CN112062128B - 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用 - Google Patents

一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用 Download PDF

Info

Publication number
CN112062128B
CN112062128B CN202010946836.6A CN202010946836A CN112062128B CN 112062128 B CN112062128 B CN 112062128B CN 202010946836 A CN202010946836 A CN 202010946836A CN 112062128 B CN112062128 B CN 112062128B
Authority
CN
China
Prior art keywords
nitrogen
porous carbon
doped porous
carbon material
straws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010946836.6A
Other languages
English (en)
Other versions
CN112062128A (zh
Inventor
徐朗
杨闯闯
张文都
白沛瑶
刘伟琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202010946836.6A priority Critical patent/CN112062128B/zh
Publication of CN112062128A publication Critical patent/CN112062128A/zh
Priority to PCT/CN2021/099598 priority patent/WO2022052539A1/zh
Priority to GB2205965.3A priority patent/GB2603717B/en
Application granted granted Critical
Publication of CN112062128B publication Critical patent/CN112062128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用。该方法以秸秆为原料,将秸秆粉末与碱金属氢氧化物在水溶液中加热搅拌,通过碱煮对木质素、纤维素和半纤维素的处理,使致密的原材料的结构疏松,从而改变材料的孔径分布;然后依次加入活化剂碳酸氢钾和氮源三聚氰胺进行搅拌混合,烘干后经过高温热解,酸洗,过滤,烘干步骤得到催化材料。本发明制备的氮掺杂多孔碳材料在全pH下具有优异的氧还原电催化性能、循环稳定性高、甲醇耐受性强,可用作燃料电池阴极氧还原反应电催化材料。成本低廉,原料广泛,制备流程简单高效,绿色环保,可用于大规模生产,实际应用价值大。

Description

一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其 应用
技术领域
本发明涉及碳材料和催化领域,具体涉及一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用。
背景技术
氧还原反应(ORR)是一个可用于能源储能与转化技术领域的十分关键的反应,可用于燃料电池、金属-空气电池等领域。然而,氧还原反应的动力学迟滞,极大地限制了燃料电池及金属-空气电池的发展及应用。目前,Pt基材料拥有良好的氧还原催化活性。但是,贵金属Pt价格昂贵,储量较低,致使铂基催化剂制作成本高。此外,Pt基材料本身容易被甲醇、CO和硫化物等毒化并失活,其稳定性与耐受性很差,因此很难对其实现大规模的实际应用。因此,开发稳定、高效、拥有优异氧还原催化活性的Pt基材料的替代品,对燃料电池和金属-空气电池的发展与大规模应用至关重要。
生物质作为一种理想的廉价易得、可再生且含有丰富杂原子(如N、O、P和S)的原料引起了广大研究者的注意。并且原料种类繁多,含有大量且丰富的原生孔径结构,虽然大多数生物质衍生的材料的氧还原催化性能低于商用的20%Pt/C催化剂,但是是一类非常有前景的绿色前驱体。
为了解决这些问题,大量的研究工作已经投入其中。在非贵金属催化剂中,过渡金属催化剂(过渡金属的氧化物、硫化物和氮化物等)也是一类非常有前景的材料。在非金属材料中,非金属杂原子(N、P、S和B)掺入碳骨架后会产生缺陷,使碳骨架上的电荷分布不均匀,产生氧还原反应的活性位点。非金属杂原子掺杂材料拥有较大的比表面积,丰富的孔径分布、形貌和活性位点。其中,氮掺杂多孔碳材料展现了最优异的氧还原催化活性、抗毒化性、耐久性和稳定性。然而,大多数非金属材料在碱性条件下拥有较好的催化性能,在中性和酸性条件下的催化性能较差,这是为了进一步提升应用范围所需要攻克的困点和难点。大多数常温燃料电池是质子交换膜燃料电池,即在酸性电解质的条件下;在中性电解质下,微生物燃料电池也有较为广阔的应用与前景。为了迎合市场与发展的需要,开发在全pH条件下稳定、高效、廉价的具有优异的氧还原电催化性能的催化剂既是一个挑战,也是未来研究发展的重要方向。
发明内容
本发明的目的之一是提供一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,原料廉价易得,制备方案简单,绿色环保。
本发明的目的之二是提供上述制备方法制得的氮掺杂多孔碳材料在氧还原催化方面的应用。
为实现上述目的,本发明采用的技术方案如下:一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,包括下列步骤:
步骤一,将收集的农作物秸秆清洗、干燥后粉碎,得到秸秆粉末;
步骤二,将秸秆粉末和碱金属氢氧化物按比例混合后加入去离子水中,60-80℃条件下搅拌加热2h,得到物料A;保持温度和搅拌速率不变,向物料A中依次加入碳酸氢钾(起到增加活化剂的用量以及防止三聚氰胺在强碱溶液中氨基被羟基取代的作用)和三聚氰胺,混合均匀后烘干,得到物料B;其中所述碱金属氢氧化物的质量浓度为1.5wt%,所述秸秆粉末、碱金属氢氧化物、碳酸氢钾和三聚氰胺的质量比为1-5:1-3:1-5:1-5;
步骤三,将物料B置于管式炉中热解,在惰性气体保护下以5℃/min的速率先升温至300℃保温2h(使三聚氰胺升华,与材料接触更充分,增大掺杂效率和原料利用率),再升温至900℃保温2h(使材料石墨化程度更高,增大导电性),之后以5℃/min的速率降温至300℃,再自然冷却至室温,得到物料C;
步骤四,将物料C进行酸洗处理,然后过滤,水洗至滤液呈中性,烘干,即得到氮掺杂多孔碳材料。
优选的,步骤二中所述秸秆粉末、碱金属氢氧化物、碳酸氢钾和三聚氰胺的质量比为3:1:3:3。
优选的,步骤二中搅拌速率为300-500rpm。
优选的,所述碱金属氢氧化物选自氢氧化钾、氢氧化钠中至少一种。
优选的,所述农作物秸秆选自小麦秸秆、玉米秸秆、水稻秸秆、棉花秸秆中的至少一种。
进一步地,步骤四中酸洗处理步骤是:在40-60℃条件下1mol·L-1稀盐酸溶液中搅拌1-3h。
本发明还提供上述方法制备的氮掺杂多孔碳材料在氧还原催化方面的应用。
所述的氮掺杂多孔碳材料可用于燃料电池的阴极氧还原催化的反应。方法如下:取3mg氮掺杂多孔碳材料置于离心管中,加入170微升去离子水、70微升异丙醇和10微升5%全氟磺酸-聚四氟乙烯共聚物(Nafion)溶液。超声混合1小时,形成均匀的分散液,用移液枪取10微升分散液滴在洁净的旋转圆盘电极(RDE)的玻碳表面上,自然晾干,即为制得的工作电极。制备的工作电极、银/氯化银参比电极和铂丝对电极组成三电极体系,在酸性(0.5MH2SO4)、中性(0.1M PBS,pH=7)和碱性(0.1M KOH)电解液中,用电化学工作站进行测试。
与现有技术相比,本发明具有如下有益效果:
1.本发明直接用碱煮处理小麦秸秆原料来改变材料的孔径分布,并制备出了在全pH的条件下均具有优异氧还原催化性能的氮掺杂多孔碳材料,实验方案简单方便,绿色无污染,符合环境保护和资源利用的主旨,实现了对农业废弃物的有效再利用。
2.本发明提供的改变生物质衍生的氮掺杂材料孔径分布的制备策略,方法简单、创新度高、有极大的探索与延伸的空间,且制备的氮掺杂多孔碳材料的氧还原催化性能远远超过同类别的材料。在0.5mol·L-1的硫酸溶液中,初始电位接近0.82V(相对于可逆氢电极RHE),半波电位接近0.66V(相对于RHE),极限电流密度约为-6.18mA·cm-2;在0.1mol·L-1磷酸氢二钾和磷酸二氢钾的中性溶液中(PBS溶液,pH=7.0),初始电位接近0.89V(相对于RHE),半波电位接近0.71V(相对于RHE),极限电流密度约为-6.03mA·cm-2;而在0.1mol·L-1的氢氧化钾溶液中,初始电位接近1.00V(相对于RHE),半波电位接近0.86V(相对于RHE),极限电流密度约为-6.52mA·cm-2。在酸、碱、中性电解液中均能和商业20%的Pt/C媲美甚至超越。除此之外,催化剂还有卓越的循环稳定性和抗甲醇的性质,有很大的应用前景。
3.本发明根据材料的性能,发现材料孔径分布改变,造成孔容的改变。在其他条件相似的情况下,改善材料的孔径分布可以极大的提升氧还原反应的极限电流密度。本发明提供的制备策略,可以改变实验条件来进一步调整制备材料的孔径分布,有很强的创新性和应用价值。
附图说明
图1为实施例1制备的氮掺杂多孔碳催化剂的透射电子显微镜(TEM)图;
图2为实施例1制备的氮掺杂多孔碳催化剂的高分辨透射电子显微镜(HRTEM)图;
图3为实施例1、对比例1-2制备的氮掺杂多孔碳催化剂的等温(77K)氮气吸脱附曲线;
图4为实施例1、对比例1-2制备的氮掺杂多孔碳催化剂以密度泛函理论(DFT)模型计算的孔径分布曲线;
图5为实施例1制备的氮掺杂多孔碳催化剂的X射线光电子能谱(XPS)的N峰图谱;
图6为实施例1、对比例1-2制备的氮掺杂多孔碳催化剂和对比例3的Pt/C在氧气饱和的0.5M H2SO4溶液中1600rpm的线性扫描伏安曲线(LSV);
图7为实施例1、对比例1-2制备的氮掺杂多孔碳催化剂和对比例3的Pt/C在氧气饱和的0.1M PBS溶液中1600rpm的线性扫描伏安曲线(LSV);
图8为实施例1、对比例1-2制备的氮掺杂多孔碳催化剂和对比例3的Pt/C在氧气饱和的0.1M KOH溶液中1600rpm的线性扫描伏安曲线(LSV);
具体实施方式
以下实施例进一步说明本发明的创新点及内容,不应理解为对本发明的限制。在符合本发明原理和内容的情况下,对本发明方法、步骤等条件所作的修改,均属于本发明的范围。
实施例1
将收集的小麦秸秆清洗、干燥后放入高速多功能摇摆粉碎机中2min打碎成粉末。按照质量比,将三份小麦秸秆粉末和一份氢氧化钾放入烧杯中,加入去离子水,氢氧化钾质量浓度为1.5wt%,70℃条件下以400rpm的转速搅拌加热2小时。保持温度和搅拌速率不变,再向烧杯中加入三份碳酸氢钾继续搅拌加热10分钟,最后加入三份三聚氰胺,搅拌混合10分钟后转移到80℃烘箱中干燥。将干燥后的产品置于管式炉中热解,在N2氛围中,升温速率为5℃/min,在300℃和900℃各停留2小时进行掺杂和活化处理,之后以5℃/min的速率降温至300℃,再自然冷却至室温得到未酸洗的氮掺杂多孔碳材料。将未酸洗的氮掺杂多孔碳材料加入1mol·L-1的盐酸中,50℃条件下以400rpm的转速进行酸洗处理2小时,然后过滤,水洗至滤液呈中性,烘干后保存,即为制备的氮掺杂多孔碳材料。
取3mg实施例1的氮掺杂多孔碳材料置于离心管中,加入170微升去离子水、70微升异丙醇和10微升5%全氟磺酸-聚四氟乙烯共聚物(Nafion)溶液。超声混合1小时,形成均匀的分散液,用移液枪取10微升分散液滴在洁净的旋转圆盘电极(RDE)的玻碳表面上,自然晾干,即为制得的工作电极。制备的工作电极、银/氯化银参比电极和铂丝对电极组成三电极体系,在酸性(0.5M H2SO4)、中性(0.1M PBS,pH=7)和碱性(0.1M KOH)电解液中,用电化学工作站进行测试。在氧气或氮气饱和的电解液中分别扫描循环伏安曲线和线性扫描伏安曲线,扫速分别为5mV·s-1和10mV·s-1
对比例1
将收集的小麦秸秆清洗、干燥后放入高速多功能摇摆粉碎机中2min打碎成粉末。按照质量比,将三份小麦秸秆粉末放入烧杯中,加入与实施例1等量的去离子水,70℃条件下以400rpm的转速搅拌加热2小时。再加入三份碳酸氢钾继续搅拌加热10分钟,最后加入三份三聚氰胺,搅拌混合10分钟后转移到80℃烘箱中干燥。将干燥后的产品在管式炉中热解,在N2氛围中,升温速率为5℃/min,在300℃和900℃各停留2小时进行掺杂和活化处理,之后以5℃/min的速率降温至300℃,自然冷却至常温可得到未酸洗的氮掺杂多孔碳材料。将未酸洗的氮掺杂多孔碳材料加入1mol·L-1的盐酸中,50℃条件下以400rpm的转速进行酸洗处理2小时,然后过滤,水洗至滤液呈中性,烘干后保存,即为制备的氮掺杂多孔碳材料。
上述对比例1的氮掺杂多孔碳材料作为燃料电池氧还原催化剂的工作电极的制作方法与电化学测试方法与实施例1相同。
对比例2
将收集的小麦秸秆清洗、干燥后放入高速多功能摇摆粉碎机中2min打碎成粉末。按照质量比,将三份小麦秸秆粉末放入烧杯中,加入与实施例1等量的去离子水,70℃条件下以400rpm的转速搅拌加热2小时。加入一份氢氧化钾搅拌加热10分钟后,再加入三份碳酸氢钾继续搅拌加热10分钟,最后加入三份三聚氰胺,搅拌混合10分钟后转移到80℃烘箱中干燥。将干燥后的产品在管式炉中热解,在N2氛围中,升温速率为5℃/min,在300℃和900℃各停留2小时进行掺杂和活化处理,之后以5℃/min的速率降温至300℃,自然冷却至常温可得到未酸洗的氮掺杂多孔碳材料。将未酸洗的氮掺杂多孔碳材料加入1mol·L-1的盐酸中,50℃条件下以400rpm的转速进行酸洗处理2小时,然后过滤,水洗至滤液呈中性,烘干后保存,即为制备的氮掺杂多孔碳材料。
上述对比例2的氮掺杂多孔碳材料作为燃料电池氧还原催化剂的工作电极的制作方法与电化学测试方法与实施例1相同。
对比例3
取1mg的商业20%Pt/C,加入170微升去离子水、70微升异丙醇和10微升5%全氟磺酸-聚四氟乙烯共聚物(Nafion)溶液。超声混合1小时,形成均匀的分散液,用移液枪取6微升分散液滴在洁净的旋转圆盘电极(RDE)的玻碳表面上,自然晾干,即为制得的工作电极。制备的工作电极、银/氯化银参比电极和铂丝对电极组成三电极体系,在酸性(0.5M H2SO4)、中性(0.1M PBS,pH=7)和碱性(0.1M KOH)电解液中,用电化学工作站进行测试。在氧气或氮气饱和的电解液中分别扫描循环伏安曲线和线性扫描伏安曲线,扫速分别为5mV·s-1和10mV·s-1
(1)透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)测试
将制得的无金属氮掺杂多孔碳材料(实施例1)置于透射电子显微镜(图1)和高分辨透射电子显微镜(图2)下观察。一般来说KOH碱煮处理木质纤维素生物质具有以下作用:1)破坏氢键的作用,对纤维素产生溶胀作用;2)对半纤维素进行溶解以及发生碱性降解反应;3)降解木质素,降低材料的强度,使化学试剂更充分的处理材料;4)与酸性官能团发生反应,增加亲水性等。如图1所示,碳材料边缘呈现大量的无序多孔轻薄的棉纱状结构,具有很大的比表面积与孔容。这是由于碱煮处理对木质纤维素材料产生的上述影响,导致大量的小分子物质被从材料中溶出,破坏原生材料的致密性,导致材料结构更加疏松。混合材料在烘箱中烘干后,会使溶解出的小分子附着在材料的表面,经过热解与活化作用后,小分子重新连接,形成多孔棉纱状的结构。如图2所示,材料有明显的晶格条纹,由于孔的影响,晶格条纹围绕孔型呈现扭曲现象,既显示了材料具有高的无序度与孔道结构,又显示了碳骨架材料呈现很高的石墨化程度。发达的孔隙结构与高的石墨化程度有利于形成物质传质和电子传递双向高效的协同作用,极大地提升氧还原反应的催化活性。
(2)氮气吸脱附测试
使用氮气物理吸脱附仪对实施例1、对比例1和对比例2进行比表面积与孔隙结构测试。结果表明,实施例1、对比例1和对比例2的比表面积分别为1430.18m2·g-1、1311.45m2·g-1和1409.16m2·g-1;催化剂的总孔容分别为1.230cm3·g-1、0.713cm3·g-1和0.903cm3·g-1;催化剂的微孔孔容分别为0.375cm3·g-1、0.371cm3·g-1和0.418cm3·g-1;催化剂的介孔孔容分别为0.856cm3·g-1、0.342cm3·g-1和0.485cm3·g-1。通过上述数据与氮气吸脱附曲线图(图3)可知,三个样品均有较大的比表面积,但是样品之间的比表面积差距不大。结合孔容数据与DFT模型孔径分布曲线(图4),通过实施例1与对比例2的比较,虽然两者的活化剂用量一样且比表面积基本一致,但是它们的孔容有很大的区别。实施例1经历了2小时的碱煮处理后,拥有更大的孔容,尤其是介孔孔容得到了极大的提升,很好的佐证了碱煮处理改变了材料的孔径分布。而未经碱煮处理的对比例1和对比例2有相似的孔径分布和孔容变化,说明虽然活化剂含量与种类不同,但是在相同的热解温度下,活化剂不会显著改变材料的孔径分布。
(3)X射线光电子能谱(XPS)测试
对实施例1、对比例1和对比例2进行X射线光电子能谱(XPS)测试。结果显示,实施例1、对比例1和对比例2的总氮含量的原子百分比分别为2.39%、2.49%和2.21%。图5为实施例1的氮峰窄扫分峰曲线,氮峰可主要分为吡啶氮、吡咯氮、石墨氮和氧化氮。其中吡啶氮和石墨氮对氧还原反应催化活性起主要的贡献作用。实施例1、对比例1和对比例2的吡啶氮和石墨氮总的相对含量分别为55.69%、60.55%和51.25%。通过XPS测试结果可知,在相同的热解温度下,实施例1、对比例1和对比例2总氮含量相近,吡啶氮和石墨氮总的相对含量也十分接近。
(4)氧还原电催化性能测试
将实施例1、对比例1、对比例2和对比例3按照上述方法制成工作电极,与银/氯化银参比电极和铂丝对电极组成三电极体系,在酸性(0.5M H2SO4)、中性(0.1M PBS,pH=7)和碱性(0.1M KOH)电解液中,进行线性扫描伏安曲线(LSV)测试,扫速为10mV·s-1。图6、图7和图8分别为酸性、中性和碱性电解液中1600rpm下的线性扫描伏安曲线测试。在酸性条件下,实施例1、对比例1、对比例2和对比例3的初始电位(相对于可逆氢电极RHE)均为0.82V,半波电位(相对于可逆氢电极RHE)分别为0.66V、0.63V、0.67V和0.60V。极限电流密度分别-6.18mA·cm-2、-4.61mA·cm-2、-5.00mA·cm-2和-5.50mA·cm-2;在中性条件下,实施例1、对比例1、对比例2和对比例3的初始电位(相对于可逆氢电极RHE)分别为0.89V、0.88V、0.89V和0.88V,半波电位(相对于可逆氢电极RHE)分别为0.71V、0.67V、0.68V和0.58V。极限电流密度分别-6.03mA·cm-2、-4.90mA·cm-2、-5.64mA·cm-2和-5.41mA·cm-2;在碱性条件下,实施例1、对比例1、对比例2和对比例3的初始电位(相对于可逆氢电极RHE)分别为1.00V、0.99V、1.00V和0.98V,半波电位(相对于可逆氢电极RHE)分别为0.86V、0.85V、0.87V和0.82V。极限电流密度分别-6.52mA·cm-2、-4.28mA·cm-2、-5.00mA·cm-2和-5.38mA·cm-2。在酸性、中性和碱性电解液中,实施例1和对比例3对比可知,实施例1的氧还原催化活性要远优于对比例3,表明本发明制备的催化剂有极大的潜力成为铂基催化材料的替代品。
实施例1、对比例1和对比例2在酸性、中性和碱性电解液中均有相似的初始电位,但是极限电流密度相差较大。这是由于三者具有非常相近的氮含量和氮种的分布,并且三个催化剂的比表面面积大小基本一致。这些数据表明三个催化剂的活性位点的数量和暴露的情况是相似的,所以在酸性、中性和碱性电解液中均有相似的初始电位。合适的孔容有利于物质的传递和运输,从而增大催化剂的极限电流密度,实施例1、对比例1和对比例2在酸性、中性和碱性电解液中测得的极限电流密度大小与孔容大小成正相关关系。本发明提供了一种可以优化孔径分布的催化剂的制备策略。并且这种制备策略没有对其他数据造成大的改变,不会对催化活性造成负面影响,突破了原有的技术壁垒,指出了新的优化催化剂的方向,具有很强的创新性和应用价值。

Claims (7)

1.一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,其特征在于,包括下列步骤:
步骤一,将收集的农作物秸秆清洗、干燥后粉碎,得到秸秆粉末;
步骤二,将秸秆粉末和碱金属氢氧化物按比例混合后加入去离子水中,60-80℃条件下搅拌加热2h,得到物料A;保持温度和搅拌速率不变,向物料A中依次加入碳酸氢钾和三聚氰胺,混合均匀后烘干,得到物料B;其中所述碱金属氢氧化物的质量浓度为1.5wt%,所述秸秆粉末、碱金属氢氧化物、碳酸氢钾和三聚氰胺的质量比为1-5:1-3:1-5:1-5;
步骤三,将物料B置于管式炉中热解,在惰性气体保护下以5℃/min的速率先升温至300℃保温2h,再升温至900℃保温2h,之后以5℃/min的速率降温至300℃,再自然冷却至室温,得到物料C;
步骤四,将物料C进行酸洗处理,然后过滤,水洗至滤液呈中性,烘干,即得到氮掺杂多孔碳材料。
2.根据权利要求1所述的一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,其特征在于,步骤二中所述秸秆粉末、碱金属氢氧化物、碳酸氢钾和三聚氰胺的质量比为3:1:3:3。
3.根据权利要求1所述的一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,其特征在于,步骤二中搅拌速率为300-500rpm。
4.根据权利要求1所述的一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,其特征在于,所述碱金属氢氧化物选自氢氧化钾、氢氧化钠中至少一种。
5.根据权利要求1所述的一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,其特征在于,所述农作物秸秆选自小麦秸秆、玉米秸秆、水稻秸秆、棉花秸秆中的至少一种。
6.根据权利要求1所述的一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法,其特征在于,步骤四中酸洗处理步骤是:在40-60℃条件下1mol·L-1稀盐酸溶液中搅拌1-3h。
7.权利要求1至6任一项所述的制备方法制得的氮掺杂多孔碳材料作为氧还原催化剂的应用。
CN202010946836.6A 2020-09-10 2020-09-10 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用 Active CN112062128B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010946836.6A CN112062128B (zh) 2020-09-10 2020-09-10 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用
PCT/CN2021/099598 WO2022052539A1 (zh) 2020-09-10 2021-06-11 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用
GB2205965.3A GB2603717B (en) 2020-09-10 2021-06-11 Crop straw-based nitrogen-doped porous carbon material preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010946836.6A CN112062128B (zh) 2020-09-10 2020-09-10 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112062128A CN112062128A (zh) 2020-12-11
CN112062128B true CN112062128B (zh) 2023-01-24

Family

ID=73664626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010946836.6A Active CN112062128B (zh) 2020-09-10 2020-09-10 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用

Country Status (3)

Country Link
CN (1) CN112062128B (zh)
GB (1) GB2603717B (zh)
WO (1) WO2022052539A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062128B (zh) * 2020-09-10 2023-01-24 中国矿业大学 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用
CN113148973B (zh) * 2021-03-29 2023-04-07 中南大学 一种用于吸附六价铬的氮掺杂多孔碳电极材料、及其制备和应用方法
CN113578251A (zh) * 2021-08-30 2021-11-02 西华大学 一种氮掺杂改性介孔吸附剂及其制备方法和应用
CN114180553B (zh) * 2021-12-03 2023-10-20 曲阜师范大学 一种废弃农作物根系为原料制备掺氮多孔碳的方法及应用
CN114715876A (zh) * 2022-04-19 2022-07-08 中国科学院过程工程研究所 一种生物质焦油基双功能碳基电催化材料及其制备方法
CN115231568B (zh) * 2022-05-27 2024-04-02 塔里木大学 类石墨烯碳纳米片大孔交联棉秆生物质碳电极材料及其制备方法
CN115010130B (zh) * 2022-06-07 2023-08-18 江西省科学院应用化学研究所 一种氮掺杂多孔碳材料及其制备方法和应用
CN115101757A (zh) * 2022-07-26 2022-09-23 福州大学 一种高活性碳基多孔纳米笼催化剂及其制备方法和应用
CN115414910B (zh) * 2022-07-29 2023-09-05 武汉轻工大学 一种磁性多孔生物碳材料的制备方法
CN115367733B (zh) * 2022-09-20 2023-08-22 湖南理工学院 一种废弃徐长卿药渣衍生制备非金属掺杂多孔碳的方法和应用
CN115672316B (zh) * 2022-10-14 2023-07-14 南京工业大学 生物质骨架炭-金属复合微纳结构催化材料及制备方法和应用
CN116581306B (zh) * 2023-06-15 2024-01-26 黑龙江大学 一种植物纤维衍生过渡金属多孔氮掺杂碳催化剂及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9613760B2 (en) * 2014-06-12 2017-04-04 Corning Incorporated Energy storage device and methods for making and use
CN104888708B (zh) * 2015-07-02 2017-06-27 黑龙江大学 玉米皮基三维多级孔结构碳材料及其制备方法
CN106744788A (zh) * 2016-11-14 2017-05-31 天津工业大学 生物质基氮掺杂三维多级孔碳材料的制备方法
CN107697915A (zh) * 2017-10-16 2018-02-16 赵兵 一种氮掺杂多孔碳材料及其制备方法
CN107572522A (zh) * 2017-10-19 2018-01-12 天津工业大学 一种氮掺杂多级孔炭的制备及其电容性能研究
CN108199053B (zh) * 2018-01-04 2020-06-09 吉林大学 一种氧还原催化剂的制备方法
CN111450860A (zh) * 2019-01-22 2020-07-28 中国科学院上海有机化学研究所 一种基于生物质的氮掺杂碳催化剂及其制备方法和应用
CN110054168A (zh) * 2019-04-24 2019-07-26 中国矿业大学 一种全pH值燃料电池阴极氧还原电催化剂的制备方法
CN111533125A (zh) * 2020-05-19 2020-08-14 伊犁师范大学 一种氮掺杂多级孔碳材料的制备方法
CN112062128B (zh) * 2020-09-10 2023-01-24 中国矿业大学 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用

Also Published As

Publication number Publication date
WO2022052539A1 (zh) 2022-03-17
GB202205965D0 (en) 2022-06-08
CN112062128A (zh) 2020-12-11
GB2603717A (en) 2022-08-10
GB2603717B (en) 2023-03-22

Similar Documents

Publication Publication Date Title
CN112062128B (zh) 一种基于农作物秸秆的氮掺杂多孔碳材料的制备方法及其应用
US20230271833A1 (en) A method of nitrogen-phosphorus doped porous carbon for oxygen reduction electrocatalysis within a wide ph range
CN106955691A (zh) 一种碳‑氮基单原子铁催化剂及其制备方法
CN107694581B (zh) 杂原子掺杂的多孔碳包覆磷化亚铜复合型催化剂的应用
CN110707337B (zh) 一种碳基非贵金属氧还原催化剂的制备方法及应用
CN111054408A (zh) 一种多孔镍钼基纳米片双功能电催化剂的制备方法
CN109759066B (zh) 一种硼掺杂石墨烯负载的钴镍双金属氧化物析氧催化剂的制备方法
CN112522726A (zh) 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用
CN113594477A (zh) 金属有机框架衍生的介孔碳包覆Fe-N/CNTs电催化剂的制备及其应用
CN113117709A (zh) 基于MXene和海藻酸钠制备高效锌空气电池催化剂
CN111403755B (zh) 一种负载型贵金属催化剂及其制备方法与应用
CN112652780A (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
Chi et al. Nickel nanocrystals anchored nitrogen-doped carbon derived from eggshell membrane as an efficient catalyst for the electrocatalytic oxidation of urea
CN112968184A (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN113594479A (zh) 一种Fe、N共掺杂多孔碳锌空电池催化剂的制备方法
CN113871640A (zh) 一种燃料电池抗反极催化剂及其制备方法和应用
CN113381034B (zh) 一种聚吡咯凝胶负载铜磷原子复合材料的制备方法及应用
CN106299388A (zh) 一种生物质碱性燃料电池空气阴极及制备方法及应用
CN104752736A (zh) 一种具有高催化活性及高耐久性的以多孔碳纳米纤维为载体的铂基催化剂及其制备方法
CN114883585A (zh) 一种多功能非贵金属氮掺杂碳催化剂及其制备方法与应用
CN112259750B (zh) 一种聚离子液体功能化的钴氮负载泡沫镍复合材料的制备方法和应用
CN112615015B (zh) 一种Fe3C纳米颗粒负载多孔氮掺杂石墨烯氧还原催化剂的制备方法
CN114361470A (zh) 一种氮掺杂MXene负载酞菁钴复合材料的制备方法和应用
CN109494378B (zh) 一种用于催化燃料电池阴极反应的催化剂的制备方法
CN112853377A (zh) 一种双功能无金属氮掺杂碳催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant