CN112017836B - 一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法 - Google Patents

一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法 Download PDF

Info

Publication number
CN112017836B
CN112017836B CN202010881892.6A CN202010881892A CN112017836B CN 112017836 B CN112017836 B CN 112017836B CN 202010881892 A CN202010881892 A CN 202010881892A CN 112017836 B CN112017836 B CN 112017836B
Authority
CN
China
Prior art keywords
silicon steel
oriented silicon
insulating coating
bottom layer
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010881892.6A
Other languages
English (en)
Other versions
CN112017836A (zh
Inventor
刘婷
程祥威
刘敏
胡守天
宋刚
赵胜利
陈博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN202010881892.6A priority Critical patent/CN112017836B/zh
Publication of CN112017836A publication Critical patent/CN112017836A/zh
Application granted granted Critical
Publication of CN112017836B publication Critical patent/CN112017836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明公开了一种具有高张力底层和绝缘涂层的低噪音取向硅钢,它包括取向硅钢板以及在其表面依次形成的隔离底层和绝缘涂层,通过对取向硅钢板涂布退火隔离剂进行高温退火,再涂布绝缘涂液进行烘干烧结而成。本发明通过同时调整取向硅钢用的退火隔离剂和绝缘涂液,形成具有高张力的底层和表面绝缘涂层,可有效细化钢板磁畴,降低铁损和磁致伸缩,进而制得具有低噪音特性的取向硅钢;且涉及的制备方法简单,操作方便,成本低,环境友好,适合推广应用。

Description

一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其 制备方法
技术领域
本发明属于钢材制备技术领域,具体涉及一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制造方法。
背景技术
大变压器产生的噪音是一个严重问题,欧洲和日本对人口稠密的大城市规定噪声不能超过80dB。变压器噪音产生的主要原因是由于取向硅钢磁化时磁致伸缩λs引起的铁芯尺寸变化。目前降低变压器噪音的有效措施是:1)降低磁通密度;2)提高材料的取向度;3)减薄钢板厚度;4)增大绝缘膜产生的张力;5)减少装配铁芯的残余应力。
目前,取向硅钢大量用作磁性铁芯材料,主要用于制造输变电行业中变压器和大型电机的铁芯。近年来由于对节能、环保的社会要求日益急切,对降低取向硅钢的铁损、改善磁化特性的要求也变得更加强烈,在电机、变压器设计上,迫切希望进一步提高磁感应强度,有利于节约电器成本,降低噪音。
专利CN105220071A中提出了一种低噪音特性取向硅钢及其制造方法;通过控制基板中Cu元素与S元素的原子比满足:5≤Cu/S≤10,并调节表面绝缘涂层的涂布量到6-10g/m2,使绝缘涂层的张力控制在6-8MPa,可使取向硅钢的磁致伸缩减小,满足LVA(17)<55dB,降低变压器的整体噪音水平。该发明通过简单的提高涂层涂布量的方法降低取向硅钢成品板的磁致伸缩,实现降低变压器噪音的问题;但提高涂层涂布量后,一方面使钢板成本提高,另一方面容易造成涂层涂布不良等表面质量问题;且绝缘涂层中含有铬酐,对环境会造成污染。专利CN106282512A通过刻痕加工方式在硅钢片的单面或双面形成特定形状的沟槽,使取向硅钢片的磁畴得到细化,降低硅钢片的铁损,从而降低制造的变压器产品噪音水平。专利CN1327075A中提出通过采用无底层的技术来提高取向硅钢成品板的表面光洁度,以降低磁致伸缩的不平滑度,从而降低300-1000HZ的磁致伸缩速度声压水平,并最终降低变压器的整体噪音水平。但该方法对变压器的噪音水平没有明显降低(去除底层时底层产生的张力对磁致伸缩的降低也被抵消)。专利号ZL201310673461.0公开了一种能提高取向硅钢表面张力的无铬应力涂料及制备方法,从涂液成分上帮助涂层提供钢板张力。但是产生的张力仅有2MPa左右,不足以降低钢板的磁致伸缩,达到降低变压器噪音的作用。专利US20020012805A中主要通过采用镜面和大张力涂层来达到降低铁损目的,在该发明中,取向硅钢表面不形成底层或者去除了底层。一方面减少了底层带来的张力作用,不利于铁损降低,另一方面,该方法不利于现场工艺实施。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种低噪音变压器用取向硅钢片,通过提高底层和绝缘涂层的张力,细化磁畴,降低铁损和磁致伸缩,使采用该取向硅钢片制成的变压器噪音水平下降;且涉及的制备方法简单、环境友好,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢,它包括取向硅钢板以及在其表面依次形成的隔离底层和绝缘涂层;其中隔离底层通过对涂布的退火隔离剂进行高温退火而成,退火隔离剂以TiO2、胶状氧化物、Na2B2O7、氧化镁和水为原料制备而成;绝缘涂层通过对涂布的绝缘涂液进行烘干、烧结而成。
上述方案中,所述所得隔离底层的厚度为1-2μm;绝缘涂层厚度为1-3μm。
上述方案中,所述取向硅钢板中的化学组成及其所占质量百分比为:C 0.04-0.08%,Si 3.14-3.4%,Mn 0.06-0.12%,S 0.02-0.03%,Als 0.02-0.03%,N 0.006-0.01%,余量Fe和不可避免的杂质。
上述方案中,所述退火隔离剂中各组分及其所占重量份数包括:MgO 100份,TiO23-8份,胶状氧化物2-15份,Na2B2O7 0.01-0.5份,水800-1200份。
上述方案中,所述氧化镁中粒径为1-5μm的颗粒占20-80wt%,粒径为0.1-0.9μm的颗粒占20-40wt%,二者总质量占比60wt%以上;有利于降低MgO的水化率:因氧化镁在搅拌过程中易与水反应:MgO+H2O→Mg(OH)2,导致钢板中水含量增加,影响形成底层的致密性和均匀性;通过降低MgO的水化率,可提高MgO的反应性,使底层的形成温度低,可在退火温度低于1000℃时优先发生玻璃膜反应2MgO+SiO2→Mg2SiO4形成Mg2SiO4底层。
上述方案中,所述TiO2的颗粒尺寸小于0.5μm;通过在退火隔离剂中引入TiO2,其在高温下分解放出氧改进钢带间的气氛,氧能与钢中扩散出来的Als结合,避免铝破坏二氧化硅膜,从而保证生成良好的硅酸镁底层;同时采用的颗粒尺寸有利于提高TiO2的分散性和反应性,进而有利于形成高张力的底层。
上述方案中,对于采用的取向硅钢板(基板),它是以AlN+MnS抑制剂为主的HiB钢,Mg2SiO4通常从950℃开始形成,1100℃已基本完成;AlN的分解温度(高于950℃)高于Mg2SiO4的开始形成温度,因此当AlN分解后,Al进入底层中并与Mg2SiO4反应形成MgAl2O4(尖晶石);尖晶石的热膨胀系数为9×10-6/k,Mg2SiO4的热膨胀系数为11×10-6/k,基体的热膨胀系数为为15×10-6/k;尖晶石产生的张力为Mg2SiO4的3倍,底层中尖晶石数量越多,产生的张力越大;因此通过增加底层中尖晶石的数量,可提高底层张力;同时采用的Na2B2O7可降低Mg2SiO4的形成温度,使形成的底层致密,附着性好,并可保证最终退火时先形成较多的Mg2SiO4,在不低于1000℃时先形成的Mg2SiO4变成尖晶石,从而增加了底层中尖晶石的数量,提高了底层张力。
基于上述改进手段,底层中Mg2SiO4减少、MgAl2O4增多;由于尖晶石的硬度高,虽然可以产生更大的张力,但底层韧性会变坏易破碎,因此进一步引入1-15%的胶状氧化物,使以后形成的Mg2SiO4颗粒中含Al,提高Mg2SiO4晶格常数,有效提高底层韧性,同时降低底层表面的粗糙度,底层越光滑,产生的张力越大,底层附着性也好。
上述方案中,所述胶状氧化物为胶状SiO2、Al2O3、SnO2、CaO等中的一种或几种。
上述方案中,绝缘涂层以胶体Al2O3、硼源(B源)、金属氧化物、金属氢氧化物和水为原料制备而成;各组分及其所占质量百分比包括:胶体Al2O3 30-60%,B源2-15%,金属氧化物0.5-5%,氢氧化物1-5%,余量为水。
上述方案中,所述B源为B2O3或硼酸。
上述方案中,所述金属氧化物为Fe、Ni、Al、Ca、Na、Mg、Zn等金属氧化物中的一种或几种。
上述方案中,所述金属氢氧化物为Co、Ni、Al、Ca、Na等金属氢氧化物中的一种或几种。
上述方案中,所述涂层烘干温度为300-500℃,烧结温度为800-900℃;涂层经800℃以上烧结后,形成2μm左右厚膜,产生的张力大,涂层附着性好。
上述方案中,所述绝缘涂液以胶体Al2O3为主,其与钢板的热膨胀系数差别较大,约为(4~6)×10-6/k,在钢板中可产生较大的张力;同时Al2O3与B源(B2O3或硼酸)结合可形成AlxByO(x+y/2)晶体,在膜厚为1-2μm时,线膨胀系数约为6×10-6/k,在钢板中也可产生较大的张力;此外本发明进一步引入可与B源反应的金属氧化物有利于形成非晶质的金属硼酸盐,可改善涂层耐湿性,同时提高涂层张力和附着性能;引入的氢氧化物有利于中和掉多余的B2O3或硼酸,防止涂液胶化,降低涂液黏度(涂液更易涂覆),并提高涂层的耐湿性。
上述一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢的制备方法,通过在取向硅钢脱碳板表面涂布退火隔离剂后进行高温退火得高张力底层,再涂布绝缘涂液进行烘干、烧结而成。
上述方案中,所述高温退火工艺为:首先以45-55℃/h的速度升温至650-850℃,保温8-15h;然后以15-20℃/h速度升温至1150-1250℃,保温15-25h;自然冷却至室温。
根据上述方案所得低噪音取向硅钢的表面质量优良,涂层附着性为C级或B级,底层和涂层产生的张力能达到8-12MPa,钢板在B=1.7T条件下的磁致伸缩速度声压水平LVA(17/50)<55dB(A)。
与现有技术相比,本发明的有益效果为:
1)本发明针对变压器运行过程由于取向硅钢磁致伸缩造成的噪音问题,提出通过提高基板底层和表面涂层张力的方法,可有效细化磁畴,降低铁损和磁致伸缩。
2)使用本发明所述隔离底层和无铬绝缘涂层,对钢板产生大的张力,同时可保证良好的涂层附着性能,可有效降低铁损和磁致伸缩;所得低噪音取向硅钢的表面质量优良,涂层附着性为C级或B级,隔离底层和绝缘涂层产生的张力能达到8-12MPa,钢板在B=1.7T条件下的磁致伸缩速度声压水平LVA(17/50)<55dB(A),具良好的低噪音特性。
3)本发明涉及的制备方法简单,操作方便,成本低,且对环境无明显副作用,环境友好,适合推广应用。
具体实施方式
下面申请人将结合具体的实施例对本发明作进一步的详细说明,以使本领域的技术人员更加清楚地理解本发明。但以下内容不应理解为是对本发明的权利要求书请求保护范围的限制。
以下实施例中,退火隔离剂中采用的TiO2的颗粒尺寸小于0.5μm;采用的氧化镁中粒径为1-5μm的颗粒占20-80wt%,粒径为0.1-0.9μm的颗粒占20-40wt%,二者总质量占比60wt%以上。
实施例1~8
实施例1~8所述具有高张力隔离底层和绝缘涂层的低噪音取向硅钢的制备方法包括如下步骤:
1)按配比制备取向硅钢板,其化学组成及其所占质量百分比为:C 0.04-0.08%,Si 3.14-3.4%,Mn 0.06-0.12%,S 0.02-0.03%,Als 0.02-0.03%,N 0.006-0.01%,余量Fe和不可避免的杂质;将取向硅钢热轧板冷轧后进行脱碳退火得取向硅钢板;
2)按将表1所述退火隔离剂涂布在取向硅钢板表面后进行高温退火,具体工艺为首先以50℃/h的速度升温至650-850℃,保温8-15h;然后以15-20℃/h速度升温至1200℃,保温20h;自然冷却至室温;再涂覆将按表2所述配比所得绝缘涂液,再经300-500℃烘干、800-900℃烧结,所得钢板表面质量优良,隔离底层厚度约1.5μm,绝缘涂层厚度约2μm。
采用上述方案所得涂层附着性为C级或B级,隔离底层和绝缘涂层产生的张力能达到8-12MPa,钢板在B=1.7T条件下的磁致伸缩速度声压水平LVA(17/50)<55dB(A)。
表1退火隔离剂成分(重量份)
表2绝缘涂液成分(%)
质量百分比剩余量为纯水。
将实施例1~8和对比例1~2所得具有对应隔离底层和绝缘涂层的取向硅钢分别进行表面质量、附着性能和磁致伸缩性能测试,结果见表3。
其中皮膜张力测试方法为:洗掉钢板表面的隔离底层和绝缘涂层,将试验片立着,一端以30mm固定着,测定另一端的弯曲大小;并用以下方程式计算皮膜张力σ:
σ(MPa)=1.2152×105(MPa)×板厚(mm)×弯曲(mm)/270(mm)/270(mm);
磁致伸缩性能的测试方法为:采用激光多普勒振动仪检测试验在B=1.7T条件下的磁致伸缩性能(磁致伸缩速度声压水平LVA(17/50))。变压器产生噪音的主要原因是取向硅钢片磁致伸缩引起的,国内各变压器厂家均将LVA(17/50)作为衡量取向硅钢片对变压器产生噪音的指标。
表3涂层表面质量及附着性能和磁致伸缩性能
由表1~3可以看出,将本发明上述退火隔离剂涂覆于取向硅钢板表面并进行高温退火,再涂覆绝缘涂液,经800-900℃平整拉伸退火后,所得改性钢板的表面质量优良,涂层附着性为C级或B级,隔离底层和绝缘涂层产生的张力可达8-12MPa,钢板在B=1.7T条件下的磁致伸缩速度声压水平LVA(17/50)<55dB(A)。
对比例1中,氧化镁中粒径为1-5μm的颗粒占15wt%,粒径为0.1-0.9μm的颗粒占15wt%,二者总质量占比低于60wt%以上,不有利于降低MgO的水化率;此外,退火隔离剂中没有添加Na2B2O7,涂覆与钢板表面后经高温退火,再涂布绝缘涂液,涂液中B2O3或硼酸含量较低,钢板经平整拉伸退火后,涂层易脱落,涂层附着性差,涂层和底层产生的张力仅有2.2MPa,钢板在B=1.7T条件下的磁致伸缩速度声压水平LVA(17/50)为61.8dB(A)。
对比例2中,氧化镁中粒径为1-5μm的颗粒占19wt%,粒径为0.1-0.9μm的颗粒占45wt%,粒径为1-5μm的颗粒占比过低,不有利于降低MgO的水化率。绝缘涂液中胶体Al2O3含量较高,涂料涂敷烘干,经平整拉伸退火后,涂层易脱落,涂层附着性差,涂层和底层产生的张力仅有2.5MPa,钢板在B=1.7T条件下的磁致伸缩速度声压水平LVA(17/50)为62.2dB(A)。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (8)

1.一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢,其特征在于,它包括取向硅钢板以及在其表面依次形成的隔离底层和绝缘涂层;其中隔离底层通过对涂布的退火隔离剂进行高温退火而成,退火隔离剂以TiO2、胶状氧化物、Na2B2O7、氧化镁和水为原料制备而成;绝缘涂层通过对涂布的绝缘涂液进行烘干、烧结而成;
所述取向硅钢板是以AlN+MnS抑制剂为主的HiB 钢;
所述退火隔离剂中各组分及其所占重量份数包括:MgO 100份,TiO2 3-8份,胶状氧化物2-15份,Na2B2O7 0.01-0.5份,水 800-1200份;
所述氧化镁中粒径为1-5 µm的颗粒占20-80wt%,粒径为0.1-0.9µm的颗粒占20-40wt%,二者总质量占比为60wt%以上;
所述胶状氧化物为胶状SiO2、Al2O3、SnO2、CaO中的一种或几种;
所述绝缘涂液以胶体Al2O3、硼源、金属氧化物、金属氢氧化物和水为原料制备而成;各组分及其所占质量百分比包括:胶体Al2O3 30-60%,硼源 2-15%,金属氧化物 0.5-5%,金属氢氧化物1-5%,余量为水;
所述金属氧化物为Fe、Ni、Al、Ca、Na、Mg、Zn的金属氧化物中的一种或几种;所述金属氢氧化物为Co、Ni、Al、Ca、Na的金属氢氧化物中的一种或几种。
2.根据权利要求1所述的低噪音取向硅钢,其特征在于,所述取向硅钢板中的化学组成及其所占质量百分比为:C 0.04-0.08%,Si 3.14-3.4%,Mn 0.06-0.12%,S 0.02-0.03%,Als0.02-0.03%,N 0.006-0.01%,余量Fe和不可避免的杂质。
3.根据权利要求1所述的低噪音取向硅钢,其特征在于,所述TiO2的颗粒尺寸小于0.5µm。
4.根据权利要求1所述的低噪音取向硅钢,其特征在于,所述硼源为B2O3或硼酸。
5.根据权利要求1所述的低噪音取向硅钢,其特征在于,所述绝缘涂层的烘干温度为300-500℃,烧结温度为800-900℃。
6.根据权利要求1所述的低噪音取向硅钢,其特征在于,所述隔离底层的厚度为1-2µm;绝缘涂层厚度为1-3 µm。
7.权利要求1~6任一项所述具有高张力隔离底层和绝缘涂层的低噪音取向硅钢的制备方法,其特征在于,通过在取向硅钢脱碳退火板表面涂布退火隔离剂后进行高温退火得高张力底层,再涂布绝缘涂液进行烘干、烧结而成。
8.根据权利要求7所述的制备方法,其特征在于,所述高温退火工艺为:首先以45-55℃/h的速度升温至650-850℃,保温8-15h;然后以15-20℃/h速度升温至1150-1250℃,保温15-25h;自然冷却至室温。
CN202010881892.6A 2020-08-28 2020-08-28 一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法 Active CN112017836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010881892.6A CN112017836B (zh) 2020-08-28 2020-08-28 一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010881892.6A CN112017836B (zh) 2020-08-28 2020-08-28 一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法

Publications (2)

Publication Number Publication Date
CN112017836A CN112017836A (zh) 2020-12-01
CN112017836B true CN112017836B (zh) 2023-08-22

Family

ID=73503342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010881892.6A Active CN112017836B (zh) 2020-08-28 2020-08-28 一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法

Country Status (1)

Country Link
CN (1) CN112017836B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192373A (en) * 1989-09-08 1993-03-09 Armco, Inc. Magnesium oxide coating for electrical steels and the method of coating
US5342454A (en) * 1991-08-20 1994-08-30 Kawasaki Steel Corporation Method of producing grain oriented silicon steel sheet having low iron loss
US5547519A (en) * 1995-02-28 1996-08-20 Armco Inc. Magnesia coating and process for producing grain oriented electrical steel for punching quality
KR20060074659A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 장력부여능이 우수한 절연피막 조성물 및 방향성전기강판의 절연피막 형성방법
CN107881411A (zh) * 2016-09-29 2018-04-06 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
CN108193032A (zh) * 2017-12-30 2018-06-22 新万鑫(福建)精密薄板有限公司 一种取向硅钢氧化镁退火隔离剂及涂覆工艺
KR20180083295A (ko) * 2018-07-12 2018-07-20 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192373A (en) * 1989-09-08 1993-03-09 Armco, Inc. Magnesium oxide coating for electrical steels and the method of coating
US5342454A (en) * 1991-08-20 1994-08-30 Kawasaki Steel Corporation Method of producing grain oriented silicon steel sheet having low iron loss
US5547519A (en) * 1995-02-28 1996-08-20 Armco Inc. Magnesia coating and process for producing grain oriented electrical steel for punching quality
KR20060074659A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 장력부여능이 우수한 절연피막 조성물 및 방향성전기강판의 절연피막 형성방법
CN107881411A (zh) * 2016-09-29 2018-04-06 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
CN108193032A (zh) * 2017-12-30 2018-06-22 新万鑫(福建)精密薄板有限公司 一种取向硅钢氧化镁退火隔离剂及涂覆工艺
KR20180083295A (ko) * 2018-07-12 2018-07-20 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법

Also Published As

Publication number Publication date
CN112017836A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
JP2015086426A (ja) 磁気特性および被膜密着性に優れる方向性電磁鋼板
KR101448596B1 (ko) 방향성 전기강판 및 그 제조방법
JP2019507242A (ja) 方向性電磁鋼板用絶縁被膜組成物、これを利用した方向性電磁鋼板の絶縁被膜形成方法、及び方向性電磁鋼板
KR20100019226A (ko) 방향성 전기강판용 비크롬계 코팅제와 그 제조방법 및 이를이용한 전기강판과 그 제조방법
CN102021282A (zh) 一种用于晶粒取向硅钢制备的退火隔离剂及其使用方法
CN114561512B (zh) 用激光刻痕脱碳板以改善取向硅钢片磁致伸缩的方法
CA2934847C (en) Coating agent for electrical steel sheet, manufacturing method therefor and electrical steel sheet coating method using same
CN107746929A (zh) 高磁感取向硅钢用退火剂及制备方法及其在降低水化率上的应用
CN110283488B (zh) 超高磁感取向硅钢用半有机绝缘涂料及其使用方法
CN112017836B (zh) 一种具有高张力隔离底层和绝缘涂层的低噪音取向硅钢及其制备方法
CN112522609B (zh) 一种含复合抑制剂的高磁感取向硅钢及生产方法
JP7133708B2 (ja) 方向性電磁鋼板用焼鈍分離剤組成物、方向性電磁鋼板および方向性電磁鋼板の製造方法
CN111748248A (zh) 适用于无底层的含Bi超高磁感取向硅钢的无铬半有机绝缘涂料
CN114106593B (zh) 一种用于取向硅钢表面涂层的涂料、取向硅钢板及其制造方法
CN111961359A (zh) 一种改善取向硅钢磁性的绝缘涂液及其制备方法与应用方法
KR101356066B1 (ko) 방향성 전기강판 및 그 제조방법
KR20120075278A (ko) 밀착성이 향상된 방향성 전기강판의 제조방법 및 이에 의해 제조된 방향성 전기강판
CN112831200A (zh) 一种不含铬取向电磁钢板用涂料、其制备方法及带涂层的不含铬取向电磁钢板的制备方法
CN113166875B (zh) 电工钢板及其制造方法
CN114381584B (zh) 一种用于取向硅钢表面的绝缘涂层涂液、取向硅钢板及其制造方法
KR20130076644A (ko) 방향성 전기강판 및 그 제조방법
JP4321181B2 (ja) クロムを含まない上塗絶縁被膜の形成方法
CN115161455B (zh) 一种底层附着性优良的含铜取向硅钢及其制备方法
CN115109440B (zh) 一种具有优良防潮性能的取向硅钢及其制造方法
CN113969103B (zh) 一种超薄取向硅钢用的半有机绝缘涂料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant