能存储设备。换句话说,能量存储设备503可以包括多个并联连接的能量存储单元。
系统500包括配置成测量电能存储设备503的电流电流传感器505。该电流可以是供应给能量存储设备503的充电电流或从能量存储设备503取出的放电电流。可以进一步包括电压传感器507用于测量电能存储设备503的电压以估计电能存储设备503的SOC。
处理电路510被通信地连接到电流传感器505以及通信地连接到电压传感器507,使得该处理电路510可以从传感器接收指示所测量的电流和电压的值的数据。
可以包括一个或更多控制单元以及存储设备的处理电路510被配置成基于所接收的数据来估计电能存储设备的荷电状态的变化。
此外,处理电路510被配置成基于电流的积分、荷电状态的变化以及偏置补偿的容量估计器来估计电能存储设备的容量。偏置补偿的容量估计器包括基于放电电流与荷电状态的变化之间的比率的容量估计器与和容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法。
处理电路510输出所估计的容量Q。
图5概念性地示出用于测量跨越一个电能存储设备503的电压和通过电能存储设备503的电流的单个电压传感器507和单个电流传感器505。然而,在实际实施中,可能存在针对能量存储模块502的电能存储设备503中的每一个的电压传感器和电流传感器。处理电路然后可以从所有电压传感器和所有电流传感器接收数据并针对电能存储设备503中的每一个执行容量估计。
进一步提供了一种控制单元,其被配置成:接收指示电能存储设备的积分的所测量的电流的数据;估计电能存储设备的荷电状态的变化;检索偏置补偿的容量估计器,包括基于放电电流与荷电状态的变化之间的比率的容量估计器与和容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法;以及使用偏置补偿的容量估计器、所积分的电流以及荷电状态的变化来估计电能存储容量。
偏置补偿的容量估计器的表示可以被存储在存储器设备中并由控制单元从存储器存储设备检索。偏置补偿的容量估计器总体上是被执行为用于估计容量的算法的函数。
控制单元优选地被配置用于在包括电能存储设备的车辆中采用。
本文中描述的电能存储设备可以是用于电动车辆的牵引电池。
图6示出车辆600,其可以是电动车辆,其包括用于向电动车辆600提供推进动力的电能存储设备602,例如牵引电池。该车辆进一步包括如参考图5描述的系统500。
另外,提供了一种计算机程序产品,其包括计算机可读介质,该计算机可读介质具有存储在其上的用于估计电能存储设备的容量的计算机程序装置,其中该计算机程序产品包括:用于使用偏置补偿的容量估计器、积分的所测量的电流以及电能存储设备的所估计的荷电状态的变化来估计电能存储设备的容量的代码,偏置补偿的容量估计器包括基于所积分的电流与荷电状态的变化之间的比率的容量估计器与和容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法。
控制单元与其它设备、系统或部件之间的通信可以是硬连线的,或者可以使用其它已知的电连接技术或本领域中已知的无线网络,例如经由CAN总线、蓝牙、以太网、Wifi、3G、4G、5G等。
控制单元可以包括微处理器、微控制器、可编程数字信号处理器或另一可编程设备,并且被嵌入到车辆/动力传动系控制逻辑/硬件中。控制单元还可以或者替代地包括专用集成电路、可编程门阵列或可编程阵列逻辑、可编程逻辑设备或数字信号处理器。在控制单元包括例如以上提到的微处理器、微控制器或可编程数字信号处理器的可编程设备的情况下,处理器可以进一步包括控制可编程设备的操作的计算机可执行代码。控制单元可以包括呈硬件或软件中的任一个或者部分地成呈硬件或软件的模块,并使用诸如CAN总线和/或无线通信能力的已知传输总线进行通信。
本公开的控制单元总体上被已知为ECU(电子控制单元)。
本领域技术人员认识到,本发明决不限于以上描述的优选实施例。相反,在所附权利要求的范围内许多修改和变型是可能的。
在权利要求中,词语“包括”不排除其它元件或步骤,并且不定冠词“一”或“一个”不排除多个。单个处理器或其它单元可以满足权利要求中记载的若干项的功能。在互不相同的从属权利要求中记载某些措施的仅有事实并不表明这些措施的组合不能被用于获利。权利要求中的任何附图标记都不应被解释为限制范围。
将认识到,取决于示例,本文中描述的任何技术的某些动作或事件可以以不同的顺序执行,可以被添加、合并或完全省略(例如,并非所有描述的动作或事件对于技术的实践是必要的)。此外,在某些示例中,各动作或事件可以例如通过多线程处理、中断处理或多个处理器而并发地而不是依次执行。
在一个或更多示例中,可以以硬件、软件、固件或其任意组合来实施所描述的功能。如果以软件实施,则功能可以作为计算机可读介质上的一个或更多指令或代码被存储或传输,并且由基于硬件的处理单元执行。计算机可读介质可以包括计算机可读存储介质或通信介质,计算机可读存储介质对应于诸如数据存储介质的有形介质,通信介质包括便于计算机程序从一个地方到另一个地方的转移(例如,根据通信协议)的任何介质。以这种方式,计算机可读介质总体上可以对应于(1)非暂时性的有形计算机可读存储介质,或者(2)诸如信号或载波的通信介质。数据存储介质可以是可由一台或多台计算机或者一个或更多处理器访问以检索指令、代码和/或数据结构用于本公开中描述的技术的实施的任何可获得的介质。计算机程序产品可以包括计算机可读介质。
通过示例而非限制的方式,这种计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光学光盘存储、磁盘存储或其它磁性存储设备、闪存或任何其它可用于存储指令或数据结构的形式的期望程序代码(并且该程序代码可以由计算机访问)的介质。而且,任何连接都被适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤缆、双绞线、数字用户线(DSL)或无线技术(例如红外、无线电和微波)从网站、服务器或其它远程源传输指令,则同轴电缆、光纤缆、双绞线、DSL或无线技术(例如红外、无线电和微波)被包括在介质的定义中。然而,应该理解,计算机可读存储介质和数据存储介质不包括连接、载波、信号或其它暂时介质,而是替代地针对非暂时、有形存储介质。本文中使用的磁盘和光盘包括压缩光盘(CD)、激光光盘、光学光盘、数字通用光盘(DVD)以及蓝光光盘,其中磁盘通常以磁性方式复制数据,而光盘则利用激光光学地复制数据。上述的组合也应被包括在计算机可读介质的范围内。
指令可以由一个或更多处理器执行,例如一个或更多数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、复杂可编程逻辑器件(CPLD)或其它等效的集成或离散逻辑电路。因此,本文中使用的术语“处理器”可以指任何前述结构或适用于本文中描述的技术的实施的任何其它结构。另外,在一些方面中,本文中描述的功能可以被提供在专用硬件和/或软件模块内。而且,技术可以被完全实施在一个或更多电路或逻辑元件中。
本公开的技术可以在包括集成电路(IC)或一组IC(例如,芯片组)的多种设备或装置中实施。在本公开中描述了各种部件、模块或单元以强调配置成执行所公开的技术的设备的各功能方面,但不是必须要求通过不同硬件单元实现。而是,如上所述,各种单元可以被组合在硬件单元中或者由互操作硬件单元的集合(包括如上所述的一个或更多处理器)与合适的软件和/或固件相结合的集合提供。
已经描述了各种示例。这些和其它示例在以下权利要求的范围内。

Claims (15)

1.用于估计电能存储设备的容量的方法,其包括:
随时间对所述电能存储设备的所测量的电流进行积分,
估计所述电能存储设备的荷电状态的变化,
提供偏置补偿的容量估计器,包括基于所积分的电流与所述荷电状态变化之间的比率的容量估计器与和所述容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法,以及
使用所述偏置补偿的容量估计器、所积分的电流以及荷电状态的变化来估计所述电能存储设备的容量。
2.根据权利要求1所述的方法,其中所述偏置项是表达为随机容量估计器变量的容量估计器的期望值距真实容量值的偏差。
3.根据权利要求2所述的方法,其中所述随机容量估计器变量是两个正态分布的变量的商,第一变量是所积分的电流变量并且第二变量是荷电状态变化变量。
4.根据前述权利要求中任一项所述的方法,其中所述偏置补偿的容量估计器由以下方式构造:
将容量估计器表达为随机容量估计器变量,所述随机容量估计器变量是被高斯电流噪声破坏的正态分布的所积分的电流变量与被高斯荷电状态噪声破坏的正态分布的荷电状态变量之间的比率,
推导所述随机容量估计器变量的期望值,
识别所述随机容量估计器变量的期望值的偏置项,以及
作为从所述容量估计器中减去所述偏置项的结果,产生所述偏置补偿的容量估计器。
5.根据前述权利要求中任一项所述的方法,其中所述容量估计器是离散容量估计器。
6.根据前述权利要求中任一项所述的方法,其中所述电能存储设备是电池单元。
7.根据前述权利要求中任一项所述的方法,其中从开路电压对荷电状态的关系来估计荷电状态的变化。
8.根据前述权利要求中任一项所述的方法,其包括:
在两个时刻处测量所述电能存储设备的开路电压,以及
基于所述开路电压估计荷电状态的变化。
9.根据前述权利要求中任一项所述的方法,其中所述电能存储设备是用于电动车辆的牵引电池。
10.控制单元,其被配置成:
接收指示电能存储设备的积分的所测量的电流的数据,
估计所述电能存储设备的荷电状态的变化,
检索偏置补偿的容量估计器,所述偏置补偿的容量估计器包括基于放电电流与荷电状态的变化之间的比率的容量估计器与和所述容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法,以及
使用所述偏置补偿的容量估计器、所积分的电流以及荷电状态的变化来估计电能存储容量。
11.根据权利要求10所述的控制单元,其被配置成通过以下方式来构造所述偏置补偿的容量估计器:
将容量估计器表达为随机容量估计器变量,所述随机容量估计器变量是被高斯电流噪声破坏的正态分布的所积分的电流变量与被高斯荷电状态噪声破坏的正态分布的荷电状态变量之间的比率,
推导所述随机容量估计器变量的期望值,
识别所述随机容量估计器变量的期望值的偏置项,以及
作为从所述容量估计器中减去所述偏置项的结果,产生所述偏置补偿的容量估计器。
12.根据权利要求10和11中任一项所述的控制单元,其被配置成在包括电能存储设备的车辆中采用。
13.用于估计电能存储设备的容量的系统,所述系统包括:
电流传感器,其被配置成测量所述电能存储设备的电流,
处理电路,其被配置成估计所述电能存储设备的荷电状态的变化,以及
基于电流的积分、荷电状态的变化以及偏置补偿的容量估计器估计所述电能存储设备的容量,所述偏置补偿的容量估计器包括基于放电电流与所述荷电状态的变化之间的比率的容量估计器与和所述容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法。
14.车辆,其包括根据权利要求13所述的系统。
15.计算机程序产品,其包括计算机可读介质,所述计算机可读介质具有存储在其上的用于估计电能存储设备的容量的计算机程序装置,其中所述计算机程序产品包括:
用于使用偏置补偿的容量估计器、积分的所测量的电流以及所估计的电能存储设备的荷电状态的变化来估计所述电能存储设备的容量的代码,所述偏置补偿的容量估计器包括基于所积分的电流与荷电状态的变化之间的比率的容量估计器与和所述容量估计器的期望值距真实容量值的偏差有关的至少一个偏置项之间的减法。
CN202010542609.7A 2019-06-17 2020-06-15 用于改进电池容量估计的方法和系统 Pending CN112098868A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19180658.7 2019-06-17
EP19180658.7A EP3754352A1 (en) 2019-06-17 2019-06-17 Method and system for improving battery capacity estimations

Publications (1)

Publication Number Publication Date
CN112098868A true CN112098868A (zh) 2020-12-18

Family

ID=66951804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010542609.7A Pending CN112098868A (zh) 2019-06-17 2020-06-15 用于改进电池容量估计的方法和系统

Country Status (3)

Country Link
US (1) US11255917B2 (zh)
EP (1) EP3754352A1 (zh)
CN (1) CN112098868A (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298833A1 (en) * 1999-02-15 2000-08-15 Francois Patenaude Method and apparatus for noise floor estimation
AU2002301322A1 (en) * 2001-10-16 2003-06-12 Harris Corporation System and method for an in-service decision-directed signal to noise ratio estimator
US20140177145A1 (en) * 2012-12-13 2014-06-26 Renesas Electronics Corporation Semiconductor device, battery pack, and electronic device
US20160054390A1 (en) * 2014-08-19 2016-02-25 Jian Lin Techniques for robust battery state estimation
CN105445664A (zh) * 2014-09-19 2016-03-30 通用汽车环球科技运作有限责任公司 用于估计电池系统能量容量的系统和方法
CN105637376A (zh) * 2013-06-18 2016-06-01 威拓股份有限公司 监测存储在电池内的电荷
CN107003359A (zh) * 2014-11-28 2017-08-01 雷诺有限合伙公司 电池组的电池单元的容量的自动估计方法
US20170242078A1 (en) * 2016-02-19 2017-08-24 Johnson Controls Technology Company Systems and methods for directional capacity estimation of a rechargeable battery
US20170242079A1 (en) * 2016-02-24 2017-08-24 Ford Global Technologies, Llc System and method for identifying vehicle battery decay
US20170269164A1 (en) * 2014-11-28 2017-09-21 Renault S.A.S. Automatic method for estimating the state of charge of a cell of a battery
CN107271905A (zh) * 2017-05-25 2017-10-20 上海思致汽车工程技术有限公司 一种用于纯电动汽车的电池容量主动估计方法
US20170356964A1 (en) * 2014-11-28 2017-12-14 Renault S.A.S. Automatic method for estimating the state of charge of a battery cell
CN107991623A (zh) * 2017-11-27 2018-05-04 山东大学 一种考虑温度和老化程度的电池安时积分soc估计方法
EP3340707A1 (en) * 2016-12-23 2018-06-27 Alcatel Lucent Channel selection device and method for wireless local area network
US20200132782A1 (en) * 2017-10-11 2020-04-30 Lg Chem, Ltd. Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227814B2 (ja) * 2003-02-07 2009-02-18 エスペック株式会社 電池状態診断装置および電池状態診断方法
JPWO2014083856A1 (ja) * 2012-11-30 2017-01-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
JP2014174050A (ja) 2013-03-11 2014-09-22 Kayaba Ind Co Ltd 電池容量推定装置
US9843069B2 (en) * 2014-09-26 2017-12-12 Ford Global Technologies, Llc Battery capacity degradation resolution methods and systems
CN106597307A (zh) 2016-12-16 2017-04-26 东莞新能德科技有限公司 一种修正电池剩余电量估算值的方法及装置
KR102179677B1 (ko) 2017-04-12 2020-11-17 주식회사 엘지화학 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298833A1 (en) * 1999-02-15 2000-08-15 Francois Patenaude Method and apparatus for noise floor estimation
AU2002301322A1 (en) * 2001-10-16 2003-06-12 Harris Corporation System and method for an in-service decision-directed signal to noise ratio estimator
US20140177145A1 (en) * 2012-12-13 2014-06-26 Renesas Electronics Corporation Semiconductor device, battery pack, and electronic device
CN105637376A (zh) * 2013-06-18 2016-06-01 威拓股份有限公司 监测存储在电池内的电荷
US20160054390A1 (en) * 2014-08-19 2016-02-25 Jian Lin Techniques for robust battery state estimation
CN105445664A (zh) * 2014-09-19 2016-03-30 通用汽车环球科技运作有限责任公司 用于估计电池系统能量容量的系统和方法
US20170356964A1 (en) * 2014-11-28 2017-12-14 Renault S.A.S. Automatic method for estimating the state of charge of a battery cell
US20170269164A1 (en) * 2014-11-28 2017-09-21 Renault S.A.S. Automatic method for estimating the state of charge of a cell of a battery
CN107003359A (zh) * 2014-11-28 2017-08-01 雷诺有限合伙公司 电池组的电池单元的容量的自动估计方法
US20170242078A1 (en) * 2016-02-19 2017-08-24 Johnson Controls Technology Company Systems and methods for directional capacity estimation of a rechargeable battery
US20170242079A1 (en) * 2016-02-24 2017-08-24 Ford Global Technologies, Llc System and method for identifying vehicle battery decay
CN107117045A (zh) * 2016-02-24 2017-09-01 福特全球技术公司 用于识别电池衰减的系统和方法
EP3340707A1 (en) * 2016-12-23 2018-06-27 Alcatel Lucent Channel selection device and method for wireless local area network
CN107271905A (zh) * 2017-05-25 2017-10-20 上海思致汽车工程技术有限公司 一种用于纯电动汽车的电池容量主动估计方法
US20200132782A1 (en) * 2017-10-11 2020-04-30 Lg Chem, Ltd. Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
CN107991623A (zh) * 2017-11-27 2018-05-04 山东大学 一种考虑温度和老化程度的电池安时积分soc估计方法

Also Published As

Publication number Publication date
US20200393514A1 (en) 2020-12-17
EP3754352A1 (en) 2020-12-23
US11255917B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
JP6182025B2 (ja) バッテリの健全度推定装置および健全度推定方法
CN108291944B (zh) 电池管理装置
US9537325B2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
KR102080632B1 (ko) 배터리관리시스템 및 그 운용방법
JP6441913B2 (ja) バッテリに蓄積された電荷のモニタリング
US10988047B2 (en) Method for determining a capacity of a battery cell, evaluation device, monitoring apparatus, high-voltage battery and motor vehicle
JP4283615B2 (ja) 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置
CN110967637B (zh) 电池的许用功率估算方法、装置、系统和存储介质
KR20190035441A (ko) 배터리 노화 진단 방법 및 시스템
KR102274383B1 (ko) 자동차 차량 배터리의 에너지량 평가
KR20150020270A (ko) 배터리의 충전 상태의 추정
CN110888065B (zh) 电池包荷电状态修正方法和装置
KR20170092589A (ko) 배터리의 셀의 충전의 상태를 추정하는 자동적 방법
JP5662438B2 (ja) 電気化学蓄電池の較正方法
KR100986357B1 (ko) 하이브리드 차량의 배터리 잔존용량 추정 방법
EP2821803A1 (en) Battery deterioration determining system
KR20160014165A (ko) 친환경차 배터리 관리 시스템의 배터리 잔존 용량 추정방법
CN112098868A (zh) 用于改进电池容量估计的方法和系统
CN112394290A (zh) 电池包soh的估算方法、装置、计算机设备和存储介质
CN113030751B (zh) 电池荷电状态soc估计方法、装置、管理系统以及车辆
KR102280709B1 (ko) 배터리 관리 장치의 soh 추정 방법 및 이를 위한 soh 추정식 생성 방법
CN116819370A (zh) 一种电池包监测方法、装置、电子设备和存储介质
CN113848496A (zh) 动力电池的性能确定方法、装置和电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination