CN111833620B - 一种过饱和交通状态干线单向信号协调设计方法与装置 - Google Patents

一种过饱和交通状态干线单向信号协调设计方法与装置 Download PDF

Info

Publication number
CN111833620B
CN111833620B CN202010551764.5A CN202010551764A CN111833620B CN 111833620 B CN111833620 B CN 111833620B CN 202010551764 A CN202010551764 A CN 202010551764A CN 111833620 B CN111833620 B CN 111833620B
Authority
CN
China
Prior art keywords
intersection
ith
traffic
straight
green light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010551764.5A
Other languages
English (en)
Other versions
CN111833620A (zh
Inventor
王昊
彭显玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010551764.5A priority Critical patent/CN111833620B/zh
Publication of CN111833620A publication Critical patent/CN111833620A/zh
Application granted granted Critical
Publication of CN111833620B publication Critical patent/CN111833620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/085Controlling traffic signals using a free-running cyclic timer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

本发明公开了一种过饱和交通状态干线单向信号协调设计方法与装置,其中方法包括获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据;以干线为建模对象,构建以最大化干线吞吐量为目标的优化模型,通过调节绿灯时长实现干线吞吐量最大化;求解模型得到干线各交叉口干线直行与支线左转相位绿灯时长;以干线各交叉口为建模对象,构建以最小化车均延误为目标的优化模型,通过调节相位差来实现车均延误最小化;求解模型得到交叉口与其上游交叉口之间的相位差。本发明通过建立并求解吞吐量最大化的混合整数线性规划模型与车均延误最小化的二次规划模型,能够有效提升干线交叉口通行能力与服务水平。

Description

一种过饱和交通状态干线单向信号协调设计方法与装置
技术领域
本发明属于交通安全控制领域,具体涉及一种基于LWR(Lighthill WhithamRichards)冲击波理论的过饱和交通状态下城市干线信号协调设计方法与装置。
背景技术
随着交通需求的急剧增加,城市交通拥堵问题持续加剧,干线道路承担了城市大部分的交通需求,在高峰时段时常出现过饱和的情况。信号协调控制是维持交通秩序与提升交通效率的有效措施,能有效缓解交通拥堵问题。针对过饱和交通状态下的干线协调控制研究对于提高干线通行能力与服务水平具有重要意义。
LWR冲击波理论常可以有效估计信号交叉口处的排队长度和延误,常被应用于交通控制领域。它可以兼顾单个交叉口车辆运行状态以及相邻交叉口联系两个方面,并有效体现相位差、绿灯时间等控制参数与排队长度、延误等交叉口服务性能指标的关联。很多研究基于冲击波理论提出了过饱和交通状态下信号控制优化方案,但仍存在着优化目标不直接、考虑因素不全面等问题:干线的各交叉口间存在着互相影响互相制约的关系,需要将其作为整体考虑,而现有研究大多围绕孤立交叉口、相邻交叉口展开;车均延误是评价交叉口服务水平的决定性指标,而现有研究较少以其为直接目标优化控制方案;过饱和情况下,转向比例、车道变换、路段中支路车辆驶入等因素都会对车辆到达情况产生影响,而现有研究较少考虑这些因素。因此,可以认为,现有技术对于过饱和交通状态干线信号控制的适应性是不足的。
发明内容
发明目的:针对现有方法的不足,本发明的目的在于为过饱和交通状态下的城市干线提供一套切实可行的信号协调控制优化方案,基于实际路段几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据,对各交叉口绿灯时长、相位差进行优化,从而提升路段各交叉口主线方向的通行能力与服务水平。
技术方案:为实现以上发明目的,本发明采用如下技术方案:
一种过饱和交通状态干线信号协调设计方法,包括以下步骤:
(1)获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据;
(2)以干线为建模对象,构建以最大化干线吞吐量为目标的优化模型,通过调节绿灯时长以提高绿时利用率,从而提高干线吞吐量;所述优化模型的约束包含保证本周期到达的车辆可以全部通过的约束、相位差处于临界状态时不存在空放的直行绿灯时长的约束、交通量进出平衡约束以及绿灯时长约束;
(3)求解以最大化干线吞吐量为目标的优化模型,得到干线各交叉口干线直行与支线左转相位绿灯时长;
(4)以干线的每个交叉口为建模对象,构建以最小化车均延误为目标的优化模型,通过调节相位差来实现交叉口间的信号协调,从而降低干线车均延误;所述优化模型的约束包含避免溢出约束、避免排队清空后主线车队未到达情况出现的约束、避免主线车队所有车辆均需排队等待情况出现的约束以及保证本周期到达车辆可以全部通过的约束;
(5)求解以最小化车均延误为目标的优化模型,得到交叉口与其上游交叉口之间的相位差。
作为优选,所述步骤(1)中获取的路段几何参数包括交叉口间距、车道功能以及对应车道数和进口道长度,路段交通参数包括饱和流率、路段限速、排队消散状态的车速和停车状态的车头间距,路段控制参数包括交叉口周期时长和绿灯间隔时长,交通流量数据包括目标路段各进口道各流向的单位时间到达车辆数,即车辆到达流率。
作为优选,所述步骤(2)中以目标路段第0交叉口至第n交叉口的绿灯时长为优化对象,第0交叉口为第1交叉口上游的交叉口,第n+1交叉口为第n交叉口下游的交叉口;优化模型的目标表示为:
Figure BDA0002542777320000021
其中,
Figure BDA0002542777320000022
为驶离第n个交叉口直行车道的单车道交通流率,t0,n+1为直行通过第n交叉口交通流的头车与尾车时距。
作为优选,所述步骤(2)中描述保证本周期到达的车辆可以全部通过的约束表示为:
Figure BDA0002542777320000023
若wi=w1
Figure BDA0002542777320000024
其中,i表示第i交叉口;t0,i为上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距;fi s为第i交叉口到达车辆的直行比例;ni为第i交叉口的直行车道数;li为第i交叉口的初始排队长度;gi为第i交叉口主线直行相位绿灯时长;vc为排队消散状态的车速;wi为第i交叉口的停止波波速;w1为不存在转向以及车道变换折减时的停止波波速;w2为启动波波速。
作为优选,所述步骤(2)中描述相位差处于临界状态时不存在空放的直行绿灯时长的约束表示为:
Figure BDA0002542777320000031
若i=0,gi=t0,i+1
其中,i=0时,g0为第0交叉口的直行相位绿灯时长,t0,1为上游交叉口通过直行到达第1交叉口交通流的头车与尾车时距。
作为优选,所述步骤(2)中的描述交通量进出平衡约束表示为:
Figure BDA0002542777320000032
其中,
Figure BDA0002542777320000033
为驶出第i交叉口的交通流率,一般情况下为饱和流率;qm为饱和流率。
作为优选,所述步骤(2)中的描述绿灯时长约束表示为:
Figure BDA0002542777320000034
gbl,i,min≤gbl,i≤gbl,i,max
Figure BDA0002542777320000035
gi≤gi,max
Figure BDA0002542777320000036
g0,min≤g0≤g0,max
其中,gi,max为第i交叉口干线直行相位绿灯时间最大值;T为周期长度;gml,i,min,gbs,i,min分别为第i交叉口主线左转、支线直行相位绿灯时间的最小值;Qml,i,Qbs,i分别为第i交叉口主线左转、支线直行相位的车辆到达流率;I为绿灯间隔时间;gbl,i,gbl,i,min,gbl,i,max分别为第i交叉口支线左转相位绿灯时间及其最小值与最大值;g0,g0,min,g0,max为第0交叉口直行相位绿灯时长及其最小值与最大值。
作为优选,初始排队长度的变量表达式为:
Figure BDA0002542777320000041
ei=gbl,i-1·qleft,i-1+gright,i-1·qright,i-1+T·qbranch,i,
Figure BDA0002542777320000042
其中,ei为第i交叉口的初始排队车辆数;h0为停车状态下的车头间距;gbl,i-1,gright,i-1分别为第i-1交叉口支路左转、右转相位绿灯时长;qleft,i-1,qright,i-1分别为第i-1交叉口支路左转、右转相位交通流率;qbranch,i为通过第i交叉口上游路段的小支路、停车场或路边停车位驶入该交叉口进口道的车辆交通流率;不限制右转车辆通行时,gright,i-1=T。
作为优选,所述步骤(4)中优化模型的目标表示为:
Figure BDA0002542777320000043
其中,AREAi为车辆行驶轨迹图中第i交叉口上游直行到达车队停止区域的面积,简称延误面积;
Figure BDA0002542777320000044
为车队到达第i交叉口进口道前端的流率,即
Figure BDA0002542777320000045
作为优选,所述步骤(4)中的描述避免溢出的约束表示为:
lmax,i≤Li
其中,lmax,i为第i交叉口最大排队长度;Li为第i交叉口与第i-1交叉口间距。
作为优选,所述步骤(4)中的描述避免排队清空后主线车队未到达情况出现的约束表示为:
Figure BDA0002542777320000046
其中,
Figure BDA0002542777320000047
为第i交叉口与其上游交叉口之间的相位差,即绿灯启亮时间差,以上游交叉口绿灯先亮为正;vf为车队稳定行驶速度,一般为路段限速;lts,i为驶入第i交叉口的车队速度转换点与第i-1交叉口停止线的距离,一般为第i-1交叉口下游功能区长度。
作为优选,所述步骤(4)中的描述避免主线车队所有车辆均需排队等待情况出现的约束分别表示为:
Figure BDA0002542777320000051
作为优选,所述步骤(4)中的描述保证本周期到达车辆全部通过约束表示为:
Figure BDA0002542777320000052
若wi=w1
Figure BDA0002542777320000053
作为优选,延误面积表达式为:
Figure BDA0002542777320000054
AREAi=0
Figure BDA0002542777320000055
Figure BDA0002542777320000056
作为优选,最大排队长度表达式为:
Figure BDA0002542777320000057
lmax,i=li
Figure BDA0002542777320000058
作为优选,交通波的变量表达式为:
Figure BDA0002542777320000059
Figure BDA00025427773200000510
Figure BDA00025427773200000511
基于相同的发明构思,本发明提供一种过饱和交通状态干线单向信号协调设计装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的过饱和交通状态干线单向信号协调设计方法。
有益效果:本发明以干线为基本的建模对象,考虑转向比例、车道变换、道路支线车辆驶入驶出等因素对主线车辆到达情况的影响;通过调节干线各交叉口主线直行以及支线左转相位绿灯时长以提高绿时利用率,实现吞吐量最大化;在此基础上,希望通过调节相位差来实现交叉口间的信号协调,实现车均延误最小化。求解出一套完整的信号配时优化方案,有效提升干线交叉口通行能力与服务水平。
附图说明
图1为本发明实施例的方法流程图。
图2为本发明实施例的车辆行驶轨迹分析图。
图3为本发明实施例的交通波示意图。
图4为本发明实施例中示例的路段示意图。
图5为本发明实施例中示例的优化前车辆轨迹示意图。
图6为本发明实施例中示例的优化后车辆轨迹示意图。
图7为本发明实施例中示例的优化前后重要评价指标对比图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细阐述,本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本发明实施例公开的一种过饱和交通状态干线单向信号协调设计方法,首先获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据;然后以干线为建模对象,构建以最大化干线吞吐量为目标的优化模型,求解优化模型,对参数进行优化,通过调整各交叉口主线直行与支线左转相位绿灯时长,提高主线通行能力;接着再以干线各交叉口为建模对象,构建以最小化车均延误为目标的优化模型,求解优化模型,对参数进行优化,通过调整交叉口与其上游交叉口之间的相位差,提高主线各交叉口服务水平。
下面结合图2、图3所示道路场景对本发明实施例的方案做详细说明。本发明认为,直行车队在路段中会出现状态转换,一般情况下存在如下转换过程:
Step1:在上游交叉口i-1绿灯启亮时,流率为
Figure BDA0002542777320000061
的交通流以C状态通过停止线。
Step2:在离开上游交叉口后,车辆加速,交通流流率不变,由C状态膨胀转变成A状态。
Step3:到达下游交叉口进口道前端,由于车辆转向以及车道变化因素,交通流出现分流或者合流,交通流率折减为
Figure BDA0002542777320000071
由A状态转变成B状态。
Step4:部分车需要经过停车再启动的过程,即从B状态转变成J状态再转变成C状态,转换过程中分别产生停止波wi,启动波w2;部分车不需停车,直接紧跟上前方车辆,即交通流从B状态转变成C状态,至此全部车辆通过下游交叉口。
Step2中,车队速度转换点与上游交叉口停止线的距离lts,i等于车辆从停止加速到车队稳定行驶速度所需要的距离ldown,即
Figure BDA0002542777320000072
其中,aaccel为车辆加速度,可取2.6m/s2;当ldown+lup,i>Li的极端情况出现时,认为不存在step2和step3中过程,交通流直接从C状态转换为B状态,lts,i=Li-lup,i,其中,lup,i为第i交叉口进口道长度。
图2中,
Figure BDA0002542777320000073
分别代表四种不同的交通状态,即稳定速度行驶车队的饱和状态、稳定速度行驶车队的非饱和状态、排队消散状态、排队状态,对应的交通流率与密度特征点如图3所示。
基于上述分析,本发明实施例公开的一种过饱和交通状态干线单向信号协调设计方法,具体包括以下步骤:
步骤1、获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据。
需调查获取的路段几何参数包括交叉口间距Li、车道功能以及对应车道数ni、进口道长度lup,i,路段交通参数包括饱和流率qm、路段限速vf、排队消散状态的车速vc、停车状态的车头间距h0,路段控制参数包括交叉口周期时长T、绿灯间隔时长I,交通流量数据包括目标路段第0交叉口至第n+1交叉口各进口道各流向的单位时间到达车辆数,即车辆到达流率Q。
饱和流率qm通过观测目标路段交叉口绿灯启亮时的饱和车头时距Δt0换算得到,计算公式为:
Figure BDA0002542777320000081
排队消散状态的车速vc通过测量通过交叉口停止线车辆的车速获得。
步骤2、以干线为建模对象,构建以最大化干线吞吐量为目标的优化模型,通过调节绿灯时长以提高绿时利用率,从而提高干线吞吐量;所述优化模型的约束包含保证本周期到达的车辆可以全部通过约束、相位差处于临界状态时不存在空放的直行绿灯时长约束、交通量进出平衡约束、绿灯时长约束。
具体地,目标干线吞吐量表示为:
Figure BDA0002542777320000082
其中,
Figure BDA0002542777320000083
为驶离第n个交叉口直行车道的单车道交通流率,t0,n+1为直行通过第n交叉口交通流的头车与尾车时距。以目标路段第0交叉口至第n交叉口的绿灯时长为优化对象,第0交叉口为第1交叉口上游的交叉口,第n+1交叉口为第n交叉口下游的交叉口。
描述保证本周期到达的车辆可以全部通过约束表示为:
Figure BDA0002542777320000084
若wi=w1
Figure BDA0002542777320000085
其中,i表示第i交叉口;t0,i为上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距;fi s为第i交叉口到达车辆的直行比例,可以通过对应进口道直行、左转、右转车辆到达流率Q获得;ni为第i交叉口的直行车道数;li为第i交叉口的初始排队长度;gi为第i交叉口主线直行相位绿灯时长;vc为排队消散状态的车速;wi为第i交叉口的停止波波速;w1为不存在转向以及车道变换折减时的停止波波速;w2为启动波波速。
初始排队长度的变量表达式为:
Figure BDA0002542777320000086
ei=gbl,i-1·qleft,i-1+gright,i-1·qright,i-1+T·qbranch,i
Figure BDA0002542777320000087
其中,ei为第i交叉口的初始排队车辆数;h0为停车状态下的车头间距;gbl,i-1,gright,i-1分别为第i-1交叉口支路左转、右转相位绿灯时长;qleft,i-1,qright,i-1分别为第i-1交叉口支路左转、右转相位绿灯时期交通流率,左转流率一般设置为饱和流率qm,左转流率可通过支线左转车辆到达流率确定;qbranch,i为通过第i交叉口上游路段的小支路、停车场、路边停车位驶入该交叉口进口道的车辆交通流率,可通过相邻交叉口交通通量关系确定(例如:东侧交叉口的东进口总交通流率,与西侧交叉口的西进口直行、北进口左转、南进口右转的总交通流率之差,为两交叉口间路段净驶入车辆流率,即驶入车辆与驶出车辆流率之差);不限制右转车辆通行时,gright,i-1=T。
描述相位差处于临界状态时不存在空放的直行绿灯时长约束表示为:
Figure BDA0002542777320000091
若i=0,gi=t0,i+1
其中,i=0时,g0为第0交叉口的直行相位绿灯时长,t0,1为上游交叉口通过直行到达第1交叉口交通流的头车与尾车时距。
描述交通量进出平衡约束表示为:
Figure BDA0002542777320000092
其中,
Figure BDA0002542777320000093
为驶出第i交叉口的交通流率,一般情况下为饱和流率;qm为饱和流率。
绿灯时长约束表示为:
Figure BDA0002542777320000094
gbl,i,min≤gbl,i≤gbl,i,max
Figure BDA0002542777320000095
gi≤gi,max
Figure BDA0002542777320000096
g0,min≤g0≤g0,max
其中,gi,max为第i交叉口干线直行相位绿灯时间最大值;T为周期长度;gml,i,min,gbs,i,min分别为第i交叉口主线左转、支线直行相位绿灯时间的最小值;Qml,i,Qbs,i分别为第i交叉口主线左转、支线直行相位的车辆到达流率;I为绿灯间隔时间;gbl,i,gbl,i,min,gbl,i,max为分别为第i交叉口支线左转相位绿灯时间及其最小值与最大值;g0,g0,min,g0,max为第0交叉口直行相位绿灯时长及其最小值与最大值。
第i交叉口主线左转、支线直行相位绿灯时间的最小值计算公式为:
Figure BDA0002542777320000101
Figure BDA0002542777320000102
其中,nml,i,nbs,i为第i交叉口主线左转、支线直行相位的车道数;EQmax为期望绿灯时间内通过停止线的最大平均交通流率,一般为目标路段的饱和流率。
支线左转相位绿灯时间最大值计算公式为:
Figure BDA0002542777320000103
其中,Qbl,i为支线左转相位的车辆到达流率;nbl,i为第i交叉口支线左转相位的车道数;qleft,i第i交叉口支线左转相位绿灯时期交通流率。
第0交叉口直行相位绿灯时长最大值计算公式为:
Figure BDA0002542777320000104
其中,Qms,0为第0交叉口主线直行相位的车辆到达流率;nms,0为第0交叉口主线直行相位的车道数;qm为饱和流率。
第i交叉口支线左转相位绿灯时长最小值gbl,i,min和第0交叉口直行相位绿灯时长最小值g0,min以不溢出、不影响其他方向通行为原则,依据具体情况确定。
步骤3、求解以最大化干线吞吐量为目标的优化模型,得到干线各交叉口干线直行与支线左转相位绿灯时长。
进一步地,计算干线左转与支线直行相位绿灯时长,计算公式为:
Figure BDA0002542777320000105
Figure BDA0002542777320000106
其中,gml,i,gbs,i分别为第i交叉口主线左转、支线直行相位的绿灯时长。
该优化模型为混合整数线形规划模型,可以利用matlab中intlinprog函数进行求解。
步骤4、以干线的每个交叉口为建模对象,构建以最小化车均延误为目标的优化模型,通过调节相位差来实现交叉口间的信号协调,从而降低干线车均延误;所述优化模型的约束包含避免溢出约束、避免排队清空后主线车队未到达情况出现的约束、避免主线车队所有车辆均需排队等待情况出现的约束、保证本周期到达车辆可以全部通过约束。
具体地,第i交叉口车均延误表示为:
Figure BDA0002542777320000111
其中,AREAi为车辆行驶轨迹图中第i交叉口上游直行到达车队停止区域的面积,简称延误面积;
Figure BDA0002542777320000112
为车队到达第i交叉口进口道前端的流率,即
Figure BDA0002542777320000113
延误面积的变量表达式为:
Figure BDA0002542777320000114
AREAi=0
Figure BDA0002542777320000115
Figure BDA0002542777320000116
交通波的变量表达式为:
Figure BDA0002542777320000117
Figure BDA0002542777320000118
Figure BDA0002542777320000119
描述避免溢出约束表示为:
lmax,i≤Li
其中,lmax,i为第i交叉口最大排队长度;Li为第i交叉口与第i-1交叉口间距。
最大排队长度的变量表达式为:
Figure BDA00025427773200001110
lmax,i=li
Figure BDA0002542777320000121
描述避免排队清空后主线车队未到达情况出现的约束表示为:
Figure BDA0002542777320000122
其中,
Figure BDA0002542777320000123
为第i交叉口与其上游交叉口之间的相位差,即绿灯启亮时间差,以上游交叉口绿灯先亮为正;vf为车队稳定行驶速度,一般为路段限速;lts,i为驶入第i交叉口的车队速度转换点与第i-1交叉口停止线的距离,一般为第i-1交叉口下游功能区长度。
描述避免主线车队所有车辆均需排队等待情况出现的约束分别表示为:
Figure BDA0002542777320000124
描述保证本周期到达车辆全部通过约束表示为:
Figure BDA0002542777320000125
若wi=w1
Figure BDA0002542777320000126
步骤5、求解以最小化车均延误为目标的优化模型,得到交叉口与其上游交叉口之间的相位差。该优化模型为二次规划模型,可以利用matlab中quadprog函数求解。由于各相位差之间互不影响,因此可以逐个交叉口求解最优相位差,对于单个交叉口存在两种情况,对应的最大排队长度与延误面积的计算方式存在差异,分别对两种情况进行优化求解,比较目标函数大小取最优的解。
基于相同的发明构思,本发明实施例提供一种过饱和交通状态干线单向信号协调设计装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的过饱和交通状态干线单向信号协调设计方法。
下面结合一个具体算例对本发明实施例的方法做进一步说明:
(1)设计路段概况
设置算例并进行过饱和信号协调方案设计,以南北走向(以南向为正)的包含六个交叉口的城市信号主线为研究对象,其进口道直行车道数与路段长度数据如图4所示。
(2)交通参数设置
实施例步骤中涉及的重要交通参数如表1所示。
表1交通参数设置
Figure BDA0002542777320000131
(3)控制方案
以目标路段正向吞吐量及车均延误最优化为目标,求解优化控制方案,即绿灯时长与相位差(相邻交叉口间主线直行相位启亮时间差)结果,如表2所示。
表2单向算例优化方案
Figure BDA0002542777320000132
(4)优化效果
优化后的控制方案,在满足绿灯时长等约束的前提下,目标路段吞吐量达到了单车道每周期26辆。
对相位差优化前后的控制方案进行仿真,平均单交叉口车均延误分别为33.14秒和2.48秒,信号交叉口服务水平由D级提升到了A级。绘制一段时期内交叉口1至交叉口6的车辆轨迹图,如图5、6所示。对比优化前后车均延误、停车次数、与车均旅行时间情况,如图7所示,优化效果显著。

Claims (8)

1.一种过饱和交通状态干线单向信号协调设计方法,其特征在于,包括以下步骤:
(1)获取过饱和交通状态干线目标路段的几何参数、交通参数、控制参数以及需进行优化时段的交通流量数据;
(2)以干线为建模对象,构建以最大化干线吞吐量为目标的优化模型,通过调节绿灯时长以提高绿时利用率,从而提高干线吞吐量;所述优化模型的约束包含保证本周期到达的车辆全部通过的约束、相位差处于临界状态时不存在空放的直行绿灯时长的约束、交通量进出平衡约束以及绿灯时长约束;
(3)求解以最大化干线吞吐量为目标的优化模型,得到干线各交叉口干线直行与支线左转相位绿灯时长;
(4)以干线的每个交叉口为建模对象,构建以最小化车均延误为目标的优化模型,通过调节相位差来实现交叉口间的信号协调,从而降低干线车均延误;所述优化模型的约束包含避免溢出约束、避免排队清空后主线车队未到达情况出现的约束、避免主线车队所有车辆均需排队等待情况出现的约束以及保证本周期到达车辆全部通过的约束;
(5)求解以最小化车均延误为目标的优化模型,得到交叉口与其上游交叉口之间的相位差;
所述步骤(2)中以目标路段第0交叉口至第n交叉口的绿灯时长为优化对象,第0交叉口为第1交叉口上游的交叉口,第n+1交叉口为第n交叉口下游的交叉口;优化模型的目标表示为:
Figure FDA0003036824770000011
其中,
Figure FDA0003036824770000012
为驶离第n个交叉口直行车道的单车道交通流率,t0,n+1为直行通过第n交叉口到达第n+1交叉口交通流的头车与尾车时距;
所述步骤(2)中描述保证本周期到达的车辆全部通过的约束表示为:
Figure FDA0003036824770000013
若wi=w1
Figure FDA0003036824770000014
其中,t0,i为上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距;fi s为第i交叉口到达车辆的直行比例;ni为第i交叉口的直行车道数;li为第i交叉口的初始排队长度;gi为第i交叉口主线直行相位绿灯时长;vc为排队消散状态的车速;wi为第i交叉口的停止波波速;w1为不存在转向以及车道变换折减时的停止波波速;w2为启动波波速;
描述相位差处于临界状态时不存在空放的直行绿灯时长的约束表示为:
Figure FDA0003036824770000021
若i=0,gi=t0,i+1
其中,i=0时,g0为第0交叉口的直行相位绿灯时长,t0,1为上游交叉口通过直行到达第1交叉口交通流的头车与尾车时距;
描述交通量进出平衡的约束表示为:
Figure FDA0003036824770000022
其中,
Figure FDA0003036824770000023
为驶出第i交叉口的交通流率;qm为饱和流率;
描述绿灯时长的约束表示为:
Figure FDA0003036824770000024
Figure FDA0003036824770000025
Figure FDA0003036824770000026
g0,min≤g0≤g0,max
其中,gi,max为第i交叉口干线直行相位绿灯时间最大值;T为周期长度;gml,i,min,gbs,i,min分别为第i交叉口主线左转、支线直行相位绿灯时间的最小值;Qml,i,Qbs,i分别为第i交叉口主线左转、支线直行相位的车辆到达流率;I为绿灯间隔时间;gbl,i,gbl,i,min,gbl,i,max分别为第i交叉口支线左转相位绿灯时间及其最小值与最大值;g0,g0,min,g0,max为第0交叉口直行相位绿灯时长及其最小值与最大值;
初始排队长度的表达式为:
Figure FDA0003036824770000027
Figure FDA0003036824770000028
其中,ei为第i交叉口的初始排队车辆数;h0为停车状态下的车头间距;gbl,i-1,gright,i-1分别为第i-1交叉口支路左转、右转相位绿灯时长;qleft,i-1,qrig,i-1分别为第i-1交叉口支路左转、右转相位交通流率;qbranch,i为通过第i交叉口上游路段的小支路、停车场或路边停车位驶入该交叉口进口道的车辆交通流率;不限制右转车辆通行时,gright,i-1=T。
2.根据权利要求1所述的一种过饱和交通状态干线单向信号协调设计方法,其特征在于,所述步骤(1)中获取的路段几何参数包括交叉口间距、车道功能以及对应车道数和进口道长度,路段交通参数包括饱和流率、路段限速、排队消散状态的车速和停车状态的车头间距,路段控制参数包括交叉口周期时长和绿灯间隔时长,交通流量数据包括目标路段各进口道各流向的单位时间到达车辆数。
3.根据权利要求1所述的一种过饱和交通状态干线单向信号协调设计方法,其特征在于,所述步骤(4)中优化模型的目标表示为:
Figure FDA0003036824770000031
其中,AREAi为车辆行驶轨迹图中第i交叉口上游直行到达车队停止区域的面积,简称延误面积;
Figure FDA0003036824770000032
为车队到达第i交叉口进口道前端的流率;h0为停车状态下的车头间距;t0,i为上游交叉口通过直行到达第i交叉口交通流的头车与尾车时距。
4.根据权利要求3所述的一种过饱和交通状态干线单向信号协调设计方法,其特征在于,所述步骤(4)中的描述避免溢出的约束表示为:
lmax,i≤Li
其中,lmax,i为第i交叉口最大排队长度;Li为第i交叉口与第i-1交叉口间距;
描述避免排队清空后主线车队未到达情况出现的约束表示为:
Figure FDA0003036824770000033
其中,
Figure FDA0003036824770000034
为第i交叉口与其上游交叉口之间的相位差;vc为排队消散状态的车速;w2为启动波波速;li为第i交叉口的初始排队长度;vf为车队稳定行驶速度;lts,i为驶入第i交叉口的车队速度转换点与第i-1交叉口停止线的距离;
描述避免主线车队所有车辆均需排队等待情况出现的约束表示为:
Figure FDA0003036824770000041
其中,wi为第i交叉口的停止波波速;li为第i交叉口的初始排队长度;
描述保证本周期到达车辆全部通过的约束表示为:
Figure FDA0003036824770000042
若wi=w1
Figure FDA0003036824770000043
其中,w1为不存在转向以及车道变换折减时的停止波波速;fi s为第i交叉口到达车辆的直行比例;ni为第i交叉口的直行车道数;gi为第i交叉口主线直行相位绿灯时长。
5.根据权利要求4所述的一种过饱和交通状态干线单向信号协调设计方法,其特征在于,延误面积表达式为:
Figure FDA0003036824770000044
Figure FDA0003036824770000045
Figure FDA0003036824770000046
6.根据权利要求4所述的一种过饱和交通状态干线单向信号协调设计方法,其特征在于,最大排队长度的表达式为:
Figure FDA0003036824770000047
Figure FDA0003036824770000048
7.根据权利要求4所述的一种过饱和交通状态干线单向信号协调设计方法,其特征在于,交通波的变量表达式为:
Figure FDA0003036824770000049
Figure FDA0003036824770000051
Figure FDA0003036824770000052
其中,qm为饱和流率。
8.一种过饱和交通状态干线单向信号协调设计装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述计算机程序被加载至处理器时实现根据权利要求1-7任一项所述的过饱和交通状态干线单向信号协调设计方法。
CN202010551764.5A 2020-06-17 2020-06-17 一种过饱和交通状态干线单向信号协调设计方法与装置 Active CN111833620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010551764.5A CN111833620B (zh) 2020-06-17 2020-06-17 一种过饱和交通状态干线单向信号协调设计方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010551764.5A CN111833620B (zh) 2020-06-17 2020-06-17 一种过饱和交通状态干线单向信号协调设计方法与装置

Publications (2)

Publication Number Publication Date
CN111833620A CN111833620A (zh) 2020-10-27
CN111833620B true CN111833620B (zh) 2021-06-25

Family

ID=72897727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010551764.5A Active CN111833620B (zh) 2020-06-17 2020-06-17 一种过饱和交通状态干线单向信号协调设计方法与装置

Country Status (1)

Country Link
CN (1) CN111833620B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113327436B (zh) * 2021-01-18 2022-06-21 兆边(上海)科技有限公司 一种基于轨迹数据的干线协调控制优化方法
CN113327416B (zh) * 2021-04-14 2022-09-16 北京交通大学 基于短时交通流预测的城市区域交通信号控制方法
CN113421444B (zh) * 2021-05-17 2022-06-07 东南大学 一种基于车辆路径信息的城市道路网信号控制方法与装置
CN113380029B (zh) * 2021-06-03 2023-02-03 阿波罗智联(北京)科技有限公司 数据验证方法、装置、设备及存储介质
CN116030645B (zh) * 2023-01-17 2023-11-28 东南大学 信号交叉口混合交通流环境车辆轨迹与信号协调控制方法
CN116543562B (zh) * 2023-07-06 2023-11-14 银江技术股份有限公司 干线协调优化模型的构建方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9625757D0 (en) * 1996-12-07 1997-01-29 Adams Stephen J A rapid flow traffic system
CN106128125A (zh) * 2016-08-01 2016-11-16 江苏大学 一种针对主路优先感应控制交叉口的车速引导方法
CN106530767A (zh) * 2016-12-12 2017-03-22 东南大学 基于跟车法的干线信号协调优化方法
CN108806290A (zh) * 2018-05-30 2018-11-13 东南大学 基于交通状态判别的动态双向绿波控制方法
CN109191847A (zh) * 2018-10-12 2019-01-11 山东交通学院 基于城市卡口数据的自适应干线协调控制方法及系统
CN111192457A (zh) * 2020-03-20 2020-05-22 青岛海信网络科技股份有限公司 一种城市级整体的交通信号控制的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9625757D0 (en) * 1996-12-07 1997-01-29 Adams Stephen J A rapid flow traffic system
CN106128125A (zh) * 2016-08-01 2016-11-16 江苏大学 一种针对主路优先感应控制交叉口的车速引导方法
CN106530767A (zh) * 2016-12-12 2017-03-22 东南大学 基于跟车法的干线信号协调优化方法
CN108806290A (zh) * 2018-05-30 2018-11-13 东南大学 基于交通状态判别的动态双向绿波控制方法
CN109191847A (zh) * 2018-10-12 2019-01-11 山东交通学院 基于城市卡口数据的自适应干线协调控制方法及系统
CN111192457A (zh) * 2020-03-20 2020-05-22 青岛海信网络科技股份有限公司 一种城市级整体的交通信号控制的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A coordination control by sections on the trunk line of urban traffic network;Li Zhou 等;《2008 International Conference on MultiMedia and Information Technology》;20090119;第665-668页 *
城市干线交通信号协调控制优化与仿真研究;贺冰花;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20150315(第3期);C034-1712 *

Also Published As

Publication number Publication date
CN111833620A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN111833620B (zh) 一种过饱和交通状态干线单向信号协调设计方法与装置
CN112037507B (zh) 一种过饱和交通状态干线自适应信号协调设计方法与装置
CN112037540B (zh) 一种潮汐交通状态干线信号协调设计方法与装置
CN111833619B (zh) 一种过饱和交通状态干线双向信号协调设计方法与装置
CN107705591B (zh) 一种有轨电车与社会车流的协同控制方法
CN108765989B (zh) 一种道路交叉口直行和左转可变的导向车道信号控制方法
CN110706484B (zh) 设置逆向可变车道交叉口左转通行能力计算方法
CN109272747B (zh) 一种信号控制平面交叉口可变导向车道属性动态调整阈值设置方法
CN109671282A (zh) 一种车路互动信号控制方法和装置
CN106023611B (zh) 一种两段式干线协调信号控制优化方法
CN107016858A (zh) 一种交叉口多流向候驶区和错位式停车线的预信号控制方法
CN110660233B (zh) 设置逆向可变车道交叉口最佳信号周期计算方法
CN112652177B (zh) 一种基于时空特性的公交预信号优先控制方法及系统
CN108629970B (zh) 基于蒙特卡罗树搜索的交叉口信号参数优化方法
CN113032964A (zh) 一种公交优先的交叉口信号控制方法及装置
CN105160894B (zh) 基于车辆排队长度的平面十字交叉口信号控制的优化方法
CN108922204B (zh) 一种考虑交叉口信号控制的元胞传输模型改进方法
WO2023035666A1 (zh) 一种基于预期收益估计的城市路网交通信号灯控制方法
CN110176138B (zh) 一种路口级的主动交通诱导方法
CN113436448B (zh) 一种信号交叉口借道左转车道设计方法及系统
CN108806285B (zh) 一种基于阵列雷达的交叉路口信号调整方法及装置
CN117133119A (zh) 基于时间预测的无专用道公交车辆优先行驶控制方法
CN110415520B (zh) 一种路段施工区背景下基于交通波的干线协调控制方法
CN113823101B (zh) 一种感控交互的交叉口信号迭代响应控制方法及系统
CN115311868A (zh) 基于公交优先的干线协调控制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant