CN112030138A - 循环式磊晶沉积系统及其气体分流模块 - Google Patents

循环式磊晶沉积系统及其气体分流模块 Download PDF

Info

Publication number
CN112030138A
CN112030138A CN202010069893.0A CN202010069893A CN112030138A CN 112030138 A CN112030138 A CN 112030138A CN 202010069893 A CN202010069893 A CN 202010069893A CN 112030138 A CN112030138 A CN 112030138A
Authority
CN
China
Prior art keywords
gas
guide
substrate
channels
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010069893.0A
Other languages
English (en)
Inventor
谢建德
林友复
赵家鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gold Carbon Co Ltd
Original Assignee
Gold Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gold Carbon Co Ltd filed Critical Gold Carbon Co Ltd
Publication of CN112030138A publication Critical patent/CN112030138A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45559Diffusion of reactive gas to substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/005Transport systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开一种循环式磊晶沉积系统及其气体分流模块。气体分流模块包括导入件、导流组件以及导出件。导入件包括多个彼此独立的导入孔。导流组件包括彼此独立的多个导流通道以及分别对应于多个导流通道的多个气体暂留槽。每一导流通道流体连通于对应的导入孔与对应的气体暂留槽之间。导流组件设置于导入件与导出件之间。导出件具有分别对应于多个气体暂留槽的多个扩散区域,以及分别对应于多个扩散区域设置的多个导出通道。每一扩散区域包括多个分散设置的扩散孔,且每一气体暂留槽通过对应的多个扩散孔流体连通于对应的导出通道,以使流向气体暂留槽的气体被分散导引至基材的待处理区域。

Description

循环式磊晶沉积系统及其气体分流模块
技术领域
本发明涉及一种磊晶沉积系统及其气体分流模块,特别是涉及一种利用原子层沉积原理的循环式磊晶沉积系统及其气体分流模块。
背景技术
原子层沉积(atomic layer deposition)是以气相方式来成长高质量薄膜的技术。相较于以化学气相沉积或者是物理气相沉积所形成的膜层而言,利用原子层沉积所形成的膜层具有更高的致密性、厚度均匀性以及阶梯覆盖率。另外,利用原子层沉积可精密地控制膜层厚度。因此,原子层沉积技术已经被应用在电子元件的制造流程中。
在原子层沉积时,在每一次镀膜循环(cycle)中,两种不同的前驱物气体是在不同的时间点依序通入反应腔体,而非同时间通入反应腔体内。每次所通入的前驱物气体与基材表面发生自限性(self-limiting)反应,而只形成单原子层。在多次镀膜循环之后,才会形成具有特定厚度的膜层。
因此,相对于化学气相沉积,利用原子层沉积的制程时间较长,且目前无法应用于连续式生产,而不适合应用于制造需要大量生产的组件或装置。
发明内容
本发明所要解决的技术问题在于,提供一种循环式磊晶沉积系统及其气体分流模块,以缩短利用原子层沉积技术的沉积时间。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种气体分流模块。气体分流模块包括导入件、导流组件以及导出件。导入件包括多个彼此独立的导入孔。导流组件包括彼此独立的多个导流通道以及分别对应于多个导流通道的多个气体暂留槽。每一导流通道包括一主通道以及连接于主通道的多个分流通道。主通道流体连通于对应的导入孔,多个分流通道流体连通于对应的气体暂留槽。导流组件设置于导入件与导出件之间。导出件具有分别对应于多个气体暂留槽的多个扩散区域,以及分别对应于多个扩散区域设置的多个导出通道。每一扩散区域包括多个分散设置的扩散孔,且每一气体暂留槽通过对应的扩散区域的多个扩散孔流体连通于对应的导出通道,以使沿着导流通道流向气体暂留槽的一气体被分散导引至一基材上的一待处理区域。
更进一步地,导出件包括两个相对设置的侧板、多个分隔板以及扩散板。多个分隔板连接于两个侧板之间。每一分隔板的延伸方向与每一气体暂留槽的延伸方向相同,以在两个侧板之间定义出多个导出通道。扩散板设置于多个分隔板以及导流组件之间,并具有多个扩散区域。每一扩散区域与每一分隔板的位置在一垂直方向上相互错开。
更进一步地,每一导出通道具有一渐缩开口端部。
更进一步地,每一导出通道具有一喷口,喷口在基材的一宽度方向上的长度大于待处理区域的一宽度。
更进一步地,导流组件包括导流板、分流板以及气体暂留板。导流板具有多个主通道。分流板具有多个分流区域,多个分流区域分别对应于多个主通道,且每一个分流区域包括至少两个彼此分离的分流通道。气体暂留板具有彼此独立的多个气体暂留槽。分流板位于导流板与气体暂流板之间。
更进一步地,每一主通道为一凹槽,且具有两个贯穿导流板的通孔。两个通孔分别位于主通道的两相反端,且主通道通过两个通孔流体连通于对应的分流区域内的两个分流通道。
更进一步地,每一分流通道为一条形开槽,并具有两个贯穿分流板的贯通孔。两个贯通孔分别位于分流通道的两相反端,且每一分流通道通过两个贯通孔流体连通于气体暂留槽。
更进一步地,每一气体暂留槽由气体暂留板的上表面延伸至下表面。
更进一步地,气体通过对应的导出通道,在基材上方形成一气体分布区,两个相邻的导出通道分别在基材上所形成的两个气体分布区不重叠。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种循环式磊晶沉积系统,其包括反应腔体、输送装置以及气体分流模块。输送装置用以沿着一传输路径连续地输送一基材进出反应腔体。气体分流模块设置于反应腔体内,并位于传输路径上方,以将至少一前驱物气体以及至少一冲洗气体分别导引至基材上。
综上所述,本发明的其中一有益效果在于,本发明所提供的循环式磊晶沉积系统及其气体分流模块,其能通过“导流组件包括彼此独立的多个导流通道以及分别对应于多个导流通道的多个气体暂留槽”以及“导出件具有分别对应于多个气体暂留槽的多个扩散区域,以及分别对应于多个扩散区域设置的多个导出通道”的技术手段,以使沿着导流通道流向气体暂留槽的一气体被分散导引至一基材上的一待处理区域。如此,当气体分流模块应用于循环式磊晶沉积系统内时,可在同一时间将至少一前驱物气体以及至少一冲洗气体分别导引至基材上的不同区域,并可连续地在基材上形成膜层,可缩短沉积时间,并适合应用于制造需要大量生产的元件或者装置。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明实施例的循环式磊晶沉积系统的立体示意图。
图2为本发明一实施例的气体分流模块的立体示意图。
图3为图2的气体分流模块的立体分解图。
图4为图2中的气体分流模块的局部剖面示意图。
图5为图2中沿线V-V的剖面示意图。
图6为图2中沿线VI-VI的剖面示意图。
具体实施方式
以下是通过特定的具体实例来说明本发明所公开有关“循环式磊晶沉积系统及其气体分流模块”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。
请参照图1。图1显示本发明实施例的循环式磊晶沉积系统的示意图。须说明的是,本发明实施例的循环式磊晶沉积系统M1是以原子层沉积(或原子层磊晶)的原理,在一基材S1上形成特定膜层,如:铂层、氧化铝层、氧化镍层、氧化锡层、氧化钛层、氧化铁层、氧化锌层、磷锂氮氧化物层(LiPON)、氮化钛层等。另外,本发明实施例的循环式磊晶沉积系统M1可应用于卷对卷连续制程。
如图1所示,循环式磊晶沉积系统M1至少包括一镀膜腔体1、一气体分流模块2、一前处理模块3以及至少一输送装置4。
在本实施例中,镀膜腔体1可被区分为各自独立的一前处理区以及一镀膜区,以避免通入前处理区内的气体与通入镀膜区内的气体相互扩散。在一实施例中,前处理区以及镀膜区可以通过一隔板(图1未绘示)彼此隔离。在另一实施例中,前处理模块3与气体分流模块2可分别被设置在不同的子腔室内,以相互隔离。前处理模块3设置在前处理区,而气体分流模块2设置在镀膜区内。
输送装置4用以沿着一传输路径连续地输送基材S1通过前处理区以及镀膜区。进一步而言,前处理区以及镀膜区是在基材S1的传输路径上。通过输送装置4连续式地传送基材S1,可以使基材S1的不同区域,也就是位于前处理区内的区域以及位于镀膜区内的区域,同时进行前处理以及膜层沉积。
输送装置4包括一第一收放料模块41以及一第二收放料模块42,且第一收放料模块41以及一第二收放料模块42定义出基材S1的传输路径。详细而言,基材S1通过第一收放料模块41的带动,而连续地被传送至前处理区以及镀膜区,且由镀膜区传送出的基材S1通过第二收放料模块42的带动而被卷收。
在本实施例中,第一收放料模块41可包括第一收放料轮411以及连接于第一收放料轮411轴心的第一驱动组件410。相似地,第二收放料模块42可包括第二收放料轮421以及连接于第二收放料轮421轴心的第二驱动组件420。
第一驱动组件410以及第二驱动组件420接受一控制模块(未绘示)的指令,以在同时间分别驱动第一收放料轮411与第二收放料轮421(以顺时针方向)转动,以使卷绕在第一收放料轮411上的基材S1被连续地传送至前处理区以及镀膜区。
另外,第一收放料模块41并可选择性地包括一第一导向轮412,以改变基材S1的输送方向。相似地,第二收放料模块42可选择性地包括一第二导向轮422,以改变由镀膜区传送出的基材S1的行进方向。
须说明的是,在本实施例中,第一收放料模块41以及第二收放料模块42也可以改变基材S1的移动方向。具体而言,第一驱动组件410与第二驱动组件420接受控制模块的指令,以驱动第一收放料轮411与第二收放料轮421反向(逆时针)转动,以使基材S1可在镀膜区内往复移动。如此,可在镀膜区内重复进行多次镀膜循环,而形成多层分子层于基材S1上。
然而,本发明实施例的输送装置4并不以此为限。在另一实施例中,输送装置4包括一传送带,可连续地输送待镀工件进出前处理区以及镀膜区。
请参照图1,在本发明实施例的循环式磊晶沉积系统M1中,基材S1在进入镀膜区之前,会先进入前处理区内,以进行表面处理。
循环式磊晶沉积系统M1包括位于前处理区内的一前处理模块3,且前处理模块3为电浆装置。在一实施例中,可在前处理区内通入氧气、氮气或者氩气,以产生氧气电浆、氮气电浆或者氩气电浆。如此,当基材S1被连续地传送至前处理区内时,通过前处理模块3产生的电浆可对基材S1的表面进行表面处理。前述的表面处理例如是清洁基材S1的表面或者是增加基材S1表面的官能基。须说明的是,前处理区以及前处理模块3为选择性的组件,在其他实施例中,前处理区以及前处理模块3也可被省略。
通过输送装置4的带动,经过表面处理之后的基材S1可由前处理区移动至镀膜区内,以进行膜层沉积。
请参照图1,至少一气体分流模块2(图1绘示3个为例)设置于镀膜区内,并位于传输路径上方。气体分流模块2可用以将至少一前驱物气体以及至少一冲洗气体分别导引至基材S1上的不同区域。
进一步而言,请参照图2至图4。图2为本发明一实施例的气体分流模块的立体示意图。图3为图2的气体分流模块的立体分解图。图4为图2中的气体分流模块的局部剖面示意图。
气体分流模块2包括导入件20、导流组件21以及导出件22。导入件20包括多个彼此独立的导入孔20h。在本实施例中,多个导入孔20h是沿着一第一方向D1排列。
多个导入孔20h分别连接于多个气体管路L1。在本实施例中,可供应不同的气体至不同的气体管路L1中,以分别由不同的导入孔20h输入不同的气体,如:两种不同的前驱物气体或者是前驱物气体以及冲洗气体。可分别连通于不同的气体储存单元,以输入两种不同的气体。也就是说,在本发明实施例的循环式磊晶沉积系统M1中,两种不同的气体,如:两种不同的前驱物气体及/或冲洗气体可在同时间被通入镀膜区内。
导流组件21设置在导入件20下方,并包括彼此独立的多个导流通道以及分别对应于多个导流通道的多个气体暂留槽212H。导流组件21的每一导流通道包括一主通道210a以及连接于主通道210a的多个分流通道211a、211b。
如图3所示,导流组件21包括导流板210、分流板211以及气体暂留板212,且分流板211是位于导流板210以及气体暂留板212之间。
导流板210包括多个主通道210a,且多个主通道210a沿着第一方向D1并列,并分别流体连通于多个导入孔20h。另外,每一主通道210a沿着一第二方向D2延伸。在本实施例中,每一主通道210a为设置在导流板210上的凹槽。另外,如图3所示,每一主通道210a(凹槽)具有两个贯穿导流板210的通孔210h。进一步而言,两个通孔210h是分别位于主通道210a(凹槽)的两相反端。
分流板211具有多个分流区域211R,且多个分流区域211R是分别对应于多个主通道210a设置。另外,在本实施例中,每一个分流区域211R包括至少两个分流通道211a、211b。两个分流通道211a、211b是沿着第二方向D2排列且彼此分离的条形开槽。如图3所示,每一主通道210a与对应的分流区域211R内的两个分流通道211a、211b在垂直方向上部分重叠。
值得注意的是,每一主通道210a的一中间段在垂直方向上与两个分流通道211a、211b不重叠,而每一主通道210a的两相反端部会分别与两个分流通道211a、211b重叠。由于主通道210a的通孔210h是分别位于其两相反端,因此,流入主通道210a内的气体可以通过主通道210a两相反端的通孔210h而被导引至两个分流通道211a、211b内。如此,可以使流入主通道210a内的气体分布范围沿着第二方向D2扩散。
另外,如图3所示,每一分流通道211a、211b具有两个贯穿分流板211的贯通孔211h,两个贯通孔211h分别位于分流通道211a、211b的两相反端。
请再参照图3,气体暂留板212具有彼此独立的多个气体暂留槽212H。在本实施例中,多个气体暂留槽212H分别对应于多个分流区域211R设置。也就是说,多个气体暂留槽212H沿着第一方向D1并列,并且每一气体暂留槽212H会沿着第二方向D2延伸。另外,在本实施例中,每一气体暂留槽212H是由气体暂留板212的上表面延伸至下表面。
每一气体暂留槽212H与对应的分流区域211R内的两个分流通道211a、211b在垂直方向上重叠。据此,每一分流通道211a、211b可通过两个贯通孔211h,以流体连通于对应的气体暂留槽212H。基于上述,相对应的气体暂留槽212H、分流通道211a、211b以及主通道210a会在垂直方向上重叠。据此,由导入孔20h所通入的气体可沿着导流通道(包括主通道210a以及分流通道211a、211b),流向气体暂留槽212H。
请继续参照图2以及图3,本实施例的导出件22包括两个相对设置的侧板221a、221b、多个分隔板221以及一扩散板220。
多个分隔板221连接于两个侧板221a、221b之间。在本实施例中,每一分隔板221的延伸方向与每一气体暂留槽212H的延伸方向相同,也就是都沿着第二方向D2延伸,以在两个侧板221a、221b之间定义出多个导出通道221H。
扩散板220位于多个分隔板221以及导流组件21的气体暂留板212之间,并具有多个扩散区域220R。多个扩散区域220R分别对应于多个气体暂留槽212H设置,且多个导出通道221H分别对应于多个扩散区域220R设置。也就是说,每一扩散区域220R与每一分隔板221的位置在垂直方向上相互错开。
如图3与图4所示,每一扩散区域220R具有多个分散设置的扩散孔220h。每一气体暂留槽212H通过对应的扩散区域220R的多个扩散孔220h流体连通于对应的导出通道221H。据此,由导入孔20h进入导流通道,并沿着导流通道流向气体暂留槽212H的气体可被分散导引至基材S1上的待处理区域。
请再参照图1,值得注意的是,在本实施例中,输送装置4是带动基材S1沿着一第一方向D1移动。据此,基材S1在第二方向D2上具有一宽度。
请配合参照图3以及图4,由于扩散区域220R内的扩散孔220h较细密,因此当气体流到气体暂留槽212H内之后,大部分的气体会暂留在气体暂留槽212H内,并沿着第二方向D2扩散之后,再通过扩散孔220h流向导出通道221H,而被导引至基材S1上。也就是说,通过在导出通道221H上设置扩散板220,可以延迟气体在第二方向D2上的扩散时间。
当气体由导出通道221H流至基材S1上时,可以避免气体供应不均的问题。据此,通过本发明实施例的气体分流模块2,可将气体分散至基材S1的宽度方向(即第二方向D2),以使基材S1的待处理区域A1在宽度方向上可形成均匀的膜层。
请参照图4,在本实施例中,每一导出通道221H具有一渐缩开口端部221s,以使通过导出通道221H流出的气体可快速地被传送至基材S1表面。换句话说,每一分隔板221的两相反侧面在底端分别具有两个朝向不同方向延伸的斜面。据此,在两个相邻的分隔板221底端部可定义出前述的渐缩开口端部221s。
请参照图5以及图6。在本实施例中,当气体由气体管路L1被供应至导入孔20h之后,会沿着导流组件21的导流通道(包括主通道210a以及分流通道211a、211b)而流向气体暂留槽212H。暂留在气体暂留槽212H内的气体再通过对应的多个扩散孔220h进入导出通道221H,并且被导引至基材S1上的待处理区域A1。
请参照图5,气体可通过对应的导出通道221H,以在基材S1上方形成气体分布区P1。两个相邻的导出通道221H分别在基材S1上所形成的两个气体分布区P1不重叠。如此,当两相邻的导出通道221H分别提供不同的气体时,可以避免两种不同的气体在被导引至基材S1上之前相互扩散而混合。
每一导出通道221H具有一喷口(未标号)。在一实施例中,每一导出通道221H的喷口与基材S1的表面之间的最短垂直距离是介于0.1cm至2.0cm之间。如此,可避免气体在喷洒到基材S1上之前往水平方向扩散。另外,如图6所示,喷口在基材S1的一宽度方向(也就是第二方向D2)上的长度W1大于或等于基材S1的待处理区域A1的一宽度。另外,喷口在第一方向D1上的宽度W2约0.5至1公分,且两相邻的喷口之间的间距至少大于0.5cm,可避免相邻的两种气体在被导引至基材S1上之前相互混合。
基于上述,当本发明实施例的气体分流模块2被应用在循环式磊晶沉积系统M1时,可通过不同的气体管路L1供应不同的前驱物气体及/或冲洗气体,以在同一时间,使不同的前驱物气体及/或冲洗气体可分别通过不同的导出通道221H被供应至基材S1上的不同区域。
举例而言,若要在基材S1上形成氮化钛层,前驱物气体为四氯化钛(TiCl4)以及氨气(NH3),而冲洗气体为惰性气体,如:氩气(Ar)。三种气体可根据每次镀膜循环顺序,而分别由不同的导出通道221H被供应至基材S1上。
据此,当基材S1被连续式地传送时,基材S1的其中一待处理区域A1会依序通过供应四氯化钛的导出通道221H、供应氩气的导出通道221H以及供应氨气的导出通道221H下方,以完成一次镀膜循环,而在待处理区域A1上形成一层单分子层。当基材S1被带动,而使待处理区域A1移动经过多个气体分流模块2的下方之后,可在待处理区域A1上形成多层单分子层。
也就是说,本发明实施例的循环式磊晶沉积系统M1基本上仍是利用原子层沉积原理,以在基材S1上形成膜层。然而,与现有的原子层沉积设备不同之处在于,本发明的实施例的循环式磊晶沉积系统M1中,利用输送装置4带动基材S1移动,以及利用气体分流模块2,可在同一时间在基材S1的不同区域通入每次镀膜循环中所需要的前驱物气体。
请再参照图1,本发明实施例的循环式磊晶沉积系统M1,还进一步包括一加热模块(未标号)。加热模块设置在镀膜区内,并位于传输路径下方,以将基材S1加热至特定的反应温度。
请参照图1,本发明实施例的循环式磊晶沉积系统M1还进一步包括设置在传输路径上的一冷却装置5。据此,由镀膜区被传送出的基材S1可被导引至冷却装置5。在本实施例中,冷却装置5为一设有冷却管路的滚轮。基材S1由镀膜区被传送至冷却装置5而被降温之后,再被第二收放料模块42收卷,但本发明不以此为限。在其他实施例中,冷却装置5也可以被省略。
[实施例的有益效果]
本发明的其中一有益效果在于,本发明所提供的循环式磊晶沉积系统及其气体分流模块,其能通过“导流组件21包括彼此独立的多个导流通道以及分别对应于多个导流通道的多个气体暂留槽212H”以及“导出件22具有分别对应于多个气体暂留槽212H的多个扩散区域220R,以及分别对应于多个扩散区域220R设置的多个导出通道221H”,以使沿着导流通道(包括主通道210a以及分流通道211a、211b)流向气体暂留槽212H的一气体被分散导引至基材S1上的待处理区域A1。
如此,当气体分流模块2应用于循环式磊晶沉积系统M1内时,可在同一时间将不同的前驱物气体及/或至少一冲洗气体分别导引至基材S1上的不同待处理区域,并可连续地在基材S1上形成膜层。配合输送装置4连续地将基材S1传送至气体分流模块2下方,可缩短沉积时间,并适合应用于制造需要大量生产的组件或者装置。
另一方面,本发明实施例的气体分流模块2中,通过导流件、分流板211、气体暂留板212以及扩散板220的配置,可以将流入导入孔20h的气体分散至基材S1的宽度方向(即第二方向D2),以使基材S1的待处理区域A1在宽度方向上可形成均匀的膜层。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。

Claims (10)

1.一种气体分流模块,其特征在于,所述气体分流模块包括:
一导入件,其具有彼此独立的多个导入孔;
一导流组件,其包括彼此独立的多个导流通道以及分别对应于多个所述导流通道的多个气体暂留槽,其中,每一所述导流通道包括一主通道以及连接于所述主通道的多个分流通道,所述主通道流体连通于对应的所述导入孔,多个所述分流通道流体连通于对应的所述气体暂留槽;以及
一导出件,所述导流组件设置于所述导入件与所述导出件之间,所述导出件具有分别对应于多个所述气体暂留槽的多个扩散区域,以及分别对应于多个所述扩散区域设置的多个导出通道;
其中,每一所述扩散区域包括多个分散设置的扩散孔,且每一所述气体暂留槽通过对应的所述扩散区域的多个所述扩散孔流体连通于对应的所述导出通道,以使沿着所述导流通道流向所述气体暂留槽的一气体被分散导引至一基材上的一待处理区域。
2.根据权利要求1所述的气体分流模块,其特征在于,所述导出件包括:
两个相对设置的侧板;
多个分隔板,其连接于两个所述侧板之间,其中,每一所述分隔板的延伸方向与每一所述气体暂留槽的延伸方向相同,以在两个所述侧板之间定义出多个所述导出通道;以及
一扩散板,其设置于多个所述分隔板以及所述导流组件之间,并具有多个所述扩散区域,其中,每一所述扩散区域与每一所述分隔板的位置在一垂直方向上相互错开。
3.根据权利要求1所述的气体分流模块,其特征在于,每一所述导出通道具有一渐缩开口端部。
4.根据权利要求1所述的气体分流模块,其特征在于,每一所述导出通道具有一喷口,所述喷口在所述基材的一宽度方向上的长度大于所述待处理区域的一宽度。
5.根据权利要求1所述的气体分流模块,其特征在于,所述导流组件包括:
一导流板,其具有多个所述主通道;
一分流板,其具有多个分流区域,其中,多个分流区域分别对应于多个所述主通道,且每一个所述分流区域包括至少两个彼此分离的分流通道;以及
一气体暂留板,其具有彼此独立的多个所述气体暂留槽,其中,所述分流板位于所述导流板与所述气体暂流板之间;
其中,相对应的所述气体暂留槽、所述分流通道以及所述主通道在一垂直方向上重叠。
6.根据权利要求5所述的气体分流模块,其特征在于,每一所述主通道为一凹槽,且具有两个贯穿所述导流板的通孔,两个所述通孔分别位于所述主通道的两相反端,且所述主通道通过两个所述通孔流体连通于对应的所述分流区域内的两个所述分流通道。
7.根据权利要求5所述的气体分流模块,其特征在于,每一所述分流通道为一条形开槽,并具有两个贯穿所述分流板的贯通孔,两个所述贯通孔分别位于所述分流通道的两相反端,且每一所述分流通道通过两个所述贯通孔流体连通于所述气体暂留槽。
8.根据权利要求5所述的气体分流模块,其特征在于,每一所述气体暂留槽由所述气体暂留板的上表面延伸至下表面。
9.根据权利要求1所述的气体分流模块,其特征在于,所述气体通过对应的所述导出通道,在所述基材上方形成一气体分布区,两个相邻的所述导出通道分别在所述基材上所形成的两个所述气体分布区不重叠。
10.一种循环式磊晶沉积系统,其特征在于,所述循环式磊晶沉积系统包括:
一镀膜腔体;
一输送装置,其用以沿着一传输路径连续地输送一基材进出所述反应腔体;以及
如权利要求第1至9项中的任一项所述的气体分流模块,其设置在所述反应腔体内,并位于传输路径上方,以将至少一前驱物气体以及至少一冲洗气体分别导引至所述基材上。
CN202010069893.0A 2019-06-04 2020-01-20 循环式磊晶沉积系统及其气体分流模块 Pending CN112030138A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108119274A TWI725444B (zh) 2019-06-04 2019-06-04 循環式磊晶沉積系統及其氣體分流模組
TW108119274 2019-06-04

Publications (1)

Publication Number Publication Date
CN112030138A true CN112030138A (zh) 2020-12-04

Family

ID=73578755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010069893.0A Pending CN112030138A (zh) 2019-06-04 2020-01-20 循环式磊晶沉积系统及其气体分流模块

Country Status (3)

Country Link
US (1) US11214872B2 (zh)
CN (1) CN112030138A (zh)
TW (1) TWI725444B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115176349A (zh) * 2020-02-20 2022-10-11 梅托克斯技术公司 用于化学气相沉积反应器的基座
EP4297913A1 (en) * 2021-02-26 2024-01-03 MetOx International, Inc. Multi-stack susceptor reactor for high-throughput superconductor manufacturing
US20230139688A1 (en) * 2021-10-29 2023-05-04 Applied Materials, Inc. Modular multi-directional gas mixing block

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194493A1 (en) * 2002-04-16 2003-10-16 Applied Materials, Inc. Multi-station deposition apparatus and method
CN1763913A (zh) * 2004-10-21 2006-04-26 松下电器产业株式会社 衬底处理装置及衬底处理方法
US20080166884A1 (en) * 2007-01-08 2008-07-10 Nelson Shelby F Delivery device comprising gas diffuser for thin film deposition
US20090081366A1 (en) * 2007-09-26 2009-03-26 Kerr Roger S Delivery device for deposition
US20090162260A1 (en) * 2007-12-19 2009-06-25 Kallol Bera Plasma reactor gas distribution plate with radially distributed path splitting manifold
CN101688297A (zh) * 2007-06-07 2010-03-31 应用材料股份有限公司 用于沉积均一硅薄膜的设备及其制造方法
US20110159186A1 (en) * 2009-12-28 2011-06-30 Sony Corporation Film forming apparatus and film forming method
TW201127497A (en) * 2010-02-01 2011-08-16 Ind Tech Res Inst Gas distribution module and gas distribution scanning apparatus using the same
JP2012156488A (ja) * 2011-01-05 2012-08-16 Tokyo Electron Ltd 基板処理装置
KR20130126477A (ko) * 2012-05-11 2013-11-20 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이 가스 샤워헤드와 그 제조 방법 및 박막 성장 반응기

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194493A1 (en) * 2002-04-16 2003-10-16 Applied Materials, Inc. Multi-station deposition apparatus and method
CN1763913A (zh) * 2004-10-21 2006-04-26 松下电器产业株式会社 衬底处理装置及衬底处理方法
US20080166884A1 (en) * 2007-01-08 2008-07-10 Nelson Shelby F Delivery device comprising gas diffuser for thin film deposition
CN101688297A (zh) * 2007-06-07 2010-03-31 应用材料股份有限公司 用于沉积均一硅薄膜的设备及其制造方法
US20090081366A1 (en) * 2007-09-26 2009-03-26 Kerr Roger S Delivery device for deposition
US20090162260A1 (en) * 2007-12-19 2009-06-25 Kallol Bera Plasma reactor gas distribution plate with radially distributed path splitting manifold
US20110159186A1 (en) * 2009-12-28 2011-06-30 Sony Corporation Film forming apparatus and film forming method
TW201127497A (en) * 2010-02-01 2011-08-16 Ind Tech Res Inst Gas distribution module and gas distribution scanning apparatus using the same
JP2012156488A (ja) * 2011-01-05 2012-08-16 Tokyo Electron Ltd 基板処理装置
KR20130126477A (ko) * 2012-05-11 2013-11-20 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이 가스 샤워헤드와 그 제조 방법 및 박막 성장 반응기

Also Published As

Publication number Publication date
US20200385869A1 (en) 2020-12-10
TW202045768A (zh) 2020-12-16
TWI725444B (zh) 2021-04-21
US11214872B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
US10844486B2 (en) Semiconductor processing reactor and components thereof
USRE48994E1 (en) Apparatus and method for providing uniform flow of gas
CN112030138A (zh) 循环式磊晶沉积系统及其气体分流模块
JP3349156B2 (ja) 薄膜を成長させるための方法と装置
TW202115279A (zh) 半導體處理裝置及沉積方法
KR20140009415A (ko) 원자 층 증착을 위한 장치 및 프로세스
US20140127404A1 (en) Apparatus For Spatial Atomic Layer Deposition With Recirculation And Methods Of Use
KR100509231B1 (ko) 박막증착용 반응용기
JP5357050B2 (ja) プラズマアークコーティング用装置および方法
KR20120136294A (ko) 박막 증착을 위한 장치
TWI724974B (zh) 用於薄膜沉積設備的流體分配裝置、相關設備和方法
US20110262641A1 (en) Inline chemical vapor deposition system
KR20150114120A (ko) 원자층 증착 장치 및 이를 이용한 원자층 증착 방법
CN112030139A (zh) 循环式磊晶沉积系统
KR101471973B1 (ko) 원자층 증착 설비 및 이의 제어 방법
TWI609989B (zh) 應用於化學氣相沈積裝置的氣體分流噴頭
JP2745316B2 (ja) 化学蒸着反応器用ガス注入装置
TWI571527B (zh) 應用於化學氣相沈積裝置的氣體分流噴頭
KR100739443B1 (ko) 박막증착시스템
TWI624561B (zh) 用於半導體製程之氣體噴射器及成膜裝置
KR20200089232A (ko) 원자층 증착 장치
KR20200012167A (ko) 균일분사로를 갖는 원자층 증착장치용 헤드 및 그것을 이용한 원자층 증착장치
KR20200012392A (ko) 고효율 원자층 증착장치용 헤드 및 그것을 이용한 원자층 증착장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201204

WD01 Invention patent application deemed withdrawn after publication