CN112018210A - 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法 - Google Patents

极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法 Download PDF

Info

Publication number
CN112018210A
CN112018210A CN202010989092.6A CN202010989092A CN112018210A CN 112018210 A CN112018210 A CN 112018210A CN 202010989092 A CN202010989092 A CN 202010989092A CN 112018210 A CN112018210 A CN 112018210A
Authority
CN
China
Prior art keywords
layer
type
polarization
component
ultraviolet detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010989092.6A
Other languages
English (en)
Other versions
CN112018210B (zh
Inventor
侯汧妤
陈敦军
张开骁
胡利群
张廷志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guanding Optoelectronics Technology Co ltd
Original Assignee
Nanjing Guanding Optoelectronics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Guanding Optoelectronics Technology Co ltd filed Critical Nanjing Guanding Optoelectronics Technology Co ltd
Priority to CN202010989092.6A priority Critical patent/CN112018210B/zh
Publication of CN112018210A publication Critical patent/CN112018210A/zh
Application granted granted Critical
Publication of CN112018210B publication Critical patent/CN112018210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种极化增强窄带AlGaN p‑i‑n型紫外探测器,其结构自下而上依次包括:衬底层、模板层、光学过滤层、掺杂层、过渡层、吸收层、极化调制层、欧姆接触层、钝化层;其特征在于:所述模板层为非故意掺杂的AlN,所述光学过滤层为Al组分为0.45的n型重掺杂的AlGaN,所述掺杂层为Al组分为0.35的n型重掺杂的AlGaN,所述过渡层为Al组分渐变的n型AlGaN,所述吸收层为Al组分为0.3的非故意掺杂AlGaN,所述极化调制层为Al组分为0.15的p型AlGaN。还公开了其制备方法。本发明通过异质结构进行光学探测窗口设计,并引入极化效应,可以实现响应信号在300‑320nm范围内、半峰宽(FWHM)为8nm的窄带探测。

Description

极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
技术领域
本发明涉及一种极化增强窄带AlGaN p-i-n型紫外探测器及其制备方法,属于半导体紫外探测领域。
背景技术
紫外探测技术在军事和民用方面都有着重要的应用。与传统半导体相比,AlGaN材料具有较宽的禁带宽度、高饱和电子漂移速度、高击穿电场以及更高的耐辐照能力等优良特性,更适用于高性能的探测器件的发展制备。AlGaN紫外探测器主要分为以下几种类型:金属-半导体-金属探测器、p-i-n型探测器和肖特基型探测器。AlGaN p-i-n型探测器具有低的工作电压、较小的反向漏电流、高探测率等卓越的性能,在紫外探测领域具有很强的竞争优势。但是,某些特殊应用比如光线疗法,更需要具有窄的光学信号响应窗口、高的光谱选择性的窄带探测器。然而,很少有关于极化增强窄带AlGaN p-i-n型紫外探测器的研究。
发明内容
本发明的目的在于提供一种背入射准垂直极化增强窄带AlGaN p-i-n型紫外探测器,通过异质结构进行光学探测窗口设计,并引入极化效应,实现响应信号半峰宽(FWHM)为8nm的窄带光学窗口响应以及获得相应信号范围内更高的量子效率和响应度。
本发明的目的通过以下技术方案实现:
一种极化增强窄带AlGaN p-i-n型紫外探测器,其结构自下而上依次包括:衬底层、模板层、光学过滤层、掺杂层、过渡层、吸收层、极化调制层、欧姆接触层、钝化层;其特征在于:所述模板层为非故意掺杂的AlN,所述光学过滤层为Al组分为0.45的n型重掺杂的AlGaN,所述掺杂层为Al组分为0.35的n型重掺杂的AlGaN,所述过渡层为Al组分渐变的n型AlGaN,所述吸收层为Al组分为0.3的非故意掺杂AlGaN,所述极化调制层为Al组分为0.15的p型AlGaN,所述欧姆接触层为p型GaN,还包括n型欧姆电极、p型欧姆电极,在掺杂层引出n型欧姆电极,在欧姆接触层引出p型欧姆电极。
优选的,所述衬底为蓝宝石衬底。
优选的,所述模板层厚度为2μm。
优选的,所述光学过滤层厚度为1000nm,
优选的,所述掺杂层厚度为800nm。
优选的,所述过渡层厚度为60nm,Al组分在0.35-0.3之间逐渐变化,靠近掺杂层的Al组分为0.35,靠近吸收层的Al组分为0.3。
优选的,所述吸收层厚度为250nm。
优选的,所述极化调制层厚度为150nm。
优选的,所述欧姆接触层厚度为50nm,钝化层为2μm的二氧化硅。
本发明还公开了上述的极化增强窄带AlGaN p-i-n型紫外探测器的制备方法,其步骤包括:
(1)利用金属有机化合物化学气相沉积系统在蓝宝石衬底上依次沉积模板层、光学过滤层、掺杂层、过渡层、吸收层、极化调制层、欧姆接触层;
(2)利用感应耦合等离子设备刻蚀到掺杂层;在基片表面沉积一层绝缘材料作为钝化层,并进行开窗口,露出n型电极和p型电极的欧姆接触区域;
(3)利用电子束蒸发设备在掺杂层的欧姆接触区域上蒸镀钛/铝/镍/金,厚度为20/130/50/100nm,然后将器件置于快速退火炉中,通入氮气,在850℃的温度下退火30s,获得n型欧姆电极;
(4)利用电子束蒸发设备在欧姆接触层的欧姆接触区域上蒸镀镍/金,厚度为20/20nm,然后将器件置于快速退火炉中,通入空气,在550℃的温度下退火13min,获得p型欧姆电极。
本发明的有益效果:(1)在模板层之上沉积了1000nm的Al组分为0.45的AlGaN作为光学过滤层,可以有效吸收280nm以下的光学信号,掺杂层可以吸收300nm以下的光学信号,光学过滤层和掺杂层配合,基本可以实现对300nm以下的光学信号的全部吸收,获得更好的光学窗口选择性;(2)在光学过滤层上沉积了一层过渡层,降低了器件材料的晶格失配,可以减小器件反向漏电流;(3)吸收层和掺杂层Al组分相差很小,可以实现响应信号在300-320nm范围内、半峰宽(FWHM)为8nm的窄带探测;(4)极化调制层的优化可以引入极化电场,提高探测器的响应度、量子效率和响应速度。本发明通过异质结构进行光学探测窗口设计,可以实现响应信号在300-320nm范围内、半峰宽(FWHM)为8nm的窄带探测。
附图说明
图1是本发明器件的结构示意图。图中:1-衬底层,2-模板层,3-光学过滤层,4-掺杂层,5-过渡层,6-吸收层,7-极化调制层,8-欧姆接触层,9-钝化层,10-n型欧姆电极,11-p型欧姆电极。
图2是实施例1器件的检测数据。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,一种极化增强窄带AlGaN p-i-n型紫外探测器,其结构自下而上依次包括:蓝宝石衬底层1、模板层2、光学过滤层3、掺杂层4、过渡层5、吸收层6、极化调制层7、欧姆接触层8、钝化层9;其特征在于:所述模板层为非故意掺杂的AlN,厚度为2μm;所述光学过滤层为Al组分为0.45的n型重掺杂的AlGaN,厚度为1000nm;所述掺杂层为Al组分为0.35的n型重掺杂的AlGaN,厚度为800nm;所述过渡层为Al组分渐变的n型AlGaN,厚度为60nm,Al组分在0.35-0.3之间逐渐变化,靠近掺杂层的Al组分为0.35,靠近吸收层的Al组分为0.3;所述吸收层为Al组分为0.3的非故意掺杂AlGaN,厚度为250nm;所述极化调制层为Al组分为0.15的p型AlGaN,厚度为150nm;所述欧姆接触层为p型GaN,厚度为50nm;钝化层为2μm的二氧化硅;还包括n型欧姆电极10、p型欧姆电极11,在掺杂层引出n型欧姆电极,在欧姆接触层引出p型欧姆电极。
图2为本实施例的极化增强窄带AlGaN p-i-n型紫外探测器的检测数据。该极化增强窄带AlGaN p-i-n型紫外探测器的光谱响应图表明:实现了响应信号在300-320nm范围内、半峰宽(FWHM)为8nm的窄带探测;通过引入极化效应获得了相应信号范围内较高的响应度和量子效率。
实施例2
一种极化增强窄带AlGaN p-i-n型紫外探测器的制备方法,其步骤包括:
(1)利用金属有机化合物化学气相沉积系统在蓝宝石衬底上依次沉积模板层、光学过滤层、掺杂层、过渡层、吸收层、极化调制层、欧姆接触层;
(2)利用感应耦合等离子设备刻蚀到掺杂层;在基片表面沉积一层绝缘材料作为钝化层,并进行开窗口,露出n型电极和p型电极的欧姆接触区域;
(3)利用电子束蒸发设备在掺杂层的欧姆接触区域上蒸镀钛/铝/镍/金,厚度为20/130/50/100nm,然后将器件置于快速退火炉中,通入氮气,在850℃的温度下退火30s,获得n型欧姆电极;
(4)利用电子束蒸发设备在欧姆接触层的欧姆接触区域上蒸镀镍/金,厚度为20/20nm,然后将器件置于快速退火炉中,通入空气,在550℃的温度下退火13min,获得p型欧姆电极。

Claims (10)

1.一种极化增强窄带AlGaNp-i-n型紫外探测器,其结构自下而上依次包括:衬底层、模板层、光学过滤层、掺杂层、过渡层、吸收层、极化调制层、欧姆接触层、钝化层;其特征在于:所述模板层为非故意掺杂的AlN,所述光学过滤层为Al组分为0.45的n型重掺杂的AlGaN,所述掺杂层为Al组分为0.35的n型重掺杂的AlGaN,所述过渡层为Al组分渐变的n型AlGaN,所述吸收层为Al组分为0.3的非故意掺杂AlGaN,所述极化调制层为Al组分为0.15的p型AlGaN,所述欧姆接触层为p型GaN,还包括n型欧姆电极、p型欧姆电极,在掺杂层引出n型欧姆电极,在欧姆接触层引出p型欧姆电极。
2.根据权利要求1所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述衬底为蓝宝石衬底。
3.根据权利要求2所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述模板层厚度为2μm。
4.根据权利要求3所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述光学过滤层厚度为1000nm。
5.根据权利要求4所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述掺杂层厚度为800nm。
6.根据权利要求5所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述过渡层厚度为60nm,Al组分在0.35-0.3之间逐渐变化,靠近掺杂层的Al组分为0.35,靠近吸收层的Al组分为0.3。
7.根据权利要求6所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述吸收层厚度为250nm。
8.根据权利要求7所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述极化调制层厚度为150nm。
9.根据权利要求8所述的极化增强窄带AlGaNp-i-n型紫外探测器,其特征在于:所述欧姆接触层厚度为50nm,钝化层为2μm的二氧化硅。
10.根据权利要求1-9中任一项所述的极化增强窄带AlGaNp-i-n型紫外探测器的制备方法,其步骤包括:
(1)利用金属有机化合物化学气相沉积系统在蓝宝石衬底上依次沉积模板层、光学过滤层、掺杂层、过渡层、吸收层、极化调制层、欧姆接触层;
(2)利用感应耦合等离子设备刻蚀到掺杂层;然后在基片表面沉积一层绝缘材料作为钝化层,并进行开窗口,露出n型电极和p型电极的欧姆接触区域;
(3)利用电子束蒸发设备在掺杂层的欧姆接触区域上蒸镀钛/铝/镍/金,厚度为20/130/50/100nm,然后将器件置于快速退火炉中,通入氮气,在850℃的温度下退火30s,获得n型欧姆电极;
(4)利用电子束蒸发设备在欧姆接触层的欧姆接触区域上蒸镀镍/金,厚度为20/20nm,然后将器件置于快速退火炉中,通入空气,在550℃的温度下退火13min,获得p型欧姆电极。
CN202010989092.6A 2020-09-18 2020-09-18 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法 Active CN112018210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010989092.6A CN112018210B (zh) 2020-09-18 2020-09-18 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010989092.6A CN112018210B (zh) 2020-09-18 2020-09-18 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112018210A true CN112018210A (zh) 2020-12-01
CN112018210B CN112018210B (zh) 2022-05-17

Family

ID=73523066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010989092.6A Active CN112018210B (zh) 2020-09-18 2020-09-18 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112018210B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582995A (zh) * 2022-01-27 2022-06-03 南京邮电大学 一种基于极化增强的ⅱ型量子点光学门控场效应晶体管日盲紫外探测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204130567U (zh) * 2014-09-24 2015-01-28 滁州学院 一种用于日盲紫外探测的雪崩光电二极管
CN107240615A (zh) * 2017-05-15 2017-10-10 东南大学 一种具有非极性吸收层的紫外探测器
CN109119508A (zh) * 2018-08-08 2019-01-01 镇江镓芯光电科技有限公司 一种背入射日盲紫外探测器及其制备方法
CN110047956A (zh) * 2019-04-25 2019-07-23 南京大学 具有挡光层的非等平面AlGaN基肖特基型紫外探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204130567U (zh) * 2014-09-24 2015-01-28 滁州学院 一种用于日盲紫外探测的雪崩光电二极管
CN107240615A (zh) * 2017-05-15 2017-10-10 东南大学 一种具有非极性吸收层的紫外探测器
CN109119508A (zh) * 2018-08-08 2019-01-01 镇江镓芯光电科技有限公司 一种背入射日盲紫外探测器及其制备方法
CN110047956A (zh) * 2019-04-25 2019-07-23 南京大学 具有挡光层的非等平面AlGaN基肖特基型紫外探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UWE KARRER, ARMIN DOBNER, OLIVER AMBACHER, AND MARTIN STUTZMANN: "AlGaN-based ultraviolet light detectors with integrated optical filters", 《JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582995A (zh) * 2022-01-27 2022-06-03 南京邮电大学 一种基于极化增强的ⅱ型量子点光学门控场效应晶体管日盲紫外探测器

Also Published As

Publication number Publication date
CN112018210B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN104393093B (zh) 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN103021492B (zh) 碳化硅横向pin型微型核电池的制造方法
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN102361046B (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN104282793A (zh) 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN110571301A (zh) 氧化镓基日盲探测器及其制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN111952384B (zh) 光电探测器及其制备方法
CN111640817A (zh) 一种悬空横向双异质结光探测器及其制作方法
CN105161551A (zh) 一种可以降低InAs/GaSb超晶格长波红外探测器暗电流的表面钝化方法
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN109326659B (zh) 一种高响应度低暗电流PIN结构的4H-SiC紫外探测器及其制备方法
CN112018210B (zh) 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
CN108321256A (zh) 一种基于p型透明栅极GaN基紫外探测器的制备方法
CN110676272A (zh) 一种半导体紫外光电探测器
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN110137277B (zh) 非极性自支撑GaN基pin紫外光电探测器及制备方法
CN108305907B (zh) 一种新型同质结pin紫外探测器
CN106653893A (zh) 基于多孔氮化镓的紫外光电探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant