CN112037540A - 一种潮汐交通状态干线信号协调设计方法与装置 - Google Patents

一种潮汐交通状态干线信号协调设计方法与装置 Download PDF

Info

Publication number
CN112037540A
CN112037540A CN202010793652.0A CN202010793652A CN112037540A CN 112037540 A CN112037540 A CN 112037540A CN 202010793652 A CN202010793652 A CN 202010793652A CN 112037540 A CN112037540 A CN 112037540A
Authority
CN
China
Prior art keywords
intersection
traffic
phase
ith
green light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010793652.0A
Other languages
English (en)
Other versions
CN112037540B (zh
Inventor
王昊
彭显玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010793652.0A priority Critical patent/CN112037540B/zh
Publication of CN112037540A publication Critical patent/CN112037540A/zh
Application granted granted Critical
Publication of CN112037540B publication Critical patent/CN112037540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

本发明公开了一种潮汐交通状态干线信号协调设计方法与装置,本发明方法首先获取潮汐交通状态干线目标路段的相关参数,然后以干线为建模对象,构建并求解以最大化干线两个方向加权吞吐量为目标的优化模型,通过调节绿灯时长实现干线吞吐量最大化;接着以各交叉口为建模对象,构建并求解以最小化高交通量方向车均延误为目标的优化模型,通过调节相位差实现车均延误最小化;再以干线为建模对象,构建并求解以最大化低交通量方向绿波带宽为目标的优化模型,通过调节相位方案实现绿波带宽最大化。本发明通过建立并求解上述三种优化模型,能够在最大化系统通行能力的基础上,降低高交通量方向车均延误,并满足低交通量方向不停车需求。

Description

一种潮汐交通状态干线信号协调设计方法与装置
技术领域
本发明属于交通安全控制领域,具体涉及一种基于LWR(Lighthill WhithamRichards)冲击波理论和绿波带宽最大化模型(maxband)的潮汐交通状态下城市干线信号协调设计方法与装置。
背景技术
潮汐交通现象经常出现在早晚高峰时段的城市道路,即城市干线中一个方向交通量较高,处于过饱和状态,另一个方向交通量较低,处于非饱和状态。常用的控制策略是设置可变车道以平衡两个方向的交通需求,但设置可变车道对于两个方向的车道数以及交通流不均衡程度要求比较高,即在高峰时段,路段的一方车流量比反方向车流量高出40%,并且存在管理运营成本高的问题。
直接从信号控制的角度解决潮汐交通问题的研究比较少,这是因为而低交通量方向(非饱和)与高交通量方向(过饱和)交通条件下控制思路和方式都存在显著差异导致的。很多过饱和控制研究依据LWR冲击波理论展开,以优化排队长度、吞吐量等指标为目标建立协调控制模型;非饱和交通条件的信号控制研究则主要以maxband模型为理论基础。两个分支都有较为详实的研究成果,但少有学者将过饱和控制与绿波控制结合提出有效的综合信号控制方案。因此,可以认为,现有技术对于过饱和交通状态干线双向信号协调控制的适应性是不足的。
发明内容
发明目的:针对现有方法的不足,本发明的目的在于为潮汐交通状态下的城市干线提供一套切实可行的信号协调控制优化方案,基于实际路段几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据,对各交叉口绿灯时长、相位差、相位方案进行优化,在最大化系统通行能力的基础上,降低高交通量方向车均延误,并满足低交通量方向不停车需求。
技术方案:为实现以上发明目的,本发明采用如下技术方案:
一种潮汐交通状态干线信号协调设计方法,包括以下步骤:
(1)获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据。
(2)以干线为建模对象,构建以最大化干线两个方向加权吞吐量为目标的优化模型,通过调节绿灯时长实现干线吞吐量最大化;所述优化模型的约束包含保证本周期到达的车辆可以全部通过的约束、高交通量方向相位差处于临界状态时不存在空放的直行绿灯时长的约束、交通量进出平衡约束、绿灯时长的范围约束以及绿灯时长的相位约束。
(3)求解以最大化干线两个方向加权吞吐量为目标的优化模型,得到干线各交叉口各相位的绿灯时长。
(4)以高交通量方向(过饱和)干线各交叉口为建模对象,构建以最小化车均延误为目标的优化模型,通过调节相位差来实现车均延误最小化;所述优化模型的约束包含避免溢出约束、避免排队清空后主线车队未到达情况出现的约束、避免主线车队所有车辆均需排队等待的约束以及保证本周期到达车辆可以全部通过的约束。
(5)求解以最小化车均延误为目标的优化模型,得到高交通量方向交叉口与其上游交叉口之间相位差方案。
(6)以低交通量方向(非饱和)干线为建模对象,构建以最大化绿波带宽为目标的优化模型,通过调节相位方案来实现绿波带宽最大化;所述优化模型的约束包含绿波带宽的几何约束以及相位差与两个方向绿灯启亮时间差关系的约束。
(7)求解以最大化绿波带宽为目标的优化模型,得到得到各交叉口相位方案及绿波带参数。
作为优选,所述步骤(1)中获取的路段几何参数包括交叉口间距、车道功能以及对应车道数和进口道长度,路段交通参数包括饱和流率、路段限速、排队消散状态的车速和停车状态的车头间距,路段控制参数包括交叉口周期时长、绿灯间隔时长、正反方向权重、期望最小平均交通流率和期望最大平均交通流率(除主线直行相位),交通流量数据包括目标路段各进口道各流向的单位时间到达车辆数,即车辆到达流率。
作为优选,所述步骤(2)中以目标路段第1交叉口至第n交叉口的各相位绿灯时长、第0交叉口正向主线直行相位、支线左转相位绿灯时长以及第n+1交叉口反向主线直行相位、支线左转相位绿灯时长为优化对象,第0交叉口为第1交叉口上游的交叉口,第n+1交叉口为第n交叉口下游的交叉口;优化模型的目标表示为:
Figure BDA0002624657130000031
其中,δ1,δ2分别为正向、反向的权重;
Figure BDA0002624657130000032
分别为正向驶离第n交叉口、反向驶离第1交叉口的直行车道的单车道交通流率;t0,n+1为直行通过第n交叉口到达第n+1交叉口交通流的头车与尾车时距,
Figure BDA0002624657130000033
为直行通过第1交叉口到达第0交叉口交通流的头车与尾车时距。
作为优选,所述步骤(2)中描述保证本周期到达的车辆可以全部通过约束表示为:
Figure BDA0002624657130000034
Figure BDA0002624657130000035
若wi=w1
Figure BDA0002624657130000036
Figure BDA0002624657130000037
若i=0,gi=t0,i+1
若i=n+1,
Figure BDA0002624657130000038
其中,i表示第i交叉口;t0,i,
Figure BDA0002624657130000039
分别为正向、反向上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距;
Figure BDA00026246571300000310
分别为正向、反向第i交叉口到达车辆的直行比例;
Figure BDA00026246571300000311
分别为正向、反向第i交叉口的直行车道数;
Figure BDA00026246571300000312
分别为第i交叉口的初始排队长度;
Figure BDA00026246571300000313
分别为正向、反向第i交叉口主线直行相位绿灯时长;vc为排队消散状态的车速;wi,
Figure BDA00026246571300000314
分别为正向、反向第i交叉口的停止波波速;w1为不存在转向以及车道变换折减时的停止波波速;w2为启动波波速;t0,1为正向上游交叉口通过直行到达第1交叉口交通流的头车与尾车时距,
Figure BDA00026246571300000315
为反向上游交叉口通过直行到达第n交叉口交通流的头车与尾车时距。
作为优选,所述步骤(2)中描述高交通量方向相位差处于临界状态时不存在空放的直行绿灯时长的约束表示为:
Figure BDA0002624657130000041
其中,i=0时,g0为第0交叉口的正向直行相位绿灯时长。
作为优选,所述步骤(2)中的描述交通量进出平衡约束表示为:
Figure BDA0002624657130000042
Figure BDA0002624657130000043
其中,
Figure BDA0002624657130000044
分别为正向、反向驶出第i交叉口的交通流率,一般情况下为饱和流率;qm为饱和流率。
作为优选,初始排队长度的变量表达式为:
Figure BDA0002624657130000045
Figure BDA0002624657130000046
Figure BDA0002624657130000047
Figure BDA0002624657130000048
其中,ei,
Figure BDA0002624657130000049
分别为第i交叉口正向、反向的初始排队车辆数;h0为停车状态下的车头间距;gleft,i-1为正向第i-1交叉口支路左转相位绿灯时长,
Figure BDA00026246571300000410
为反向第i+1交叉口支路左转相位绿灯时长;qleft,i-1为正向第i-1交叉口支路左转相位交通流率,
Figure BDA00026246571300000411
为反向第i+1交叉口支路左转相位交通流率;gright,i-1,qright,i-1分别为正向第i-1交叉口支路右转相位绿灯时长和交通流率,
Figure BDA00026246571300000412
分别为反向第i+1交叉口支路右转相位绿灯时长和交通流率;
Figure BDA00026246571300000413
分别为正向、反向通过第i交叉口上游路段的小支路、停车场或路边停车位驶入该交叉口进口道的车辆交通流率;不限制右转车辆通行时,
Figure BDA00026246571300000414
T为周期时长。
作为优选,所述步骤(4)中优化模型的目标表示为:
Figure BDA00026246571300000415
其中,AREAi为车辆行驶轨迹图中高交通量方向第i交叉口上游直行到达车队停止区域的面积,简称延误面积;
Figure BDA00026246571300000416
为高交通量方向车队到达第i交叉口进口道前端的流率,即
Figure BDA0002624657130000051
作为优选,所述步骤(4)中的描述高交通量方向避免溢出的约束表示为:
lmax,i≤Li
其中,lmax,i为第i交叉口高交通量方向最大排队长度;Li为第i交叉口与第i-1交叉口间距。
作为优选,所述步骤(4)中的描述高交通量方向避免排队清空后主线车队未到达情况出现的约束表示为:
Figure BDA0002624657130000052
其中,
Figure BDA0002624657130000053
为高交通量方向第i交叉口与其上游交叉口之间的相位差,即绿灯启亮时间差,以上游交叉口绿灯先亮为正;vf为车队稳定行驶速度,一般为路段限速;lts,i为驶入第i交叉口的车队速度转换点与第i-1交叉口停止线的距离。
作为优选,所述步骤(4)中的描述高交通量方向避免主线车队所有车辆均需排队等待情况出现的约束分别表示为:
Figure BDA0002624657130000054
作为优选,所述步骤(4)中的描述高交通量方向保证本周期到达车辆全部通过约束表示为:
Figure BDA0002624657130000055
若wi=w1
Figure BDA0002624657130000056
作为优选,高交通量方向延误面积表达式为:
Figure BDA0002624657130000057
AREAi=0
Figure BDA0002624657130000058
Figure BDA0002624657130000059
作为优选,所述步骤(6)中的描述低交通量方向绿波带宽几何约束分别表示为:
Figure BDA0002624657130000061
Figure BDA0002624657130000062
Figure BDA0002624657130000063
其中,
Figure BDA0002624657130000064
为低交通量方向第i交叉口红灯启亮左侧边界与绿波带右侧边界之间的时长;
Figure BDA0002624657130000065
为低交通量方向绿波带宽;
Figure BDA0002624657130000066
为低交通量方向第i交叉口与其上游第i+1交叉口之间的相位差,即绿灯启亮时间差,以上游交叉口绿灯先亮为正;
Figure BDA0002624657130000067
为第i交叉口的干线低交通量方向直行相位红灯时间,即
Figure BDA0002624657130000068
Li+1为第i+1交叉口与第i交叉口的间距;
Figure BDA0002624657130000069
为低交通量方向排队清除时间,即清除来自支路转向车辆的时间。
作为优选,所述步骤(6)中的相位差与两个方向绿灯启亮时间差关系约束表示为:
Figure BDA00026246571300000610
其中,Δi为第i交叉口正向、反向主线直行相位绿灯启亮的时间差(以正向先放行为正);Mi为整数,不限正负,一般情况下取值为-1,1,0。
基于相同的发明构思,本发明提供一种过饱和交通状态干线单向信号协调设计装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的过饱和交通状态干线单向信号协调设计方法。
有益效果:本发明以干线为基本的建模对象,通过调节干线各交叉口各相位绿灯时长以提高绿时利用率,实现吞吐量最大化;在此基础上,通过调节相位差实现高交通量方向车均延误最小化,满足过饱和交通状态下的低延误需求,通过调节相位方案实现低交通量方向绿波带宽最大化,满足非饱和交通状态下的不停车需求。
附图说明
图1为本发明实施例的方法流程图。
图2为本发明实施例中示例的路段示意图。
图3为本发明实施例中示例的优化前后仿真效果示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细阐述,本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本发明实施例公开的一种过饱和交通状态干线双向信号协调设计方法,首先获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据;然后以干线为建模对象,构建以最大化干线吞吐量为目标的优化模型,求解优化模型,对参数进行优化,通过调整各交叉口各相位绿灯时长,提高主线通行能力;接着再以干线各交叉口为建模对象,构建以最小化高交通量方向车均延误为目标的优化模型,求解优化模型,对参数进行优化,通过调整交叉口与其上游交叉口之间的相位差,提高主线各交叉口服务水平;最后以干线为建模对象,构建以最大化低交通量方向绿波带宽为目标的优化模型,求解优化模型,对参数进行优化,通过各调节相位方案,满足低交通量方向不停车需求。
如图1所示,本发明实施例公开的一种潮汐交通状态干线信号协调设计方法,包括以下步骤:
步骤1、获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据。
需调查获取的路段几何参数包括交叉口间距Li、车道功能以及对应车道数ni、进口道长度lup,i,路段交通参数包括饱和流率qm、路段限速vf、排队消散状态的车速vc、停车状态的车头间距h0,路段控制参数包括交叉口周期时长T、绿灯间隔时长I,交通流量数据包括目标路段第0交叉口至第n+1交叉口各进口道各流向的单位时间到达车辆数,即车辆到达流率Q。
饱和流率qm通过观测目标路段交叉口绿灯启亮时的饱和车头时距Δt0换算得到,计算公式为:
Figure BDA0002624657130000071
排队消散状态的车速vc通过测量通过交叉口停止线车辆的车速获得。
步骤2、以干线为建模对象,构建以最大化干线两个方向加权吞吐量为目标的优化模型,通过调节绿灯时长实现干线吞吐量最大化;所述优化模型的约束包含保证本周期到达的车辆可以全部通过约束、高交通量方向相位差处于临界状态时不存在空放的直行绿灯时长约束、交通量进出平衡约束、绿灯时长范围约束、绿灯时长相位约束。
具体地,目标干线两个方向加权吞吐量表示为:
Figure BDA0002624657130000081
其中,δ1,δ2分别为正向、反向的权重;
Figure BDA0002624657130000082
分别为正向驶离第n交叉口、反向驶离第1交叉口的直行车道的单车道交通流率;t0,n+1为直行通过第n交叉口到达第n+1交叉口交通流的头车与尾车时距,
Figure BDA0002624657130000083
为直行通过第1交叉口到达第0交叉口交通流的头车与尾车时距。以目标路段第1交叉口至第n交叉口的各相位绿灯时长、第0交叉口正向主线直行相位、支线左转相位绿灯时长以及第n+1交叉口反向主线直行相位、支线左转相位绿灯时长为优化对象,第0交叉口为第1交叉口上游的交叉口,第n+1交叉口为第n交叉口下游的交叉口。
描述保证本周期到达的车辆可以全部通过约束表示为:
Figure BDA0002624657130000084
Figure BDA0002624657130000085
若wi=w1
Figure BDA0002624657130000086
Figure BDA0002624657130000087
若i=0,gi=t0,i+1
若i=n+1,
Figure BDA0002624657130000088
其中,i表示第i交叉口;t0,i,
Figure BDA0002624657130000089
分别为正向、反向上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距;
Figure BDA00026246571300000810
分别为正向、反向第i交叉口到达车辆的直行比例;ni,
Figure BDA00026246571300000811
分别为正向、反向第i交叉口的直行车道数;li,
Figure BDA00026246571300000812
分别为第i交叉口的初始排队长度;gi,
Figure BDA00026246571300000813
分别为正向、反向第i交叉口主线直行相位绿灯时长;vc为排队消散状态的车速;wi,
Figure BDA00026246571300000814
分别为正向、反向第i交叉口的停止波波速;w1为不存在转向以及车道变换折减时的停止波波速;w2为启动波波速。i=0时,g0为第0交叉口的正向直行相位绿灯时长;i=n+1时,
Figure BDA00026246571300000815
为第n+1交叉口的反向直行相位绿灯时长;t0,1为正向上游交叉口通过直行到达第1交叉口交通流的头车与尾车时距,
Figure BDA0002624657130000091
为反向上游交叉口通过直行到达第n交叉口交通流的头车与尾车时距。
描述高交通量方向相位差处于临界状态时不存在空放的直行绿灯时长约束表示为:
Figure BDA0002624657130000092
描述交通量进出平衡约束表示为:
Figure BDA0002624657130000093
Figure BDA0002624657130000094
其中,
Figure BDA0002624657130000095
分别为正向、反向驶出第i交叉口的交通流率,一般情况下为饱和流率;qm为饱和流率。
绿灯时长范围约束表示为:
g0,max≥g0≥g0,min
Figure BDA0002624657130000096
Figure BDA0002624657130000097
Figure BDA0002624657130000098
Figure BDA0002624657130000099
Figure BDA00026246571300000910
Figure BDA00026246571300000911
Figure BDA00026246571300000912
假设主线为南北走向,以从南到北为正方向,从北到南为反方向。其中,g0,min,g0,max分别为第0交叉口主线正向直行相位绿灯时长的最小值与最大值,
Figure BDA00026246571300000913
分别为第n+1交叉口主线反向直行相位绿灯时长的最小值与最大值;gwl,i,gwl,i,min,gwl,i,max分别为第i交叉口西进口左转相位绿灯时长及其最小值与最大值;gel,i,gel,i,min,gel,i,max分别为第i交叉口东进口左转相位绿灯时长及其最小值与最大值;gnl,i,gnl,i,min,gnl,i,max分别为第i交叉口北进口左转相位绿灯时长及其最小值与最大值;gsl,i,gsl,i,min,gsl,i,max分别为第i交叉口南进口左转相位绿灯时长及其最小值与最大值;gws,i,gws,i,min,gws,i,max分别为第i交叉口西进口直行相位绿灯时长及其最小值与最大值;ges,i,ges,i,min,ges,i,max分别为第i交叉口东进口直行相位绿灯时长及其最小值与最大值。
第i交叉口各相位绿灯时间的最小值计算公式为:
Figure BDA0002624657130000101
Figure BDA0002624657130000102
其中,gα,i,min,gα,i,max分别为第i交叉口第α相位的最小、最大绿灯时长;Qα,i为第i交叉口第α相位的交通量;nα,i,为第i交叉口第α相位的车道数;EQmax,EQmin分别为期望绿灯时间内通过停止线的最大、最小平均交通流率,依据交通量拥堵状态确定。
绿灯时长相位约束表示为:
Figure BDA0002624657130000103
Figure BDA0002624657130000104
Figure BDA0002624657130000105
Figure BDA0002624657130000106
Figure BDA0002624657130000107
Figure BDA0002624657130000108
Figure BDA0002624657130000109
Figure BDA00026246571300001010
Figure BDA00026246571300001011
Figure BDA00026246571300001012
Figure BDA00026246571300001013
Figure BDA00026246571300001014
Figure BDA00026246571300001015
Figure BDA00026246571300001016
Figure BDA00026246571300001017
Figure BDA0002624657130000111
Figure BDA0002624657130000112
其中,K为充分大的数,如10000;μi为0-1变量,当μi=0时,相位方案为对称或搭接放行,当μi=1时,相位方案为单口放行;T为周期时长;I为绿灯间隔时长。
初始排队长度的变量表达式为:
Figure BDA0002624657130000113
Figure BDA0002624657130000114
Figure BDA0002624657130000115
Figure BDA0002624657130000116
其中,ei,
Figure BDA0002624657130000117
分别为第i交叉口正向、反向的初始排队车辆数;h0为停车状态下的车头间距;gleft,i-1为正向第i-1交叉口支路左转相位绿灯时长,
Figure BDA0002624657130000118
为反向第i+1交叉口支路左转相位绿灯时长,主线为南北走向,以自南到北为正方向,从北到南为反方向时,gleft,i-1=gel,i-1
Figure BDA0002624657130000119
qleft,i-1为正向第i-1交叉口支路左转相位交通流率,
Figure BDA00026246571300001110
为反向第i+1交叉口支路左转相位交通流率;gright,i-1,qright,i-1分别为正向第i-1交叉口支路右转相位绿灯时长和交通流率,
Figure BDA00026246571300001111
分别为反向第i+1交叉口支路右转相位绿灯时长和交通流率;
Figure BDA00026246571300001112
分别为正向、反向通过第i交叉口上游路段的小支路、停车场、路边停车位驶入该交叉口进口道的车辆交通流率;不限制右转车辆通行时,
Figure BDA00026246571300001113
步骤3、求解以最大化干线两个方向加权吞吐量为目标的优化模型,得到干线各交叉口各相位的绿灯时长。
其中,各交叉口各相位绿灯时长包括以目标路段第1交叉口至第n交叉口的各相位绿灯时长、第0交叉口正向主线直行相位、支线左转相位绿灯时长以及第n+1交叉口反向主线直行相位、支线左转相位绿灯时长。
该优化模型为混合整数线形规划模型,可以利用matlab中intlinprog函数进行求解。
步骤4、以高交通量方向(过饱和,假设目标路段正向为高交通量方向,反向为低交通量方向)干线的每个交叉口为建模对象,构建以最小化高交通量方向车均延误为目标的优化模型,通过调节相位差来实现交叉口间的信号协调,从而降低干线最小化高交通量方向车均延误;所述优化模型的约束包含避免溢出约束、避免排队清空后主线车队未到达情况出现的约束、避免主线车队所有车辆均需排队等待情况出现的约束、保证本周期到达车辆可以全部通过的约束。
具体地,第i交叉口高交通量方向车均延误表示为:
Figure BDA0002624657130000121
其中,AREAi为车辆行驶轨迹图中第i交叉口上游直行到达车队停止区域的面积,简称延误面积;
Figure BDA0002624657130000122
为车队到达第i交叉口进口道前端的流率,即
Figure BDA0002624657130000123
高交通量方向延误面积的变量表达式为:
Figure BDA0002624657130000124
AREAi=0
Figure BDA0002624657130000125
Figure BDA0002624657130000126
交通波的变量表达式为:
Figure BDA0002624657130000127
Figure BDA0002624657130000128
Figure BDA0002624657130000129
描述避免高交通量方向溢出约束表示为:
lmax,i≤Li
其中,lmax,i为第i交叉口最大排队长度;Li为第i交叉口与第i-1交叉口的间距。
高交通量方向最大排队长度的变量表达式为:
Figure BDA0002624657130000131
lmax,i=li
Figure BDA0002624657130000132
Figure BDA0002624657130000133
描述避免高交通量方向排队清空后主线车队未到达情况出现的约束表示为:
Figure BDA0002624657130000134
其中,
Figure BDA0002624657130000135
为高交通量方向第i交叉口与其上游第i-1交叉口之间的相位差,即绿灯启亮时间差,以上游交叉口绿灯先亮为正;vf为车队稳定行驶速度,一般为路段限速;lts,i为高交通量方向驶入第i交叉口的车队速度转换点与第i-1交叉口停止线的距离,一般为第i-1交叉口下游功能区长度。
描述避免高交通量方向主线车队所有车辆均需排队等待情况出现的约束分别表示为:
Figure BDA0002624657130000136
描述保证高交通量方向本周期到达车辆全部通过约束表示为:
Figure BDA0002624657130000137
若wi=w1
Figure BDA0002624657130000138
步骤5、求解以最小化高交通量方向车均延误为目标的优化模型,得到高交通量方向交叉口与其上游交叉口之间的相位差。该优化模型为二次规划模型,可以利用matlab中quadprog函数求解。由于各相位差之间互不影响,因此可以逐个交叉口求解最优相位差,对于单个交叉口存在两种情况,对应的最大排队长度与延误面积的计算方式存在差异,分别对两种情况进行优化求解,比较目标函数大小取最优的解。
步骤6、以低交通量方向(非饱和)干线为建模对象,构建以最大化绿波带宽为目标的优化模型,通过调节相位方案来实现绿波带宽最大化;所述优化模型的约束包含绿波带宽几何约束、相位差与两个方向绿灯启亮时间差关系约束。
具体地,目标绿波带宽表示为:
Figure BDA0002624657130000141
描述低交通量方向绿波带宽几何约束分别表示为:
Figure BDA0002624657130000142
Figure BDA0002624657130000143
Figure BDA0002624657130000144
其中,
Figure BDA0002624657130000145
为第i交叉口的低交通量方向红灯启亮左侧边界与绿波带右侧边界之间的时长;
Figure BDA0002624657130000146
为低交通量方向绿波带宽;
Figure BDA0002624657130000147
为低交通量方向第i交叉口与其上游第i+1交叉口之间的相位差,即绿灯启亮时间差,以上游交叉口绿灯先亮为正;
Figure BDA0002624657130000148
为第i交叉口的干线低交通量方向直行相位红灯时间,即
Figure BDA0002624657130000149
Li+1为第i+1交叉口与第i交叉口的间距;
Figure BDA00026246571300001410
为低交通量方向排队清除时间,即清除来自支路转向车辆的时间。
低交通量方向排队清除时间
Figure BDA00026246571300001411
可表示为:
Figure BDA00026246571300001412
相位差与两个方向绿灯启亮时间差关系约束表示为:
Figure BDA00026246571300001413
Figure BDA00026246571300001414
其中,Δi为第i交叉口正向、反向主线直行相位绿灯启亮的时间差(以正向先放行为正);Mi为整数,不限正负,一般情况下取值为-1,1,0。
描述的正向、反向主线直行相位绿灯启亮的时间差的变量表达式为:
Figure BDA00026246571300001415
Figure BDA00026246571300001416
Figure BDA00026246571300001417
Figure BDA00026246571300001418
Figure BDA00026246571300001419
Figure BDA00026246571300001420
Figure BDA00026246571300001421
其中,Δi,1i,2i,3i,4i,5分别对应南北对称、南北搭接、北南搭接、南东北西、南西北东五种相位方案下Δi取到的值;ρi,1i,2i,3i,4i,5为0-1变量。
步骤7、求解以最大化绿波带宽为目标的优化模型,得到各交叉口相位方案及绿波带参数。各交叉口的相位方案指第1至第n交叉口的相位方案,包括南北对称、南北搭接、北南搭接、南东北西、南西北东五种;绿波带参数分别为低交通量方向绿波带宽
Figure BDA0002624657130000151
低交通量方向红灯启亮左侧边界与绿波带右侧边界之间的时长
Figure BDA0002624657130000152
整数参数Mi
该优化模型为混合整数线形规划模型,可以利用matlab中intlinprog函数进行求解。
基于相同的发明构思,本发明实施例提供一种潮汐交通状态干线信号协调设计装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的潮汐交通状态干线信号协调设计方法。
下面结合一个具体算例对本发明实施例的方法做进一步说明:
(1)设计路段概况
设置算例并进行过饱和信号协调方案设计,以南北走向(以自南向北为正)的包含六个交叉口的城市信号主线为研究对象,其进口道直行车道数与路段长度数据如图2所示。潮汐交通状态下,两个方向的交通量出现明显差异,假设目标路段正向为高交通量方向,反向为低交通量方向。
(2)交通参数设置
实施例步骤中涉及的重要交通参数如表1所示。
表1交通参数设置
Figure BDA0002624657130000153
附表1
Figure BDA0002624657130000161
(3)控制方案
以正向吞吐量最优并满足反向交通所有需求,以及正向车均延误与反向绿波带宽最优化为目标,求解控制方案,即绿灯时长、相位差(相邻交叉口间主线直行相位启亮时间差)、相位方案结果,如表2所示。
表2算例优化方案
Figure BDA0002624657130000162
(4)优化效果
对相位差优化前后的控制方案进行仿真,绘制一段时期内交叉口1至交叉口6之间的车辆轨迹图,如图3所示。
在满足反向交通需求的前提下,正向吞吐量达到了单车道每周期25辆。正向平均单交叉口车均延误为5.06秒,达到了A级服务水平。反向做绿波处理,一般情况下,绿波带宽达到了17.2秒。为了寻求更大的绿波带宽,采取绿波带分段处理,将目标路段划分为交叉口1-交叉口3、交叉口4-交叉口6两段,进行最大带宽求解,所得带宽分别为21.6秒和25.6秒,能较好的满足低交通量方向的不停车目标。

Claims (10)

1.一种潮汐交通状态干线信号协调设计方法,其特征在于,包括以下步骤:
(1)获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据;
(2)以干线为建模对象,构建以最大化干线两个方向加权吞吐量为目标的优化模型,通过调节绿灯时长实现干线吞吐量最大化;所述优化模型的约束包含保证本周期到达的车辆可以全部通过的约束、高交通量方向相位差处于临界状态时不存在空放的直行绿灯时长的约束、交通量进出平衡的约束、绿灯时长的范围约束以及绿灯时长的相位约束;
(3)求解以最大化干线两个方向加权吞吐量为目标的优化模型,得到干线各交叉口各相位的绿灯时长;
(4)以高交通量方向干线各交叉口为建模对象,构建以最小化车均延误为目标的优化模型,通过调节相位差来实现车均延误最小化;所述优化模型的约束包含避免溢出约束、避免排队清空后主线车队未到达情况出现的约束、避免主线车队所有车辆均需排队等待的约束以及保证本周期到达车辆可以全部通过的约束;
(5)求解以最小化车均延误为目标的优化模型,得到高交通量方向交叉口与其上游交叉口之间相位差方案;
(6)以低交通量方向干线为建模对象,构建以最大化绿波带宽为目标的优化模型,通过调节相位方案来实现绿波带宽最大化;所述优化模型的约束包含绿波带宽的几何约束以及相位差与两个方向绿灯启亮时间差关系的约束;
(7)求解以最大化绿波带宽为目标的优化模型,得到各交叉口相位方案及绿波带参数。
2.根据权利要求1所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,所述步骤(1)中获取的路段几何参数包括交叉口间距、车道功能、对应车道数和进口道长度,路段交通参数包括饱和流率、路段限速、排队消散状态的车速和停车状态的车头间距,路段控制参数包括交叉口周期时长、绿灯间隔时长、正反方向权重、期望最小平均交通流率和期望最大平均交通流率,交通流量数据包括目标路段各进口道各流向的单位时间到达车辆数。
3.根据权利要求1所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,所述步骤(2)中以目标路段第1交叉口至第n交叉口的各相位绿灯时长、第0交叉口正向主线直行相位、支线左转相位绿灯时长以及第n+1交叉口反向主线直行相位、支线左转相位绿灯时长为优化对象,第0交叉口为第1交叉口上游的交叉口,第n+1交叉口为第n交叉口下游的交叉口;优化模型的目标表示为:
Figure FDA0002624657120000021
其中,δ1,δ2分别为正向、反向的权重;
Figure FDA0002624657120000022
分别为正向驶离第n交叉口、反向驶离第1交叉口的直行车道的单车道交通流率;t0,n+1为直行通过第n交叉口到达第n+1交叉口交通流的头车与尾车时距,
Figure FDA0002624657120000023
为直行通过第1交叉口到达第0交叉口交通流的头车与尾车时距。
4.根据权利要求3所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,所述步骤(2)中描述保证本周期到达的车辆可以全部通过的约束表示为:
Figure FDA0002624657120000024
Figure FDA0002624657120000025
若wi=w1
Figure FDA0002624657120000026
Figure FDA0002624657120000027
若i=0,gi=t0,i+1
若i=n+1,
Figure FDA0002624657120000028
其中,t0,i,
Figure FDA0002624657120000029
分别为正向、反向上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距;fi s,
Figure FDA00026246571200000210
分别为正向、反向第i交叉口到达车辆的直行比例;ni,
Figure FDA00026246571200000211
分别为正向、反向第i交叉口的直行车道数;li,
Figure FDA00026246571200000212
分别为第i交叉口的初始排队长度;gi,
Figure FDA00026246571200000213
分别为正向、反向第i交叉口主线直行相位绿灯时长;vc为排队消散状态的车速;wi,
Figure FDA00026246571200000214
分别为正向、反向第i交叉口的停止波波速;w1为不存在转向以及车道变换折减时的停止波波速;w2为启动波波速;t0,1为正向上游交叉口通过直行到达第1交叉口交通流的头车与尾车时距,
Figure FDA00026246571200000215
为反向上游交叉口通过直行到达第n交叉口交通流的头车与尾车时距;
描述高交通量方向相位差处于临界状态时不存在空放的直行绿灯时长的约束表示为:
Figure FDA0002624657120000031
描述交通量进出平衡的约束表示为:
Figure FDA0002624657120000032
Figure FDA0002624657120000033
其中,
Figure FDA0002624657120000034
分别为正向、反向驶出第i交叉口的交通流率;qm为饱和流率。
5.根据权利要求4所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,初始排队长度的变量表达式为:
Figure FDA0002624657120000035
Figure FDA0002624657120000036
Figure FDA0002624657120000037
Figure FDA0002624657120000038
其中,ei,
Figure FDA0002624657120000039
分别为第i交叉口正向、反向的初始排队车辆数;h0为停车状态下的车头间距;gleft,i-1为正向第i-1交叉口支路左转相位绿灯时长,
Figure FDA00026246571200000310
为反向第i+1交叉口支路左转相位绿灯时长;qleft,i-1为正向第i-1交叉口支路左转相位交通流率,
Figure FDA00026246571200000311
为反向第i+1交叉口支路左转相位交通流率;gright,i-1,qright,i-1分别为正向第i-1交叉口支路右转相位绿灯时长和交通流率,
Figure FDA00026246571200000312
分别为反向第i+1交叉口支路右转相位绿灯时长和交通流率;qbranch,i,
Figure FDA00026246571200000313
分别为正向、反向通过第i交叉口上游路段的小支路、停车场或路边停车位驶入该交叉口进口道的车辆交通流率;不限制右转车辆通行时,
Figure FDA00026246571200000314
T为周期时长。
6.根据权利要求1所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,所述步骤(4)中优化模型的目标表示为:
Figure FDA0002624657120000041
其中,AREAi为高交通量方向第i交叉口的延误面积;
Figure FDA0002624657120000042
为高交通量方向车队到达第i交叉口进口道前端的流率,t0,i为高交通量方向到达第i交叉口交通流的头车与尾车时距,h0为停车状态下的车头间距。
7.根据权利要求6所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,所述步骤(4)中的描述高交通量方向避免溢出的约束表示为:
lmax,i≤Li
其中,lmax,i为第i交叉口高交通量方向最大排队长度;Li为第i交叉口与第i-1交叉口间距;
描述高交通量方向避免排队清空后主线车队未到达情况出现的约束表示为:
Figure FDA0002624657120000043
其中,
Figure FDA0002624657120000044
为高交通量方向第i交叉口与其上游交叉口之间的相位差;vc为排队消散状态的车速;w2为启动波波速;vf为车队稳定行驶速度;lts,i为驶入第i交叉口的车队速度转换点与第i-1交叉口停止线的距离;
描述高交通量方向避免主线车队所有车辆均需排队等待情况出现的约束表示为:
Figure FDA0002624657120000045
描述高交通量方向保证本周期到达车辆全部通过的约束表示为:
Figure FDA0002624657120000046
若wi=w1
Figure FDA0002624657120000047
其中,wi为第i交叉口的停止波波速;gi为第i交叉口主线直行相位绿灯时长;fi s为第i交叉口到达车辆的直行比例;ni为第i交叉口的直行车道数。
8.根据权利要求7所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,高交通量方向延误面积表达式为:
Figure FDA0002624657120000051
AREAi=0
Figure FDA0002624657120000052
Figure FDA0002624657120000053
9.根据权利要求1所述的一种潮汐交通状态干线信号协调设计方法,其特征在于,所述步骤(6)中的描述低交通量方向绿波带宽几何约束表示为:
Figure FDA0002624657120000054
Figure FDA0002624657120000055
Figure FDA0002624657120000056
其中,
Figure FDA0002624657120000057
为低交通量方向第i交叉口红灯启亮左侧边界与绿波带右侧边界之间的时长;
Figure FDA0002624657120000058
为低交通量方向绿波带宽;
Figure FDA0002624657120000059
为低交通量方向第i交叉口与其上游第i+1交叉口之间的相位差;
Figure FDA00026246571200000510
为第i交叉口的干线低交通量方向直行相位红灯时间;Li+1为第i+1交叉口与第i交叉口的间距;
Figure FDA00026246571200000511
为低交通量方向排队清除时间;vf为车队稳定行驶速度;
描述相位差与两个方向绿灯启亮时间差关系约束表示为:
Figure FDA00026246571200000512
其中,Δi为第i交叉口正向、反向主线直行相位绿灯启亮的时间差;Mi为整数,T为周期时长。
10.一种潮汐交通状态干线信号协调设计装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述计算机程序被加载至处理器时实现根据权利要求1-9任一项所述的潮汐交通状态干线信号协调设计方法。
CN202010793652.0A 2020-08-10 2020-08-10 一种潮汐交通状态干线信号协调设计方法与装置 Active CN112037540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010793652.0A CN112037540B (zh) 2020-08-10 2020-08-10 一种潮汐交通状态干线信号协调设计方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010793652.0A CN112037540B (zh) 2020-08-10 2020-08-10 一种潮汐交通状态干线信号协调设计方法与装置

Publications (2)

Publication Number Publication Date
CN112037540A true CN112037540A (zh) 2020-12-04
CN112037540B CN112037540B (zh) 2021-07-27

Family

ID=73576824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010793652.0A Active CN112037540B (zh) 2020-08-10 2020-08-10 一种潮汐交通状态干线信号协调设计方法与装置

Country Status (1)

Country Link
CN (1) CN112037540B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113205695A (zh) * 2021-04-13 2021-08-03 东南大学 多周期长度双向干线绿波控制方法
CN114241751A (zh) * 2021-11-30 2022-03-25 东南大学 一种面向大型停车场的多出入口动静态交通协调优化方法
CN114999159A (zh) * 2022-06-23 2022-09-02 浙江大华技术股份有限公司 潮汐车道的确定方法、装置、存储介质及电子装置
CN116543562A (zh) * 2023-07-06 2023-08-04 银江技术股份有限公司 干线协调优化模型的构建方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240523A (zh) * 2014-09-25 2014-12-24 上海理工大学 城市干道绿波控制方法
CN105719494A (zh) * 2015-12-23 2016-06-29 青岛理工大学 一种潮汐车道与变向车道协同优化的交通绿波协调控制技术
CN109891469A (zh) * 2017-08-08 2019-06-14 北京嘀嘀无限科技发展有限公司 交通信号灯配时系统与方法
CN110114806A (zh) * 2018-02-28 2019-08-09 华为技术有限公司 信号灯控制方法、相关设备及系统
CN110136454A (zh) * 2019-06-17 2019-08-16 公安部交通管理科学研究所 基于实时交通流数据的城市交通干线动态绿波信号控制系统及方法
CN110619752A (zh) * 2019-06-12 2019-12-27 东南大学 一种基于lte-v2x通信技术的车辆与信号灯协同控制方法及控制系统
CN110660233A (zh) * 2019-09-30 2020-01-07 山东理工大学 设置逆向可变车道交叉口最佳信号周期计算方法
US20200184810A1 (en) * 2018-07-25 2020-06-11 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for controlling traffic lights

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240523A (zh) * 2014-09-25 2014-12-24 上海理工大学 城市干道绿波控制方法
CN105719494A (zh) * 2015-12-23 2016-06-29 青岛理工大学 一种潮汐车道与变向车道协同优化的交通绿波协调控制技术
CN109891469A (zh) * 2017-08-08 2019-06-14 北京嘀嘀无限科技发展有限公司 交通信号灯配时系统与方法
CN110114806A (zh) * 2018-02-28 2019-08-09 华为技术有限公司 信号灯控制方法、相关设备及系统
US20200184810A1 (en) * 2018-07-25 2020-06-11 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for controlling traffic lights
CN110619752A (zh) * 2019-06-12 2019-12-27 东南大学 一种基于lte-v2x通信技术的车辆与信号灯协同控制方法及控制系统
CN110136454A (zh) * 2019-06-17 2019-08-16 公安部交通管理科学研究所 基于实时交通流数据的城市交通干线动态绿波信号控制系统及方法
CN110660233A (zh) * 2019-09-30 2020-01-07 山东理工大学 设置逆向可变车道交叉口最佳信号周期计算方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ALVARO CABREJAS EGEA: "Estimating Baseline Travel Times for the UK Strategic Road Network", 《2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC)》 *
XINKAI WU: "Modeling Arterial Traffic Dynamics With Actuated Signal Control Using a Simplified Shockwave Model", 《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》 *
张宏泽: "考虑排队动态演变过程的多相位信号交叉口最小交通延迟研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 *
秦严严: "智能网联环境下的混合交通流LWR模型", 《中国公路学报》 *
胡浩: "饱和交通干线的信号协调控制算法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
蔺庆海: "双向绿波关键交叉口过饱和状态下干线协调控制方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
贺冰花: "城市干线交通信号协调控制优化与仿真研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
郭亚娟: "饱和状态下干道协调控制优化方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
钱喆: "过饱和交通状态下的信号控制关键技术研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 *
陶雨濛: "基于干线车流到达—驶离特性的绿波控制性能评估方法", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113205695A (zh) * 2021-04-13 2021-08-03 东南大学 多周期长度双向干线绿波控制方法
CN114241751A (zh) * 2021-11-30 2022-03-25 东南大学 一种面向大型停车场的多出入口动静态交通协调优化方法
CN114241751B (zh) * 2021-11-30 2022-12-27 东南大学 一种面向大型停车场的多出入口动静态交通协调优化方法
CN114999159A (zh) * 2022-06-23 2022-09-02 浙江大华技术股份有限公司 潮汐车道的确定方法、装置、存储介质及电子装置
CN116543562A (zh) * 2023-07-06 2023-08-04 银江技术股份有限公司 干线协调优化模型的构建方法和装置
CN116543562B (zh) * 2023-07-06 2023-11-14 银江技术股份有限公司 干线协调优化模型的构建方法和装置

Also Published As

Publication number Publication date
CN112037540B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN112037540B (zh) 一种潮汐交通状态干线信号协调设计方法与装置
CN112037507B (zh) 一种过饱和交通状态干线自适应信号协调设计方法与装置
CN111833620B (zh) 一种过饱和交通状态干线单向信号协调设计方法与装置
CN111833619B (zh) 一种过饱和交通状态干线双向信号协调设计方法与装置
CN110910662B (zh) 车路协同环境下单点自适应交通信号优化控制方法
CN110910646B (zh) 用于交叉口的无人驾驶公交车辆的协同控制方法
CN114155724B (zh) 一种车联网环境下的交叉口交通信号控制方法
WO2014063545A1 (zh) 一种交通自适应控制方法和装置
CN109754617B (zh) 一种高通行效率交通信号灯控制系统
CN107016858A (zh) 一种交叉口多流向候驶区和错位式停车线的预信号控制方法
CN111402605B (zh) 基于通行能力模型优化的借对向车道左转的信号控制方法
CN111932916B (zh) 一种城市道路动态应急车道的控制方法及控制系统
CN112652177B (zh) 一种基于时空特性的公交预信号优先控制方法及系统
CN110379183A (zh) 一种用于缓解路口交通拥堵的系统及方法
CN106023611A (zh) 一种两段式干线协调信号控制优化方法
WO2023035666A1 (zh) 一种基于预期收益估计的城市路网交通信号灯控制方法
CN112767715B (zh) 一种交叉路口交通信号灯与智能网联汽车的协同控制方法
CN109584554A (zh) 一种道路交叉口通行控制方法和系统
CN110176138B (zh) 一种路口级的主动交通诱导方法
CN111005275B (zh) 一种钩形弯交叉口信号协同控制优化方法
CN116935673A (zh) 网联环境下考虑行人过街的信号交叉口车辆通行方法
Wu et al. Mechanism analysis and optimization of signalized intersection coordinated control under oversaturated status
CN111127909A (zh) 一种借用匝道消除x形交叉口左转车流预信号控制方法
CN115311868A (zh) 基于公交优先的干线协调控制方法及装置
CN113870584B (zh) 基于博弈论的交通路口通行方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201204

Assignee: YANGZHOU FAMA INTELLIGENT EQUIPMENT Co.,Ltd.

Assignor: SOUTHEAST University

Contract record no.: X2022320000040

Denomination of invention: A coordinated design method and device for trunk signal in tidal traffic state

Granted publication date: 20210727

License type: Common License

Record date: 20220406