CN112080014A - 一种碳碳双键连接的共价有机框架材料的制备方法及应用 - Google Patents

一种碳碳双键连接的共价有机框架材料的制备方法及应用 Download PDF

Info

Publication number
CN112080014A
CN112080014A CN202011055999.1A CN202011055999A CN112080014A CN 112080014 A CN112080014 A CN 112080014A CN 202011055999 A CN202011055999 A CN 202011055999A CN 112080014 A CN112080014 A CN 112080014A
Authority
CN
China
Prior art keywords
carbon
framework material
organic framework
covalent organic
carbon double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011055999.1A
Other languages
English (en)
Other versions
CN112080014B (zh
Inventor
蔡亚岐
杨永亮
牛红云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN202011055999.1A priority Critical patent/CN112080014B/zh
Publication of CN112080014A publication Critical patent/CN112080014A/zh
Application granted granted Critical
Publication of CN112080014B publication Critical patent/CN112080014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/32Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by introduction of halogenated alkyl groups into ring compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/22Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of halogens; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
    • C07D473/08Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3 with methyl radicals in positions 1 and 3, e.g. theophylline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/46C-H or C-C activation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种碳碳双键连接的共价有机框架材料的制备方法,包括:S1,将含三嗪的醛基单体、碳负离子前体和催化剂加入溶剂中,加热进行Aldol缩合反应,得到产物;S2,将产物洗涤、干燥,得到碳碳双键连接的共价有机框架材料。本发明提供的合成方案简单,可大量制备。

Description

一种碳碳双键连接的共价有机框架材料的制备方法及应用
技术领域
本发明涉及共价有机框架材料(Covalent Organic Frameworks,COFs)技术领域,具体涉及一种碳碳双键连接的共价有机框架材料(TTO-COF)的制备方法及应用。
背景技术
光催化技术是一类受到广泛关注的绿色化学技术,可以将自然中的光能直接转化为化学反应所需要的能量,被广泛应用于化学合成、能源及环保领域。至今,关于光催化技术的研究主要集中于无机半导体,例如二氧化钛、硫化镉、氧化锌等,这类材料普遍存在禁带宽度较宽,可见光利用率低等缺陷,同时还会造成重金属污染。相比之下,有机半导体具有极大的优势。共价有机框架材料是一种由有机单体通过共价键连接形成的一类多孔有机聚合物。由于其具有较高的比表面积,长程有序的π电子结构,良好的化学稳定性以及合成单元的可调控性,共价有机框架材料有潜力成为一类新型有机光催化剂。亚胺连接是目前最被广泛采用的共价有机框架材料连接形式,然而在某些条件下亚胺连接共价有机框架材料的化学稳定较差,并且其光生载流子传导效率较低,大大限制了其应用前景。因此探索一种基于新型连接方式的共价有机框架材料具有十分重要的意义。
发明内容
(一)要解决的技术问题
针对上述问题,本发明提供了一种碳碳双键连接的共价有机框架材料的制备方法及应用,用于至少部分解决传统亚胺连接共价有机框架材料的化学稳定较差,并且其光生载流子传导效率较低等技术问题。
(二)技术方案
本发明一方面提供了一种碳碳双键连接的共价有机框架材料的制备方法,包括:S1,将含三嗪的醛基单体、碳负离子前体和催化剂加入溶剂中,加热进行Aldol缩合反应,得到产物;S2,将产物洗涤、干燥,得到碳碳双键连接的共价有机框架材料。
进一步地,S1中含三嗪的醛基单体具体为2,4,6-三(4-甲酰基苯基)-1,3,5-三嗪、碳负离子前体具体为2,4,6-三甲基-1,3,5-三嗪,其摩尔比为1:0.5~2,物质的量浓度均为0.01~0.05mol/L。
进一步地,S1中催化剂为三氟乙酸。
进一步地,S1中溶剂为均三甲苯、1,4-二氧六环和乙腈的混合溶剂,三甲苯、1,4-二氧六环、乙腈、三氟乙酸的体积比为10~20:10~20:1:8。
进一步地,S1中反应温度为120~180℃,反应容器为石英管或安瓿瓶,反应时间为12~72小时。
进一步地,S2中洗涤为离心洗涤,离心洗涤的溶剂为丙酮、0.1mol/L氢氧化铵水溶液和甲醇。
进一步地,S2中干燥温度为25~100℃,干燥时间为12~24小时。
本发明另一方面提供了一种光催化剂,光催化剂为采用如前述制备方法得到的碳碳双键连接的共价有机框架材料。
进一步地,光催化剂用于光催化水中有机污染物降解、芳烃与杂环芳烃的C-H功能化反应。
进一步地,有机污染物包括甲基橙和亚甲基蓝,芳烃与杂环芳烃包括苯、均三甲苯、甲氧基苯、1,4-二甲氧基苯、1,3,5-三甲氧基苯、2,4,6-三甲氧基嘧啶、尿嘧啶、1,3-二甲基尿嘧啶和茶碱。
(三)有益效果
本发明实施例提供的制备方法简单,成本低廉,仅需一步水热反应即可得到具有规则有序孔道和较大比表面积的碳碳双键连接共价有机框架材料,适合大量制备。
附图说明
图1示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料的制备方法的流程图;
图2示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料的合成示意图;
图3示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料的粉末X射线衍射谱图;
图4示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料的红外光谱谱图;
图5示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料的固体核磁谱图;
图6示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料的N2吸附-脱附曲线图;
图7示意性示出了根据本发明实施例碳碳双键连接的共价有机框架材料分别经过12mol/L盐酸溶液,12mol/L氢氧化钠溶液,N,N-二甲基甲酰胺和四氢呋喃处理之后的粉末X射线衍射谱图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明的实施例提供了一种碳碳双键连接的共价有机框架材料的制备方法,请参见图1,包括:S1,将含三嗪的醛基单体、碳负离子前体和催化剂加入溶剂中,加热进行Aldol缩合反应,得到产物;S2,将产物洗涤、干燥,得到碳碳双键连接的共价有机框架材料。
含三嗪的醛基单体、碳负离子前体进行Aldol缩合,Aldol缩合反应是一类被广泛应用的缩合反应,具有能够形成碳碳双键且反应有一定可逆性的特点。本发明的材料制备方法简单,成本低廉,仅需一步溶剂热反应即可得到具有规则有序孔道和较大比表面积的碳碳双键连接共价有机框架材料,适合大量制备。
在上述实施例的基础上,S1中含三嗪的醛基单体具体为2,4,6-三(4-甲酰基苯基)-1,3,5-三嗪,碳负离子前体具体为2,4,6-三甲基-1,3,5-三嗪,二者的摩尔比为1:0.5-2,物质的量浓度均为0.01-0.05mol/L。
这里醛基单体具体为2,4,6-三(4-甲酰基苯基)-1,3,5-三嗪,碳负离子前体具体为2,4,6-三甲基-1,3,5-三嗪。这两种单体相比于其他含醛基单体与碳负离子前体具有以吸电子三嗪单元为核心,更容易生成具有光活性的电子供体-受体结构的特点,物质的量浓度在该范围内,具有按化学计量数等摩尔比有序聚合的技术效果。
在上述实施例的基础上,S1中催化剂为三氟乙酸。
催化剂选择三氟乙酸,有催化活性强,容易洗脱的优点。
在上述实施例的基础上,S1中溶剂为均三甲苯、1,4-二氧六环和乙腈的混合溶剂,三甲苯、1,4-二氧六环、乙腈、三氟乙酸的体积比为10~20∶10~20∶1∶8。
溶剂选择均三甲苯、1,4-二氧六环和乙腈的混合溶剂,有极性范围广,对反应单体的溶解性好的优点;体积比在该范围内,具有反应速率适中,既保证反应的可逆性又缩短反应时间的技术效果。
在上述实施例的基础上,S1中反应温度为120~180℃,反应容器为石英管或安瓿瓶,反应时间为12~72小时。
反应温度在该范围内,具有促进单体发生有序聚合反应的技术效果;反应容器选用石英管或安瓿瓶,有耐热耐压,密闭性好的优点。
在上述实施例的基础上,S2中洗涤为离心洗涤,离心洗涤的溶剂为丙酮、0.1mol/L氢氧化铵水溶液和甲醇。
离心洗涤的溶剂选用丙酮、氢氧化铵水溶液和甲醇,具有充分洗脱小分子杂质的技术效果。
在上述实施例的基础上,S2中干燥温度为25~100℃,干燥时间为12~24小时。
将产物进行长时间高温干燥的目的在于充分将多孔有机框架材料中的溶剂分子去除,活化框架材料中的孔道与催化位点。
本发明的另一实施例提供了一种光催化剂,光催化剂为采用如前述制备方法得到的碳碳双键连接的共价有机框架材料。
本方法得到的碳碳双键连接的共价有机框架材料由于碳碳双键连接的电子离域程度比传统的亚胺连接更高,在光照下,光生载流子的传导效率更高,减少了光生电子-空穴的复合几率,使光催化性能得到提升。
在上述实施例的基础上,光催化剂用于光催化水中有机污染物降解、芳烃与杂环芳烃的C-H功能化反应。
本发明的碳碳双键连接共价有机框架材料(TTO-COF)具有优异的化学稳定性,能够耐受各种极端反应条件,包括强酸、强碱及有机溶剂环境,极端条件处理后材料的晶体结构、化学结构及有序孔结构保持不变。在光催化应用中,其活性稳定,重复性好,具有更广阔的应用前景。
在上述实施例的基础上,有机污染物包括甲基橙和亚甲基蓝,芳烃与杂环芳烃包括苯、均三甲苯、甲氧基苯、1,4-二甲氧基苯、1,3,5-三甲氧基苯、2,4,6-三甲氧基嘧啶、尿嘧啶、1,3-二甲基尿嘧啶和茶碱。
这里C-H功能化试剂优选为Langlois试剂(CF3SO2Na)。
下面以一具体实施例对本发明进行详细描述,请参见图2,具体包括以下步骤:
制备方法
将38.5mg的2,4,6-三(4-甲酰基苯基)-1,3,5-三嗪与12.3mg的2,4,6-三甲基-1,3,5-三嗪加入到内径1cm,高18cm的石英管中。向石英管中加入1mL均三甲苯,1mL 1,4-二氧六环,50μL乙腈和0.4mL三氟乙酸。摇匀并超声震荡15分钟。将石英管置于液氮浴中,待溶液完全凝固后用真空泵脱气至0mbar,然后用火焰密封石英管。将石英管置于油浴锅中,150℃反应72小时。反应结束后,将石英管打开,取出生成的固体产物,用丙酮,0.1mol/L氢氧化铵水溶液和甲醇分别离心洗涤三次。将产物在真空干燥箱中100℃下干燥12小时,得到暗黄色粉末41.2mg,产率为81%。
结构表征
图3为本实施例中产物的X射线衍射谱图,共价有机框架材料TTO-COF在5.66°,9.43°,10.89°,14.42°,25.72°均展现特征衍射峰,证明了该种材料的成功合成。
图4为TTO-COF的红外光谱谱图。在TTO-COF的红外谱图中,在2,4,6-三(4-甲酰基苯基)-1,3,5-三嗪红外谱图中对应于醛基的位于1708cm-1的振动峰完全消失,新生成了位于1632cm-1的振动峰对应于碳碳双键,证明了有机框架材料TTO-COF中的碳碳双键连接成功形成。
图5为TTO-COF的13C固体核磁谱图。TTO-COF在化学位移分别为172,138.3,128.1ppm处存在信号,分别对应于三嗪,芳香环与碳碳双键中的碳原子。其信号峰面积之比为2∶3∶5,这与TTO-COF中对应碳原子的数量之比一致,证明TTO-COF的成功合成。
图6为TTO-COF的N2吸附-脱附曲线图及孔径分布曲线。TTO-COF的BET比表面积为390.35m2/g,孔体积为0.561cm3/g。孔径分布图中位于1.27nm处有尖锐的峰,证明材料的微孔特性,并具有规则的孔道结构。
稳定性测试
将合成的TTO-COF分别浸泡在12mol/L HCl,12mol/L NaOH,四氢呋喃,N,N-二甲基甲酰胺中,浸泡时间为24小时。
图7为TTO-COF在上述四种条件下处理之后的X射线衍射谱图,与处理前的谱图相比没有明显差异,TTO-COF在处理之后其晶体结构得到了保持。该结果表明碳碳双键连接共价有机框架材料TTO-COF具有优异的化学稳定性,能够耐受强酸、强碱及有机溶剂的环境。
光催化有机污染物降解性能测试1
本实施例选择阳离子染料亚甲基蓝,阴离子染料甲基橙以及无色有机污染物苯酚为代表,对碳碳双键连接共价有机框架材料(TTO-COF)的光催化有机污染物降解性能进行了测试。测试步骤如下:分别配置10mg/L的亚甲基蓝和甲基橙溶液50mL置于250mL烧杯。向烧杯中加入15mg TTO-COF光催化剂,在黑暗处磁力搅拌1小时达到吸附-脱附平衡。在可见光波长(λ>420nm)下进行光催化降解测试,每隔一段时间取出1.5mL反应液,离心取上清液待测。光催化反应结束后,将催化剂离心分离,并用甲醇和超纯水进行离心洗涤,真空干燥回收。用紫外-可见光分光光度计测定待测待测液中甲基橙和亚甲基蓝的浓度。回收催化剂重复上述实验。
结果表明,在可见光照射30分钟后,甲基橙和亚甲基蓝的降解率均达到99%,降解反应动力学均符合伪一级反应动力学方程,降解速率常数分别为2.65×10-3和3.23×10-3s-1。这表明碳碳双键连接共价有机框架材料TTO-COF具有优异的光催化降解效率。重复利用实验表明,在重复利用五次后,TTO-COF降解亚甲基蓝的效率保持了95%,降解甲基橙的效率保持了88%。重复使用五次后,TTO-COF的X射线衍射谱与红外光谱未发生明显变化,表明TTO-COF的晶体结构与化学结构得到保持。上述结果证明在光催化降解有机污染物实验中,碳碳双键连接共价有机框架材料TTO-COF具有优异的光催化效率,同时具有良好的重复利用性,适合大规模连续使用。
光催化有机污染物降解性能测试2
本实施例选择的芳烃底物包括:苯、均三甲苯、甲氧基苯、1,4-二甲氧基苯和1,3,5-三甲氧基苯,杂环芳烃底物包括:2,4,6-三甲氧基嘧啶、尿嘧啶、1,3-二甲基尿嘧啶和茶碱。选择的C-H功能化试剂为Langlois试剂(CF3SO2Na)。具体步骤如下:向10mL玻璃管中加入1mmol反应底物,2~4mmol Langlois试剂(CF3SO2Na),15mg TTO-COF光催化剂和5mL二甲亚砜,超声10分钟。在可见光波长(λ>420nm)下反应。反应结束后将催化剂与反应液离心分离。用超纯水稀释反应液,随后用二氯甲烷萃取反应液。取二氯甲烷层的溶液使用气相色谱-质谱联用仪测定底物的转化率。催化剂用甲醇离心洗涤三次,干燥回收。
结果表明,在可见光照射16小时后,苯、均三甲苯、甲氧基苯、1,4-二甲氧基苯、1,3,5-三甲氧基苯、2,4,6-三甲氧基嘧啶、尿嘧啶、1,3-二甲基尿嘧啶和茶碱的转化率分别为83%、81%、95%、98%、98%、99%、80%、87%和83%。这表明碳碳双键连接共价有机框架材料TTO-COF对于系列的芳烃和杂环芳烃包括一些生物分子和药物分子的C-H功能化反应具有优异的光催化效率。重复使用实验表明,在重复使用三次后,TTO-COF的光催化效率保持了93%,其X射线衍射光谱和红外光谱未发生明显变化,表明TTO-COF的晶体结构与化学结构得到保持。上述结果证明在光催化系列芳烃与杂环芳烃的C-H功能化反应中,碳碳双键连接共价有机框架材料TTO-COF均表现出优异的光催化效率和良好的重复利用性,在生物分子与药物分子合成及修饰领域具有广阔的应用前景。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种碳碳双键连接的共价有机框架材料的制备方法,包括:
S1,将含三嗪的醛基单体、碳负离子前体和催化剂加入溶剂中,加热进行Aldol缩合反应,得到产物;
S2,将所述产物洗涤、干燥,得到碳碳双键连接的共价有机框架材料。
2.根据权利要求1所述的碳碳双键连接的共价有机框架材料的制备方法,其特征在于,所述S1中含三嗪的醛基单体具体为2,4,6-三(4-甲酰基苯基)-1,3,5-三嗪,碳负离子前体具体为2,4,6-三甲基-1,3,5-三嗪,其摩尔比为1:0.5~2,物质的量浓度均为0.01~0.05mol/L。
3.根据权利要求1所述的碳碳双键连接的共价有机框架材料的制备方法,其特征在于,所述S1中催化剂为三氟乙酸。
4.根据权利要求3所述的碳碳双键连接的共价有机框架材料的制备方法,其特征在于,所述S1中溶剂为均三甲苯、1,4-二氧六环和乙腈的混合溶剂,所述三甲苯、1,4-二氧六环、乙腈、三氟乙酸的体积比为10~20∶10~20∶1∶8。
5.根据权利要求1所述的碳碳双键连接的共价有机框架材料的制备方法,其特征在于,所述S1中反应温度为120~180℃,反应容器为石英管或安瓿瓶,反应时间为12~72小时。
6.根据权利要求1所述的碳碳双键连接的共价有机框架材料的制备方法,其特征在于,所述S2中洗涤为离心洗涤,所述离心洗涤的溶剂为丙酮、0.1mol/L氢氧化铵水溶液和甲醇。
7.根据权利要求1所述的碳碳双键连接的共价有机框架材料的制备方法,其特征在于,所述S2中干燥温度为25~100℃,干燥时间为12~24小时。
8.一种光催化剂,其特征在于,所述光催化剂为采用如权利要求1~7任一项所述的制备方法得到的碳碳双键连接的共价有机框架材料。
9.根据权利要求8所述的光催化剂,其特征在于,所述光催化剂用于光催化水中有机污染物降解、芳烃与杂环芳烃的C-H功能化反应。
10.根据权利要求9所述的光催化剂,其特征在于,所述有机污染物包括甲基橙和亚甲基蓝,所述芳烃与杂环芳烃包括苯、均三甲苯、甲氧基苯、1,4-二甲氧基苯、1,3,5-三甲氧基苯、2,4,6-三甲氧基嘧啶、尿嘧啶、1,3-二甲基尿嘧啶和茶碱。
CN202011055999.1A 2020-09-30 2020-09-30 一种碳碳双键连接的共价有机框架材料的制备方法及应用 Active CN112080014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011055999.1A CN112080014B (zh) 2020-09-30 2020-09-30 一种碳碳双键连接的共价有机框架材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011055999.1A CN112080014B (zh) 2020-09-30 2020-09-30 一种碳碳双键连接的共价有机框架材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112080014A true CN112080014A (zh) 2020-12-15
CN112080014B CN112080014B (zh) 2022-05-17

Family

ID=73730759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011055999.1A Active CN112080014B (zh) 2020-09-30 2020-09-30 一种碳碳双键连接的共价有机框架材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112080014B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214446A (zh) * 2021-03-25 2021-08-06 南昌大学 一种sp2碳共价有机框架的合成方法及在有机污染物的光催化降解中的应用
CN113667079A (zh) * 2021-07-19 2021-11-19 江苏师范大学 一种碳碳双键桥接的手性多孔有机聚合物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232588A (zh) * 2018-10-17 2019-01-18 中国科学院生态环境研究中心 一种共价有机框架材料的机械化学制备方法及应用
CN110591109A (zh) * 2019-09-29 2019-12-20 上海交通大学 一种碳碳双键桥联的全碳骨架二维共轭有机框架材料及其制备方法
CN110694683A (zh) * 2019-10-23 2020-01-17 中南大学 一种双键连接的共价三嗪骨架光催化剂及其合成方法和应用
CN111057221A (zh) * 2019-12-26 2020-04-24 上海交通大学 一种碳碳双键连接的有机框架超长纳米纤维材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232588A (zh) * 2018-10-17 2019-01-18 中国科学院生态环境研究中心 一种共价有机框架材料的机械化学制备方法及应用
CN110591109A (zh) * 2019-09-29 2019-12-20 上海交通大学 一种碳碳双键桥联的全碳骨架二维共轭有机框架材料及其制备方法
CN110694683A (zh) * 2019-10-23 2020-01-17 中南大学 一种双键连接的共价三嗪骨架光催化剂及其合成方法和应用
CN111057221A (zh) * 2019-12-26 2020-04-24 上海交通大学 一种碳碳双键连接的有机框架超长纳米纤维材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMITAVA ACHARJYA等: "Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile:Combing Cyclotrimerization and Aldol Condensation in One Pot", 《J.AM.CHEM.SOC》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214446A (zh) * 2021-03-25 2021-08-06 南昌大学 一种sp2碳共价有机框架的合成方法及在有机污染物的光催化降解中的应用
CN113214446B (zh) * 2021-03-25 2022-03-18 南昌大学 一种sp2碳共价有机框架的合成方法及在有机污染物的光催化降解中的应用
CN113667079A (zh) * 2021-07-19 2021-11-19 江苏师范大学 一种碳碳双键桥接的手性多孔有机聚合物的制备方法

Also Published As

Publication number Publication date
CN112080014B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Zhi et al. Recent progress in metal‐free covalent organic frameworks as heterogeneous catalysts
Wang et al. Emerging applications of porous organic polymers in visible-light photocatalysis
Liu et al. Triazine–porphyrin-based hyperconjugated covalent organic framework for high-performance photocatalysis
Xiao et al. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials
Taylor et al. Conjugated porous polymers: incredibly versatile materials with far-reaching applications
Bi et al. Substantial Cyano‐Substituted Fully sp2‐Carbon‐Linked Framework: Metal‐Free Approach and Visible‐Light‐Driven Hydrogen Evolution
Tian et al. A post-grafting strategy to modify gC 3 N 4 with aromatic heterocycles for enhanced photocatalytic activity
Jeon et al. Modulating the photocatalytic activity of graphene quantum dots via atomic tailoring for highly enhanced photocatalysis under visible light
CN112080014B (zh) 一种碳碳双键连接的共价有机框架材料的制备方法及应用
Bahuguna et al. Ammonia-doped polyaniline–graphitic carbon nitride nanocomposite as a heterogeneous green catalyst for synthesis of indole-substituted 4 H-chromenes
Zhi et al. Conjugated microporous polymers as heterogeneous photocatalysts for efficient degradation of a mustard-gas simulant
Xu et al. N, N′-Bicarbazole-based covalent triazine frameworks as high-performance heterogeneous photocatalysts
CN109467710B (zh) 二维金属卟啉基cof材料以及薄膜制备方法和应用
Naeimi et al. Copper (I)‐N2S2‐salen type complex covalently anchored onto MCM‐41 silica: an efficient and reusable catalyst for the A3‐coupling reaction toward propargylamines
Sun et al. Covalent triazine frameworks (CTFs): synthesis, crystallization, and photocatalytic water splitting
Schünemann et al. An inverse opal structured halide perovskite photocatalyst
Tang et al. Design of photothermal covalent organic frameworks by radical immobilization
Kumar et al. Multifunctional carbon nitride nanoarchitectures for catalysis
Singh et al. Anthracene‐based g‐C3N4 photocatalyst for regeneration of NAD (P) H and sulfide oxidation based on Z‐scheme nature
Zhou et al. Recent advances in metal-free covalent organic frameworks for photocatalytic applications in energy and environmental fields
CN110560170A (zh) 一种新型Pd@MOF材料及其制备方法和其在联苯制备中的应用
Deng et al. Confining Metal‐Organic Framework in the Pore of Covalent Organic Framework: A Microscale Z‐Scheme System for Boosting Photocatalytic Performance
Ma et al. Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge
Nie et al. Enhanced Photocatalytic Activity of Hyper‐Cross‐Linked Polymers Toward Amines Oxidation Coupled with H2O2 Generation through Extending Monomer's Conjugation Degree
Buğday et al. Palladium nanoparticle supported on nitrogen‐doped porous carbon: Investigation of structural properties and catalytic activity on Suzuki–Miyaura reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant