CN112076749A - 木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用 - Google Patents

木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112076749A
CN112076749A CN202011044304.XA CN202011044304A CN112076749A CN 112076749 A CN112076749 A CN 112076749A CN 202011044304 A CN202011044304 A CN 202011044304A CN 112076749 A CN112076749 A CN 112076749A
Authority
CN
China
Prior art keywords
catalyst
moo
lignin oil
hours
lignin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011044304.XA
Other languages
English (en)
Other versions
CN112076749B (zh
Inventor
吕微
王晨光
朱妤婷
徐莹
王文锦
皮奇峰
马隆龙
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202011044304.XA priority Critical patent/CN112076749B/zh
Publication of CN112076749A publication Critical patent/CN112076749A/zh
Application granted granted Critical
Publication of CN112076749B publication Critical patent/CN112076749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种木质素油加氢脱氧制备液体燃料的催化剂,选用具有高比表面积的活性炭(记为AC)为载体,采用分步浸渍‑超声分散的方法制备Ru和MoOx活性相高分散的双功能催化剂Ru‑MoOx/AC。RuMoOx的协同作用,在相对温和的条件下实现对木质素油有效加氢脱氧的同时抑制了碳碳链断裂,显著提高了木质素油加氢脱氧的活性和催化剂的稳定性。用于真实木质素油加氢脱氧制备高品质液体燃料可获得烃类收率为56.93%,环己醇/醚收率为18.74%,总碳氢化合物收率为75.67%。由于活性纳米粒子的高度分散,因而即便在较高温度下加氢脱氧也不易导致活性颗粒聚集而活性降低,即使Ru负载量较低时也有高的加氢脱氧活性和良好的稳定性。

Description

木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和 应用
技术领域:
本发明涉及可再生能源利用技术领域,具体涉及一种木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用。
背景技术:
目前木质素是生物质的三大组分之一,一直以来被认为是制浆造纸工业和燃料乙醇生产过程中的主要障碍和关键副产物,大部分以低附加值副产物或廉价能源的利用形式被消耗,造成资源的严重浪费。木质素是自然界唯一可再生的芳香物资源,由苯丙烷结构单元通过C-O醚键和C-C键随机键合而成的无定型芳香性高聚体。可以通过化学或化学催化转化为生物燃料或己二酸等大宗化学品,对提高生物精炼厂的经济效益、能源补给、环境改善和经济增长具有重要意义。
木质素通过水解、催化氢解等方法断裂C-O和C-C连接键,得到单体或者低聚体的芳香族碎片化合物即解聚油也称木质素油。木质素油主要是丙基愈创木酚和丙基紫丁香酚和丙基对羟基苯酚单元的衍生单体和低聚体碎片,碎片中主要包含几种不同的含氧基团(CAr-OH,CAr-OCH3,CArO-CH3以及侧链上HC=O,C-C=O,C-O-C,-COOH及-CO-O-C)。尽管木质素油分子可用来制备生物液体燃料和高值化学品,但其油品品质较差,如含氧活性官能团多、热值低、产物复杂、稳定性差、粘度高和与化石燃料不相容等,不利于分离利用或直接作为燃料使用,需要进一步升级改质。
目前,催化加氢脱氧是一种将低品位生物油或木质素油转化为清洁低含氧的高品质烃类或醇类产物的有效方法。采用典型的双功能催化剂(包括氢化金属活性位(Pt、Ni、Pd、Ir和Ru等)和脱水酸位点(SiO2-Al2O3、ZrO2-Al2O3、ZrO2-WOx、TiO2-WOx、HZSM-5、Nb2O5等))催化加氢脱氧反应是形成碳氢化合物的首选[Angew.Chem.Int.Ed.2017,56,2334–2339;Chemical Science,10(16):4458-4468;Green Chem.,2019,21,1668-1679;ChemSusChem2019,12,4791-4798.]。如,用ReOx改性的贵金属或掺杂非贵金属(Ni,Co,Fe)在加氢脱氧脱除羟基制备烯烃中具有良好的活性[Green Chem 2014,16(2),708-718;Angew Chem IntEdit 2004,43(12),1549-1551.]。现有加氢脱氧改质油品反应中较为普遍存在的问题是:(1)工业硫化物催化剂(如CoMo和NiMo)对生物质衍生物有不错的加氢脱氧作用,但由于晶格硫的严重浸出和对水的毒害[Acs Catal 2013,3(5),1047-1070.],加氢脱氧时的失活速度较快;(2)贵金属的加氢活性位会引起严重的C-C裂解反应,液体烷烃的选择性低;(3)脱水酸性位点会诱导活性中间体发生二次缩合,结焦覆盖催化剂活性位点,导致催化剂失活,降低环烷烃的产率,催化效率低。因此,提高芳香物转化为C6-C9烷烃需要有效抑制C-C键的断裂,同时又要求有适宜的脱水酸位点。多年来研究发现,烷烃产品的分布可以通过调整金属的浓度和酸位点以及改变金属活性位来实现[Angew Chem Int Edit 2004,43(12),1549-1551;Chemsuschem 2015,8(7),1114-1132.]。如,氧化钼在不破坏C-C键的情况下,对C-O键的断裂具有高的选择性[Energ Environ Sci 2013,6(6),1732-1738.],催化活性也可以通过煅烧恢复,且在水中保持稳定不流失。MoOx对贵金属的改性可以有效抑制强加氢活性对C-C键的断裂,避免大量的低烷烃生成(如CH4)。为了有效地抑制C-C的裂解,Ru金属催化剂经常被可还原性金属氧化物(如MoO3-x)改性[Chemsuschem 2015,8(7),1170-1178;Green Chem 2017,19(13),2876-2924.]。
发明内容:
本发明的目的是提供一种木质素油加氢脱氧制备液体燃料用催化剂,结合木质素油组分特征,选用具有高比表面积的活性炭(记为AC)为载体,采用分步浸渍-超声分散的方法制备高分散RuMo双功能催化剂Ru-MoOx/AC催化剂,RuMo协同作用,在相对温和的条件下有效选择性加氢脱氧同时抑制碳碳链断裂,显著提高了木质素油选择性加氢脱氧活性和催化剂稳定性,用于木质素油加氢脱氧制备高品质液体燃料,同时由于活性纳米粒子的高度分散,因而即便在较高温度下加氢脱氧也不易聚集导致活性降低,即使Ru负载量较低时也有高的加氢脱氧活性和良好的稳定性。
本发明是通过以下技术方案予以实现的:
一种木质素油加氢脱氧制备高品质液体燃料用催化剂,活性成分纳米粒子高度分散在具有原木活性炭(AC)载体上,活性成分为钌和氧化钼,钌的负载量占催化剂质量的1~5%,氧化钼(MoOx)的负载量为催化剂质量的10~30%;所述催化剂的制备方法包括以下步骤:
(1)将活性炭(记为AC)载体在105℃真空烘箱中干燥8~12小时;采用等体积浸渍法将活性炭(记为AC)载体浸渍于四水合钼酸铵((NH4)6Mo7O24·4H2O)水溶液中,其中,Mo:AC:水的质量比为1~3:10:30,超声30min~2h后静置6~15h,优选为超声1~2h后静置8~12h,在60℃空气中搅拌干燥8~12h,然后在N2气流中以10℃/min升温速度升至300~500℃焙烧2~4h,优选为升至350~450℃焙烧3~4h,得到担载了氧化钼的活性炭前驱物,记为MoOx/AC;
(2)用氯化钌水溶液浸渍焙烧后的MoOx/AC(其中,Ru:MoOx/AC:水的质量比为1~5:100:300),超声30min~2h后静置6~15h,优选为超声1~2h后静置8~12h,在60℃空气中搅拌干燥8~12h,在氢气流中以10℃/min升温速度升至300~500℃焙烧2~4h,优选为升至350~450℃焙烧3~4h,得到担载了钌的MoOx/AC催化剂,记为RuMoOx/AC。
本发明还保护上述催化剂在木质素油加氢脱氧制备液体燃料中的应用,在十氢萘溶剂中,温度为100~350℃、10~50bar条件下,优选为250-320℃、20~40bar条件下催化木质素油加氢脱氧升级为烃类、环己醇/醚类液体燃料;催化剂与木质素油的质量比为1:2~10;木质素油在反应溶剂中的起始浓度为0.03~0.5mol/L,木质素油来源于水解残渣解聚所得的油产物,水解残渣中木质素含量为56.7wt%,纤维素含量为27.6wt%,半纤维素为0.0wt%,木质素油中单体芳香物占42.6wt%,重均分子量≤400的木质素低聚物占总残渣的质量26.4%,木质素油代表模型物为二苯醚、愈创木酚、丙基愈创木酚、脱氧茴香偶姻、愈创木酚基甘油-β-愈创木基醚(97%)、苄酸苯酯、二并苯酚中的一种或几种。
本发明的有益效果如下:本发明结合木质素油组分特征,选用具有高比表面积的活性炭(记为AC)为载体,采用分步浸渍-超声分散的方法制备高分散RuMo双功能催化剂Ru-MoOx/AC催化剂,RuMo协同作用,在相对温和的条件下有效选择性加氢脱氧同时抑制碳碳链断裂,显著提高了木质素油选择性加氢脱氧活性和催化剂稳定性,用于木质素油加氢脱氧制备高品质液体燃料,烃类收率为56.93%,环己醇/醚收率18.74%,总碳氢化合物收率为75.67%。同时,由于活性纳米粒子的高度分散,因而在较高温度下进行多次加氢脱氧反应仍能保持活性,不会造成金属纳米粒子团聚而导致活性降低。
附图说明:
图1是实施例1、对比例1-2所制备的催化剂的XRD图;
图2是实施例1、对比例1-2所制备的催化剂的N2吸附-脱附等温线及孔径分布曲线。
图3是实施例1、对比例1-2所制备的催化剂的TEM图像、暗场及元素映像图;
其中(a~c)分别为实施例1、对比例1-2所制备的催化剂的TEM图像,(d~e)分别为实施例1、对比例1-2所制备的催化剂的暗场图像;(f~i)别为实施例1、对比例1-2所制备的催化剂的元素映像图。
图4是实施例12-14催化剂稳定性实验对比图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:MoOxRu/AC催化剂制备及性能实验
(1)AC载体(比表面积为1260m2/g,介孔孔容为0.29cm3/g,微孔孔容为0.56cm3/g)在105℃真空烘箱中干燥8~12小时。将0.37g四水合钼酸铵溶于3.0g蒸馏水中,搅拌待钼酸铵完全溶解后加入1.0g烘干的AC,继续搅拌AC至全部润湿,制备了钼酸铵/AC样品。浸渍后的湿样品在室温下超声2h后,静置10h。随后在60℃下搅拌至干燥。干燥后的样品在氮气气氛中煅烧,升温速度为10℃/分钟,升至400℃下煅烧4小时得到MoOx/AC。
(2)取1.0g焙烧获得的MoOx/AC,将其加入到氯化钌的水溶液中(0.041g氯化钌溶于3g水中),搅拌AC至全部润湿,制备了RuMoOx/AC湿样品,湿样品在室温下超声2h后,静置10h。随后在60℃下搅拌至干燥。干燥后的样品在氢气氛中煅烧,升温速度为10℃/分钟,升至400℃下煅烧4小时得到RuMoOx/AC。所制备的催化剂中Ru和Mo的含量分别为1.62wt%和16.23wt%。
(3)催化剂加氢脱氧活性评价:取0.1毫摩尔二苯醚、50mg RuMoOx/AC催化剂和25mL十氢萘加入50mL的不锈钢高压反应釜中,用高压氢气置换釜内空气,换气4次后,充入H2至压力为30bar,关闭所有阀门。以10℃/min速度升温至120℃,在120℃下反应3h,搅拌速率为500rpm。反应结束淬冷后,过滤分离催化剂和产物。反应结果见表1。
对比例1:MoOxRu/AC催化剂制备及性能实验
(1)AC载体在105℃真空烘箱中干燥8~12小时,取1.0g AC载体加入到氯化钌的水溶液中(0.041g氯化钌溶于3g水中),搅拌AC至全部润湿,制备了Ru/AC湿样品,湿样品在室温下超声2h后,静置10h。随后在60℃下搅拌至干燥。干燥后的样品在N2气氛中煅烧,升温速度为10℃/分钟,升至400℃下煅烧4小时得到Ru/AC。
(2)将0.37g四水合钼酸铵溶于3.0g蒸馏水中,搅拌待钼酸铵完全溶解后加入1.0g煅烧后的Ru/AC,继续搅拌Ru/AC至全部润湿,制备了MoOxRu/AC样品。浸渍后的湿样品在室温下超声2h后,静置10h。随后在60℃下搅拌至干燥。干燥后的样品在氢气气氛中煅烧,升温速度为10℃/分钟,升至400℃下煅烧4小时得到MoOxRu/AC。所制备的催化剂中Ru和Mo的含量分别为1.56wt%和17.13wt%。
(3)同实施例1方法中步骤(3),不同之处在于“RuMoOx/AC”替换为本对比例步骤(2)制备的MoOxRu/AC催化剂”。反应结果见表1。
对比例2:Ru-MoOx/AC催化剂制备及性能实验
(1)AC载体在105℃真空烘箱中干燥8~12小时,取1.0g AC载体加入到溶解了0.041g氯化钌和0.37g四水合钼酸铵的3.0g蒸馏水溶液中,搅拌至AC全部润湿,获得Ru-MoOx/AC湿样品。湿样品在室温下超声2h后,静置10h。随后在60℃下搅拌至干燥。干燥后的样品在氢气气氛中煅烧,升温速度为10℃/分钟,升至400℃下煅烧4小时得到Ru-MoOx/AC。所制备的催化剂中Ru和Mo的含量分别为1.66wt%和17.03wt%。
(2)同实施例1方法中步骤(3),不同之处在于RuMoOx/AC催化剂替换为“Ru-MoOx/AC催化剂”。反应结果见表1。
由实施例1、对比例1、2结果可知,本发明先采用等体积浸渍法将活性炭载体加入钼酸铵水溶液中超声分散,静置,干燥然后焙烧得到MoOx/AC催化剂;将MoOx/AC催化剂加入钌盐水溶剂中,超声分散,静置,干燥然后焙烧得到的催化剂MoOxRu/AC由于活性纳米粒子的高度分散,高度分散体现在图1的XRD中无Ru和MoOx的衍射峰以及图3中TME图像中分散的颗粒,在二苯醚加氢脱氧制备液体燃料中效果更好。
实施例2
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在100℃下反应1h”。反应结果见表1。
实施例3
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在120℃下反应1h”。反应结果见表1。
实施例4
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在140℃下反应1h”。反应结果见表1。
实施例5
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应1h”。反应结果见表1。
实施例6:MoOxRu/AC催化愈创木酚加氢脱氧
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应2h”;“取0.1毫摩尔二苯醚”替换为“取0.1毫摩尔愈创木酚”。反应结果见表2。
实施例7:MoOxRu/AC催化丙基愈创木酚加氢脱氧
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应2h”;“取0.1毫摩尔二苯醚”替换为“取0.1毫摩尔丙基愈创木酚”。反应结果见表2。
实施例8:MoOxRu/AC催化脱氧茴香偶姻加氢脱氧
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应2h”;“取0.1毫摩尔二苯醚”替换为“取0.1毫摩尔脱氧茴香偶姻”。反应结果见表2。
实施例9:MoOxRu/AC催化愈创木酚基甘油-β-愈创木基醚加氢脱氧
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应2h”;“取0.1毫摩尔二苯醚”替换为“取0.1毫摩尔愈创木酚基甘油-β-愈创木基醚”。反应结果见表2。
实施例10:MoOxRu/AC催化二并苯酚加氢脱氧
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应2h”;“取0.1毫摩尔二苯醚”替换为“取0.1毫摩尔二并苯酚”。反应结果见表2。
实施例11:MoOxRu/AC催化二苯醚加氢脱氧
(1)同实施例1方法中步骤(1)。
(2)同实施例1方法中步骤(2)。
(3)同实施例1方法中步骤(3),不同之处在于“在120℃下反应2h”替换为“在160℃下反应2h”;“取0.1毫摩尔二苯醚”替换为“取0.1毫摩尔二苯醚”。反应结果见表2。
实施例12:MoOxRu/AC催化木质素油加氢脱氧升级改质
(1)同实施例1中步骤(1)。
(2)同实施例1中步骤(2)。
(3)取2mL(约0.15g)溶解了木质素油的十氢萘混合物加入50mL高压反应釜中,然后取50mg MoOxRu/AC催化剂及23mL十氢萘溶剂分别加入反应釜中,用高压氢气置换釜内空气,换气4次后,充H2至压力为30bar,关闭所有阀门。以10℃/min速度升温至280℃,反应2h,搅拌速率为500rpm。反应结束淬冷后,过滤分离催化剂和产物。反应结果见表3或图4。
实施例13:MoOxRu/AC催化剂稳定性
(1)将实施例12反应后的催化剂收集并用乙醇和水的混合物清洗(乙醇:水体积比4:1),然后干燥,干燥样品在氢气氛中煅烧还原,升温速度为10℃/分钟,升至400℃下煅烧4小时得到RuMoOx/AC-R1。
(2)同实施例12中步骤(3),不同之处在于MoOxRu/AC催化剂改为RuMoOx/AC-R1催化剂。反应结果见图4
实施例14:MoOxRu/AC催化剂稳定性
(1)将实施例13反应后的催化剂收集并用乙醇和水的混合物清洗(乙醇:水体积比4:1),然后干燥,干燥样品在氢气氛中煅烧还原,升温速度为10℃/分钟,升至400℃下煅烧4小时得到RuMoOx/AC-R2。
(2)同实施例12中步骤(3),不同之处在于MoOxRu/AC催化剂改为RuMoOx/AC-R2催化剂。反应结果见图4。
由实施例12-14,可知,本发明催化剂在较高温度下进行多次加氢脱氧反应仍能保持活性(图4)。
表1
Figure BDA0002707539630000111
表2
Figure BDA0002707539630000112
表3
Figure BDA0002707539630000121
Figure BDA0002707539630000131

Claims (6)

1.一种木质素油加氢脱氧制备高品质液体燃料用催化剂,其特征在于,活性成分纳米粒子高度分散在原木活性炭载体上;活性成分为钌和氧化钼,钌的负载量占催化剂质量的1~5%,氧化钼的负载量为催化剂质量的10~30%;所述催化剂的制备方法包括以下步骤:
(1)将活性炭载体在105℃真空烘箱中干燥8~12小时;采用等体积浸渍法将活性炭载体浸渍于四水合钼酸铵水溶液中,其中,Mo:AC:水的质量比为1~3:10:30,超声30min~2h后静置6~15h,在60℃空气中搅拌干燥8~12h,然后在N2气流中以10℃/min升温速度升至300~500℃焙烧2~4h,得到担载了氧化钼的活性炭前驱物,记为MoOx/AC;
(2)用氯化钌水溶液浸渍焙烧后的MoOx/AC,其中,Ru:MoOx/AC:水的质量比为1~5:100:300,超声30min~2h后静置6~15h,在60℃空气中搅拌干燥8~12h,在氢气流中以10℃/min升温速度升至300~500℃焙烧2~4h,得到担载了钌的MoOx/AC催化剂,记为RuMoOx/AC。
2.根据权利要求1所述的木质素油加氢脱氧制备高品质液体燃料用催化剂,其特征在于,步骤(1)为:将活性炭载体在105℃真空烘箱中干燥8~12小时;采用等体积浸渍法将活性炭载体浸渍于四水合钼酸铵水溶液中,超声1~2h后静置8~12h,在60℃空气中搅拌干燥8~12h,然后在N2气流中以10℃/min升温速度升至350~450℃焙烧3~4h,得到担载了氧化钼的活性炭前驱物,记为MoOx/AC。
3.根据权利要求1或2所述的木质素油加氢脱氧制备高品质液体燃料用催化剂,其特征在于,步骤(2)为:用氯化钌水溶液浸渍焙烧后的MoOx/AC,超声1~2h后静置8~12h,在60℃空气中搅拌干燥8~12h,在氢气流中以10℃/min升温速度升至350~450℃焙烧3~4h,得到担载了钌的MoOx/AC催化剂,记为RuMoOx/AC。
4.一种木质素油加氢脱氧制备高品质液体燃料用催化剂的制备方法,其特征在于,包括以下步骤:
(1)将活性炭载体在105℃真空烘箱中干燥8~12小时;采用等体积浸渍法将活性炭载体浸渍于四水合钼酸铵水溶液中,Mo:AC:水的质量比为1~3:10:30,超声30min~2h后静置6~15h,在60℃空气中搅拌干燥8~12h,然后在N2气流中以10℃/min升温速度升至300~500℃焙烧2~4h,得到担载了氧化钼的活性炭前驱物,记为MoOx/AC;
(2)用氯化钌水溶液浸渍焙烧后的MoOx/AC,Ru:MoOx/AC:水的质量比为1~5:100:300,超声30min~2h后静置6~15h,在60℃空气中搅拌干燥8~12h,在氢气流中以10℃/min升温速度升至300~500℃焙烧2~4h,得到担载了钌的MoOx/AC催化剂,记为RuMoOx/AC。
5.权利要求1-3中任意一项权利要求所述的催化剂在木质素油加氢脱氧制备液体燃料中的应用,其特征在于,在十氢萘溶剂中,温度为100~350℃、10~50bar条件下催化木质素油加氢脱氧升级为烃类、环己醇/醚类液体燃料;催化剂与木质素油的质量比为1:2~10;木质素油在反应溶剂中的起始浓度为0.03~0.5mol/L,木质素油来源于水解残渣解聚所得的油产物,水解残渣中木质素含量为56.7wt%,纤维素含量为27.6wt%,半纤维素为0.0wt%,木质素油中单体芳香物占42.6wt%,重均分子量≤400的木质素低聚物占总残渣的质量26.4%,木质素油代表模型物为二苯醚、愈创木酚、丙基愈创木酚、脱氧茴香偶姻、愈创木酚基甘油-β-愈创木基醚(97%)、苄酸苯酯、二并苯酚中的一种或几种。
6.根据权利要求5所述催化剂在木质素油加氢脱氧制备液体燃料中的应用,其特征在于,温度为250~320℃、20~40Mpa条件下催化木质素油加氢脱氧升级为烃类、环己醇/醚类液体燃料。
CN202011044304.XA 2020-09-28 2020-09-28 木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用 Active CN112076749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011044304.XA CN112076749B (zh) 2020-09-28 2020-09-28 木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011044304.XA CN112076749B (zh) 2020-09-28 2020-09-28 木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112076749A true CN112076749A (zh) 2020-12-15
CN112076749B CN112076749B (zh) 2023-01-17

Family

ID=73738453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011044304.XA Active CN112076749B (zh) 2020-09-28 2020-09-28 木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112076749B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112844379A (zh) * 2020-12-31 2021-05-28 华南理工大学 金属有机骨架材料衍生物负载钌催化木质素解聚制备单酚类化学品的方法
CN113578352A (zh) * 2021-09-01 2021-11-02 福州大学化肥催化剂国家工程研究中心 一种高稳定性固定床加氢脱氧催化剂及其制备方法和应用
CN113996307A (zh) * 2022-01-04 2022-02-01 浙江师范大学 制备高能量密度燃料的催化剂载体及制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050792A1 (en) * 2005-05-02 2008-02-28 Zmierczak Wlodzimierz W Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels
CN104744204A (zh) * 2015-02-04 2015-07-01 华东理工大学 一种木质素催化加氢脱氧制备芳香烃的方法
CN105597752A (zh) * 2015-12-22 2016-05-25 中国科学院广州能源研究所 一种糖醇选择性加氢脱氧制取c5,c6烷烃的负载型碳材料催化剂及其制备方法
CN106582634A (zh) * 2016-11-16 2017-04-26 盘锦格林凯默科技有限公司 一种过渡金属原子改性的高活性钌碳催化剂及其制备方法
CN106753549A (zh) * 2016-12-20 2017-05-31 中国科学院广州能源研究所 一种木质素解聚轻质酚类产物加氢处理制备烃类燃料的方法
CN109967072A (zh) * 2019-03-06 2019-07-05 华南理工大学 一种木质素基纳米花多孔碳载体负载Ru基催化剂及其制备方法和在木质素解聚中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050792A1 (en) * 2005-05-02 2008-02-28 Zmierczak Wlodzimierz W Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels
CN104744204A (zh) * 2015-02-04 2015-07-01 华东理工大学 一种木质素催化加氢脱氧制备芳香烃的方法
CN105597752A (zh) * 2015-12-22 2016-05-25 中国科学院广州能源研究所 一种糖醇选择性加氢脱氧制取c5,c6烷烃的负载型碳材料催化剂及其制备方法
CN106582634A (zh) * 2016-11-16 2017-04-26 盘锦格林凯默科技有限公司 一种过渡金属原子改性的高活性钌碳催化剂及其制备方法
CN106753549A (zh) * 2016-12-20 2017-05-31 中国科学院广州能源研究所 一种木质素解聚轻质酚类产物加氢处理制备烃类燃料的方法
CN109967072A (zh) * 2019-03-06 2019-07-05 华南理工大学 一种木质素基纳米花多孔碳载体负载Ru基催化剂及其制备方法和在木质素解聚中的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112844379A (zh) * 2020-12-31 2021-05-28 华南理工大学 金属有机骨架材料衍生物负载钌催化木质素解聚制备单酚类化学品的方法
CN113578352A (zh) * 2021-09-01 2021-11-02 福州大学化肥催化剂国家工程研究中心 一种高稳定性固定床加氢脱氧催化剂及其制备方法和应用
CN113996307A (zh) * 2022-01-04 2022-02-01 浙江师范大学 制备高能量密度燃料的催化剂载体及制备方法和应用
CN113996307B (zh) * 2022-01-04 2022-05-20 浙江师范大学 制备高能量密度燃料的催化剂载体及制备方法和应用

Also Published As

Publication number Publication date
CN112076749B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN112076749B (zh) 木质素油加氢脱氧制备液体燃料用催化剂及其制备方法和应用
Zhang et al. Selective hydrodeoxygenation of guaiacol to phenolics by Ni/anatase TiO2 catalyst formed by cross-surface migration of Ni and TiO2
Sudarsanam et al. TiO2-based water-tolerant acid catalysis for biomass-based fuels and chemicals
EP3347126A1 (en) Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions
Guan et al. Nb (Ta)-based solid acid modified Pt/CNTs catalysts for hydrodeoxygenation of lignin-derived compounds
Qiu et al. High-efficient preparation of gasoline-ranged C5–C6 alkanes from biomass-derived sugar polyols of sorbitol over Ru-MoO3− x/C catalyst
Lang et al. Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation
Yang et al. The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass
Kumar et al. Pd-decorated magnetic spinels for selective catalytic reduction of furfural: interplay of a framework-substituted transition metal and solvent in selective reduction
CN114029070A (zh) 一种原位氢解芳醚键催化剂及其制备方法和应用
Barroso‐Martín et al. An overview of catalysts for the hydrodeoxygenation reaction of model compounds from lignocellulosic biomass
JP6259839B2 (ja) 水素化反応方法
CN111215090A (zh) 富氧空位氧化钨负载催化剂在木质素解聚中的应用
Kong et al. Enhancing aromatic hydrocarbon formation via catalytic depolymerization of lignin waste over Ru/WOx/NC catalyst
Cui et al. Catalytic transfer hydrogenolysis of C–O bonds in lignin model compounds without arene hydrogenation
LI et al. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst
CN110935473A (zh) 加氢脱氧催化剂及其制备方法与应用
CN112657519B (zh) 一种介孔结构磷化镍-磷酸锆复合催化剂及其制备方法与应用
KR101857187B1 (ko) 함산소 화합물의 수첨탈산소 반응용 촉매 및 이를 이용한 탈산소 연료 제조 방법
CN111167484B (zh) 苯的含氧衍生物加氢脱氧催化剂及其制备方法和在制备环烷烃中应用
CN110898850B (zh) 一种用于木醋液及生物油提质催化剂的制备与应用方法
Jiang et al. Hydrodeoxygenation of lignin-derived diphenyl ether to cyclohexane over a bifunctional Ru supported on synthesis HZSM-5 catalyst under mild conditions
Modak Recent Progress and Opportunity of Metal Single‐Atom Catalysts for Biomass Conversion Reactions
KR101827931B1 (ko) 1단 반응으로 페놀계 화합물로부터 고탄소 탄화수소를 제조하는 촉매
CN111676051A (zh) 一种轻油在非加氢或临氢气氛下脱硫的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant