CN112014835A - 分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置 - Google Patents
分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置 Download PDFInfo
- Publication number
- CN112014835A CN112014835A CN202010906974.1A CN202010906974A CN112014835A CN 112014835 A CN112014835 A CN 112014835A CN 202010906974 A CN202010906974 A CN 202010906974A CN 112014835 A CN112014835 A CN 112014835A
- Authority
- CN
- China
- Prior art keywords
- radar
- time
- target
- information
- radar target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000005259 measurement Methods 0.000 claims abstract description 119
- 230000008569 process Effects 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims description 37
- 230000008859 change Effects 0.000 claims description 13
- 238000010276 construction Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 10
- 238000001914 filtration Methods 0.000 abstract description 8
- 238000004088 simulation Methods 0.000 description 14
- 230000003416 augmentation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
- G01S13/723—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本公开提供分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置,方法包括:分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程;根据雷达状态方程和雷达量测方程,建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器;初始化卡尔曼滤波器;获取分布式阵列雷达在各个时刻的雷达目标量测信息;根据卡尔曼滤波器和各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息。本公开实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置中,针对当栅瓣的出现无法避免时,利用卡尔曼滤波区分主瓣和栅瓣对应的信号,从而在信号处理过程开始前消除栅瓣造成的影响,实现目标跟踪,并保证对目标方位的估计结果具有较高的精度。
Description
技术领域
本公开属于雷达目标跟踪技术领域,具体涉及分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置。
背景技术
雷达目标跟踪是雷达系统的主要功能,为了保证对目标轨迹判断的准确性,需要尽可能减少各种干扰因素的影响,而栅瓣就是其中影响比较大的因子。栅瓣的产生与雷达天线自身的设计密不可分。当对天线系统的分辨率有较高要求时,需要增大天线阵列孔径,在阵列信号处理中等效于减小波束宽度,从而提高方位估计的精度。最直观的实现方法是按照处理信号的频带的上限来设定阵元间距,通过直接增加阵元数目来增大阵列孔径,然而这种大面积的密集阵元布置方式成本过于高昂,往往难以实现。为了降低天线阵列的制造成本,降低其复杂度,只能采用稀疏布置天线单元的设计,通过减少阵元数及通道数的方式保证只需要较少的阵元数目就能达到较大的阵列孔径,用较低的成本实现所期望的阵列性能。然而较大的阵元间距会导致栅瓣效应的出现,栅瓣也会产生对应的来波,使得跟踪目标时出现方位模糊从而无法准确判定目标的波达方向。当存在多目标时,强目标的栅瓣会对信号特征较弱的目标的检测与估计造成严重模糊,甚至可能导致弱目标无法被检测到。
1问题描述
雷达进行角度测量通常采用的方法是相位干涉仪测向定位技术,通过比较两个天线的相位来获得方向。单基线相位干涉原理如图1所示。
来波方向(图1中入射方向)与法线方向的夹角为θ,则平面波前到达天线单元1(图1中阵元1)和天线单元2(图1中阵元2)的时间就有先有后,体现在固定频率信号上就存在相位差。为了提高波达角的估计精度,通常采用增大基线长度的方法。但是当基线长度大于半波长时,由于栅瓣的存在,不能分辨来波的真正方向,会产生多个可能结果,这就是角度模糊现象。此时相位差是一个以2π为模糊的观测值,角度观测值与实际值的对应关系为其中k为多个未知的模糊值,它的个数与栅瓣的个数有关。这种情况的出现意味着在同一个采样点会同时出现k+1个观测值,其中一个为实际值,其他为模糊值。考虑到栅瓣往往是成对出现,而且对称分布于主瓣两侧,k的取值往往也是成对的正负数。
设阵元间距为d,波长为λ,θ0为主瓣对应角度,当πd(sinθ-sinθ0)/λ=mπ(m=±1,±2,…)的时候,这些θ对应的方向上也会存在与主瓣幅度相同的栅瓣。为了避免栅瓣出现,必须要求d≤λ/(1+|sinθ0|)。假设目标方位与阵列所成夹角为θs,根据自然指向性函数可以预测栅瓣出现位置和宽度,第m(m=1,2,)个栅瓣出现的方位为:
θm=arccos(cosθs±mλ/d),m=1,2,…,0°<θm<180°
θm=arccos(cos(2π-θs)±mλ/d),m=1,2,…,180°<θm<360°
或者
θm=arcsin(sinθs±mλ/d),m=1,2,…,-90°<θm<90°
θm=arcsin(sin(2π-θs)±mλ/d),m=1,2,…,90°<θm<270°
当m=0时为主极大位置,测量区域范围内的其他整数m出现的位置都为栅瓣位置,在测量区域内可能存在多个栅瓣。当阵元间距为波长一半,即d=λ/2,则没有栅瓣存在。当d=2λ,而且扫描范围为0°到180°,对应的m=-2,-1,1,2,共计4个栅瓣,对应的角度为180°,120°,60°,0°。当d=3λ,对应的栅瓣则会有6个,以此类推。
2.传统应对方式以及存在问题
目前应对针对栅瓣引发的测角模糊现象的主要处理思路是对雷达天线的阵元布置方式进行优化,从而避免栅瓣的出现,从直接消除栅瓣这一思路上解决栅瓣影响问题。关于阵列栅瓣影响抑制,主要集中为以下几类方法。
一大常用的方法是利用组合阵法或优化稀布阵技术的手段避免稀疏天线阵引起的栅瓣影响。对于此类方法的研究有包括:1)采取优化天线阵面排布,阵元形成非周期排列的方式来降低稀疏阵列引起的栅瓣影响。采用子阵重叠的方式布阵是非周期单元布阵的方式,这种方法是使子阵方向图在电扫范围内尽可能接近平顶阵因子方向图,而在扫描范围外无能量辐射,目的就是再次分散栅瓣的能量,如随机错位的子阵防止栅瓣产生,或利用子阵的随机排布来打破阵面布局的周期性,或采用单元不等间距布阵形式来打破子阵的规则性、采用不同阵元间距的接收阵列和发射阵列避免栅瓣的产生。2)通过对稀疏阵列进行优化设计,使得利用最少的有源阵元数将栅瓣谱级抑制到满足要求的范围内。打乱阵面的周期结构以形成非周期布阵,并将阵中辐射单元设计成高效辐射单元,二者之间有机结合,共同抑制栅瓣出现。这类方法需要对阵列的形状进行设计,其对抗栅瓣影响的性能主要由阵列形状决定。
另一类常用的方法是通过虚拟内插阵元法,在信号处理中降低阵列稀疏程度来抵抗阵稀疏引起的栅瓣影响,通过合理的设计收发阵元的布局,可以虚拟出更多数量的有效虚拟阵元数,通过这种方式可以达到更多的有效阵元数,利用阵列的优化配置和虚拟孔径的方法来实现对栅瓣的抑制。其它的处理方法还有将时域互相关法和空间域处理方法相结合的适用于分裂子阵的处理方法、阵列声强器法以及对步进信号的栅瓣影响抑制算法、在栅瓣位置处采用空间滤波器抑制电磁波的功率传输等等。
然而在部分情况下栅瓣的出现是无法避免的,例如机动式的分布式雷达,这种雷达系统可以看作是一个随时间改变阵元排布的巨型天线阵列,其形状很难维持在不出现栅瓣的状态。此外阵元布置优化是针对特定波长进行对应的设置,而雷达波束的波长并不是固定不变的,当波长变短,而原有的阵列没有变化时,也可能会导致栅瓣的出现。
当栅瓣已经出现时,如何消除栅瓣引发的测角模糊,识别主瓣对应的测角,使得雷达能够在栅瓣影响下依然能够实现对目标的持续跟踪,并保证较高的估计精度,就成为了一个需要研究的问题。本文提出了基于卡尔曼滤波的测角模糊方法,利用卡尔曼滤波对栅瓣造成的测角模糊进行估计,根据估计得到的模糊值的不同区分主瓣和栅瓣,从而使得后续的信号处理直接使用主瓣对应的信息,避免了栅瓣造成的影响。依据这种方法,可以使得栅瓣的影响在信号处理过程进行之前就被排除,从而消除了测角模糊现象,并获得较为准确的目标方位估计信息,实现目标跟踪。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置。
本公开的一个方面提供分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法,包括:
分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程;
根据所述雷达状态方程和所述雷达量测方程,建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器;
初始化所述卡尔曼滤波器;
获取所述分布式阵列雷达在各个时刻的雷达目标量测信息;
根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪。
可选的,所述建立分布式阵列雷达在栅瓣模糊下的雷达状态方程,包括:
根据所述分布式阵列雷达在所述栅瓣模糊下所产生的模糊值状态信息建立所述雷达状态方程。
可选的,所述雷达状态方程满足下述关系式(1):
其中,t为时刻,t=0,1,2…;
x(t)、x(t+1)分别为t时刻、t+1时刻雷达目标在x方向的方位状态信息;
y(t)、y(t+1)分别为t时刻、t+1时刻雷达目标在y方向的方位状态信息;
Vx(t)、Vx(t+1)分别为t时刻、t+1时刻雷达目标在x方向的速度状态信息;
Vy(t)、Vy(t+1)分别为t时刻、t+1时刻雷达目标在y方向的速度状态信息;
k(t)、k(t+1)分别为t时刻、t+1时刻雷达目标的模糊值状态信息,且k(t)=[k1(t),k2(t)…],k1(t)、k2(t)代表t时刻的多个模糊值,k(t+1)=[k1(t+1),k2(t+1)…],k1(t+1)、k2(t+1)代表t+1时刻的多个模糊值;
A为状态转移矩阵;
w1为状态过程噪声。
可选的,所述雷达量测方程满足下述关系式(2):
其中,x、y分别为雷达目标在x方向、y方向的方位状态信息;
r为雷达目标的距离量测信息;
Vx、Vy分别为雷达目标在x方向、y方向的速度状态信息;
V为雷达目标的速度量测信息;
w2为量测噪声;
ki为雷达目标的模糊值状态信息,且i=1,2…;
θi为雷达目标的方位角量测信息,且i=1,2…。
可选的,所述卡尔曼滤波器满足下述关系式(3):
r(t+1)为t+1时刻雷达目标的距离量测信息;
V(t+1)为t+1时刻雷达目标的速度量测信息;
θi(t+1)为t+1时刻雷达目标的方位角量测信息,且i=1,2…;
K(t)为t时刻的增益矩阵。
可选的,所述t时刻的增益矩阵K(t),包括:
K(t)=P(t)C(t)TR-1(t) (4)
其中,C(t)为线性矩阵,且
r(t+1)为t+1时刻雷达目标的距离量测信息;
V(t+1)为t+1时刻雷达目标的速度量测信息;
θ(t+1)为t+1时刻雷达目标的测角量测信息;
P(t)为t时刻的时间更新矩阵;
R(t)为量测噪声w2的协方差矩阵。
可选的,所述t时刻的时间更新矩阵P(t)可以通过黎卡提方程(6)计算:
其中,Q为状态过程噪声w1的协方差矩阵;
根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪后,还包括:
更新各个时刻的增益矩阵,得到下一时刻的增益矩阵;
更新各个时刻的卡尔曼滤波器,得到下一时刻的卡尔曼滤波器。
更新各个时刻的增益矩阵,得到下一时刻的增益矩阵,包括:
P(t)=AP(t)AT+Q (7)
K(t+1)=P(t)C(t)T(C(t)P(t)C(t)+R(t))-1 (8)
P(t+1)=P(t)-K(t+1)C(t)P(t) (9)
本公开的另一个方面,提供分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪装置,所述装置包括:
方程构建模块,用于分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程;
卡尔曼滤波器构建模块,用于根据所述雷达状态方程和所述雷达量测方程,建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器;
初始化模块,用于初始化所述卡尔曼滤波器;
量测信息获取模块,用于获取所述分布式阵列雷达在各个时刻的雷达目标量测信息;
目标跟踪模块,用于根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪。
本公开实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置中,根据栅瓣形成机理,利用卡尔曼滤波从测角模糊现象中分辨出哪个测角为主瓣对应的观测值,需要对测角模糊现象进行建模,从而与卡尔曼滤波器相结合。测角模糊可以看作是在同一个采样点存在多个不同的测量角,问题在于在实际测量中,由于雷达天线扫描范围的限制,往往在同一个采样点存在的测量角的数量不满足之前提到的模糊值成对出现的情况,具有一定的随机分布特性。
为了实现区分主瓣和栅瓣的要求,考虑将测角的模糊值作为增广状态变量引入到卡尔曼滤波器中,利用卡尔曼滤波器估计模糊值,再根据模糊值确定主瓣和栅瓣。问题在于,模糊值的数量是不确定的,这就给卡尔曼滤波器的构建带来了困难。卡尔曼滤波器构建的最基本条件是确定的输入输出关系,而测角模糊存在的问题是模糊值的数量无法确定。雷达扫描范围的变化会导致扫描范围内栅瓣数量的变化,导致测角模糊随之变化,使得卡尔曼滤波器的状态变量无法确定下来。
在雷达天线实际工作过程中,由于雷达扫描范围与主瓣和栅瓣位置的关系,可能会出现三种情况:1、在一个采样点上得到的测量值包含对应主瓣的测量值,而栅瓣对应的测量值是成对出现的;2、在一个采样点上得到的测量值包含对应主瓣的测量值,而栅瓣对应的测量值不成对出现;3、在一个采样点上得到的测量值不包含对应主瓣的测量值。这三种情况对于卡尔曼滤波器而言,可以转换为增广状态量在数量上的变化,以及对应的模糊数的数值变化,只需要分析卡尔曼滤波器的估计结果,就可以得到目标的方位信息,并根据模糊值的平均值判断是否存在主瓣,哪个是主瓣。
针对雷达扫描范围变化导致测角数量变化的问题,可以针对不同的扫描范围,构建不同的卡尔曼滤波器。考虑到栅瓣的数量以及分布是能够根据相关公式进行推算的,因此在雷达构造或者多雷达组合的分布方式能够确定的前提下可以直接推算出扫描范围内包含多少个栅瓣,从而确定卡尔曼滤波器对应的增广状态变量,完成后续的设计工作。在卡尔曼滤波器估计过程中,雷达扫描范围应当维持在初始设定状态,否则扫描范围的变化会导致卡尔曼滤波器的增广状态参数和实际情况无法对应,导致估计工作无法完成。
卡尔曼滤波理论是在20世纪60年代后期,由美籍匈牙利数学家卡尔曼首先提出的。卡尔曼滤波是状态量估计方法,它的输入是被估计状态量有关的物理量,被估计的状态量是系统的状态量或增广状态量;它能够通过相关物理量与被估计量之间的函数关系估计出状态量的变化情况。卡尔曼滤波器在估计过程中需要根据系统的状态空间方程确定状态量和输入量的关系,考虑系统的测量方程的影响,降低噪声的干扰。由于卡尔曼滤波器接收与估计的所有信息都是时域内的量,所以卡尔曼滤波器是在时域内设计的,可以用在多维状态量的估计。最早的卡尔曼滤波器是基于线性系统构建的,也被称为线性卡尔曼滤波器,由于现实中的系统多为非线性系统,在卡尔曼滤波器中用线性系统拟合非线性系统会导致卡尔曼滤波器与实际系统之间出现偏差,在部分情况下,卡尔曼滤波器估计的参数有比理论预测偏差大得多的误差,被称为估计发散。为了避免发散现象的出现,非线性卡尔曼滤波器应运而生。本文中所采用的非线性卡尔曼滤波器,其量测方程为非线性方程,更为接近系统实际运行状态,尽可能避免发散线性现象的产生。
本公开实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置中,针对当栅瓣的出现无法避免时,利用卡尔曼滤波区分主瓣和栅瓣对应的信号,从而在信号处理过程开始前消除栅瓣造成的影响,实现目标跟踪,并保证对目标方位的估计结果具有较高的精度。
附图说明
图1为现有的单基线相位相干雷达测角的原理示意图;
图2为本公开一实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法的流程示意图;
图3为本公开另一实施例的分布式稀疏阵列雷达系统的示意图;
图4为本公开一实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法在x方向的单次目标方位仿真结果;
图5为本公开一实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法在y方向的单次目标方位仿真结果;
图6为本公开一实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法的多次目标方位仿真结果;
图7为本公开一实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法的多次测角仿真结果;
图8为本公开另一实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪装置的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,本公开中使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等既不限定所提及的形状、数字、步骤、动作、操作、构件、原件和/或它们的组,也不排除出现或加入一个或多个其他不同的形状、数字、步骤、动作、操作、构件、原件和/或它们的组,或加入这些。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量与顺序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在更加详细地讨论之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
下面,将参考图1描述根据本公开实施例的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法S100,如图2所示,该方法包括:
S110:分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程,具体地,包括:
S111:建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程,当栅瓣存在时,由于栅瓣的影响,雷达会产生多个方位角量测值(简称测角值),不同的方位角量测值对应不同的模糊值,例如,若雷达产生两个方位角量测值,也就是对应的模糊值k1和k2,则该两个方位角量测值形成模糊值状态信息(也可称为模糊数)k=[k1 k2],若雷达产生三个方位角量测值,也就是对应的模糊值k1、k2和k3,则该三个方位角量测值形成模糊值状态信息k=[k1k2 k3],根据所述分布式阵列雷达在所述栅瓣模糊下所产生的模糊值状态信息建立所述雷达状态方程,也就是说,将测角模糊值状态信息k作为增广状态变量引入,对应的被监测物体的雷达状态方程可以表示为下式(1)所示:
其中,t为时刻,t=0,1,2…;
x(t)、x(t+1)分别为t时刻、t+1时刻雷达目标在x方向的方位状态信息;
y(t)、y(t+1)分别为t时刻、t+1时刻雷达目标在y方向的方位状态信息;
Vx(t)、Vx(t+1)分别为t时刻、t+1时刻雷达目标在x方向的速度状态信息;
Vy(t)、Vy(t+1)分别为t时刻、t+1时刻雷达目标在y方向的速度状态信息;
k(t)、k(t+1)分别为t时刻、t+1时刻雷达目标的模糊值状态信息,且k(t)=[k1(t),k2(t)…],k1(t)、k2(t)代表t时刻的多个模糊值,k(t+1)=[k1(t+1),k2(t+1)…],k1(t+1)、k2(t+1)代表t+1时刻的多个模糊值,这些模糊值有可能对应主瓣对应的测角,也有可能不对应;
A为状态转移矩阵;
w1为状态过程噪声。
S112:建立分布式稀疏阵列雷达在栅瓣模糊下的雷达量测方程,该雷达量测方程主要针对使用雷达能够直接测量得到的参数构建的方程,雷达能够测量到的参数包括目标距离、目标速度以及由于栅瓣产生的多个测角,对应的被监测物体的雷达量测方程为满足下述关系式(2):
其中,x、y分别为雷达目标在x方向、y方向的方位状态信息;
r为雷达目标的距离量测信息;
Vx、Vy分别为雷达目标在x方向、y方向的速度状态信息;
V为雷达目标的速度量测信息;
w2为量测噪声;
ki为雷达目标的第i个模糊值状态信息,且i=1,2…;
θi为雷达目标的第i个方位角量测信息,且i=1,2…。
需要说明的是,步骤S111和步骤S112并无先后关系,可先执行S111,或先执行S112,也可并行执行步骤S111和步骤S112。
S120:根据所述雷达状态方程(1)和所述雷达量测方程(2),建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器。
所述卡尔曼滤波器满足下述关系式(3):
r(t+1)为t+1时刻雷达目标的距离量测信息;
V(t+1)为t+1时刻雷达目标的速度量测信息;
θi(t+1)为t+1时刻雷达目标的第i个方位角量测信息,且i=1,2…;
K(t)为t时刻的增益矩阵。
其中,所述t时刻的增益矩阵K(t)的计算过程如下所示。由于卡尔曼滤波器的增益矩阵无法直接通过非线性输出方程计算得到,因此需要对非线性方程进行线性化,从而得到关系式(5):
其中,C(t)为线性矩阵;
r(t+1)为t+1时刻雷达目标的距离量测信息;
V(t+1)为t+1时刻雷达目标的速度量测信息;
θ(t+1)为t+1时刻雷达目标的测角量测信息;
P(t)为t时刻的时间更新矩阵;
R(t)为量测噪声w2的协方差矩阵。
考虑到卡尔曼滤波器的鲁棒性,卡尔曼滤波器应满足对应的二次型指标,卡尔曼滤波器的增益需要使得二次型指标最小化。根据极值原理,可以导出最优的增益矩阵公式为关系式(4):
K(t)=P(t)C(t)TR-1(t) (4)
其中,P(t)为t时刻的时间更新矩阵,可以通过线性系统对应的黎卡提方程(6)进行计算得到关系式:
其中,Q为状态过程噪声w1的协方差矩阵,具体为Q=E(w1w1 T);
S130:初始化所述卡尔曼滤波器,具体包括:
S131:获取初始时刻的雷达目标量测信息,也就是t=0时刻的雷达目标量测信息,包括目标距离、目标速度以及由于栅瓣产生的多个测角。
S132:根据测角数量确定卡尔曼滤波器的增广状态变量的数量,也就是确定测角模糊值状态信息k。
S132:根据初始时刻的其他雷达目标量测信息初始化卡尔曼滤波器的其他参数,也就是使用初始时刻的目标距离、目标速度等设置卡尔曼滤波器的初始值,并根据初始值计算初始时刻卡尔曼滤波器内增益矩阵K(0)的数值。
S140:获取所述分布式阵列雷达在各个时刻的雷达目标量测信息,也就是使用分布式阵列雷达直接测量得到时刻t的目标距离、目标速度以及由于栅瓣产生的多个测角等量测信息,其中,t=0,1,2,……。
S150:根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,也就是根据t时刻的雷达目标量测信息,预估t+1时刻的雷达目标预测信息,以实现目标跟踪,直至目标跟踪结束。
示例性的,在步骤S150后,还包括:
S160:更新卡尔曼滤波器,具体包括:
S161:更新各个时刻的增益矩阵,得到下一时刻的增益矩阵。由于构成卡尔曼滤波器的系统为非线性系统,因此增益矩阵K(t)需要根据系统运行状态的变化进行更新,具体的更新方程为:
P(t)=AP(t)AT+Q (7)
K(t+1)=P(t)C(t)T(C(t)P(t)C(t)+R(t))-1 (8)
P(t+1)=P(t)-K(t+1)C(t)P(t) (9)
S162:更新各个时刻的卡尔曼滤波器,得到下一时刻的卡尔曼滤波器。
由于初始值不可能与目标的实际状态完全吻合,会存在一定偏差,因此卡尔曼滤波器需要在后续的估计过程中计算新的估计值,使其不断逼近观测值,从而消除这种偏差。
下面结合图3至图7对本公开实施例中的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法进行试验。如图3所示,某分布式基地雷达系统可以看作是一个大型的稀疏天线阵,也就是形成分布式稀疏阵列雷达系统,将图3中的雷达系统作为试验基础,由于栅瓣的影响,雷达系统接收到的目标信号包含多个不同的测角,卡尔曼滤波器根据接收到的信息对目标方位以及模糊数进行估计,当滤波器的估计信息与观测值具有较高吻合度时,滤波器所估计的状态参数能够比较准确地反应物体当前的状态。
下文通过仿真的形式验证该方法的有效性。仿真中被跟踪目标以固定速率运行,而雷达持续对目标进行跟踪。仿真中对Vx和Vy施加了均方差为0.05的过程噪声干扰,对距离r施加了均方差为1的测量噪声干扰,对方位角θ施加了均方差为0.05的测量噪声干扰,对速度V施加了均方差为0.05的测量噪声干扰。卡尔曼滤波器需要在噪声干扰下处理测角模糊,分辨主瓣和栅瓣,对目标实现有效的定位以及跟踪。
图4至图7是卡尔曼滤波器对应的仿真结果,具体如下所示:图4和图5分别为在x方向和y方向单次仿真中卡尔曼滤波器对目标方位的估计结果,图6是多次仿真取平均值后得到的卡尔曼滤波器对目标方位估计偏差的均方差结果,100次仿真取一次平均值。图7是卡尔曼滤波器对模糊数k的估计结果,为多次蒙特卡罗仿真取平均值后的模糊数,100次仿真取一次平均值。从图4至图7对应的仿真结果中可以看出,估计值,也就是卡尔曼滤波器的预测信息,与参考值之间偏差较小,也就是说,虽然有噪声干扰,初始位置与实际位置有偏差,导致卡尔曼滤波器对目标方位的估计存在一定偏差,但是最终的均方差能够保持在1米之内,预测较为准确。从图7对应的仿真结果可以看出,卡尔曼滤波器能够降低噪声的影响,根据估计的模糊值k的不同区分主瓣和栅瓣,其中平均值最接近零的模糊值对应的是主瓣,其他的模糊值对应的是栅瓣。
本公开实施例中的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法,针对当栅瓣的出现无法避免时,将测角模糊数k作为增广状态变量引入雷达目标状态方程,并据此构建含有多个测角变量的卡尔曼滤波器,利用卡尔曼滤波区分主瓣和栅瓣对应的信号,从而在信号处理过程开始前消除栅瓣造成的影响,实现目标跟踪,并保证对目标方位的估计结果具有较高的精度。
本公开实施例的另一个方面,还提出分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪装置,如图8所示,所述装置100包括:
方程构建模块110,用于分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程。
卡尔曼滤波器构建模块120,用于根据所述雷达状态方程和所述雷达量测方程,建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器。
初始化模块130,用于初始化所述卡尔曼滤波器。
量测信息获取模块140,用于获取所述分布式阵列雷达在各个时刻的雷达目标量测信息。
目标跟踪模块150,用于根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪。
本公开实施例中的分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪装置,针对当栅瓣的出现无法避免时,将测角模糊数k作为增广状态变量引入雷达目标状态方程,并据此构建含有多个测角变量的卡尔曼滤波器,利用卡尔曼滤波区分主瓣和栅瓣对应的信号,从而在信号处理过程开始前消除栅瓣造成的影响,实现目标跟踪,并保证对目标方位的估计结果具有较高的精度。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。
Claims (10)
1.分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法,其特征在于,包括:
分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程;
根据所述雷达状态方程和所述雷达量测方程,建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器;
初始化所述卡尔曼滤波器;
获取所述分布式阵列雷达在各个时刻的雷达目标量测信息;
根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪。
2.根据权利要求1所述的方法,其特征在于,所述建立分布式阵列雷达在栅瓣模糊下的雷达状态方程,包括:
根据所述分布式阵列雷达在所述栅瓣模糊下所产生的模糊值状态信息建立所述雷达状态方程。
3.根据权利要求2所述的方法,其特征在于,所述雷达状态方程满足下述关系式(1):
其中,t为时刻,t=0,1,2…;
x(t)、x(t+1)分别为t时刻、t+1时刻雷达目标在x方向的方位状态信息;
y(t)、y(t+1)分别为t时刻、t+1时刻雷达目标在y方向的方位状态信息;
Vx(t)、Vx(t+1)分别为t时刻、t+1时刻雷达目标在x方向的速度状态信息;
Vy(t)、Vy(t+1)分别为t时刻、t+1时刻雷达目标在y方向的速度状态信息;
k(t)、k(t+1)分别为t时刻、t+1时刻雷达目标的模糊值状态信息,且k(t)=[k1(t),k2(t)…],k1(t)、k2(t)代表t时刻的多个模糊值,k(t+1)=[k1(t+1),k2(t+1)…],k1(t+1)、k2(t+1)代表t+1时刻的多个模糊值;
A为状态转移矩阵;
w1为状态过程噪声。
5.根据权利要求4所述的方法,其特征在于,所述卡尔曼滤波器满足下述关系式(3):
r(t+1)为t+1时刻雷达目标的距离量测信息;
V(t+1)为t+1时刻雷达目标的速度量测信息;
θi(t+1)为t+1时刻雷达目标的方位角量测信息,且i=1,2…;
K(t)为t时刻的增益矩阵。
8.根据权利要求7所述的方法,其特征在于,所述根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪后,还包括:
更新各个时刻的增益矩阵,得到下一时刻的增益矩阵;
所述更新各个时刻的卡尔曼滤波器,得到下一时刻的卡尔曼滤波器。
9.根据权利要求8所述的方法,其特征在于,所述更新各个时刻的增益矩阵,得到下一时刻的增益矩阵,包括:
P(t)=AP(t)AT+Q (7)
K(t+1)=P(t)C(t)T(C(t)P(t)C(t)+R(t))-1 (8)
P(t+1)=P(t)-K(t+1)C(t)P(t) (9)
10.分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪装置,其特征在于,所述装置包括:
方程构建模块,用于分别建立分布式稀疏阵列雷达在栅瓣模糊下的雷达状态方程和雷达量测方程;
卡尔曼滤波器构建模块,用于根据所述雷达状态方程和所述雷达量测方程,建立用于辨别栅瓣和估计目标状态的卡尔曼滤波器;
初始化模块,用于初始化所述卡尔曼滤波器;
量测信息获取模块,用于获取所述分布式阵列雷达在各个时刻的雷达目标量测信息;
目标跟踪模块,用于根据所述卡尔曼滤波器和所述各个时刻的雷达目标量测信息,预估下一时刻的雷达目标预测信息,以实现目标跟踪。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010906974.1A CN112014835B (zh) | 2020-09-01 | 2020-09-01 | 分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010906974.1A CN112014835B (zh) | 2020-09-01 | 2020-09-01 | 分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112014835A true CN112014835A (zh) | 2020-12-01 |
CN112014835B CN112014835B (zh) | 2023-05-26 |
Family
ID=73515548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010906974.1A Active CN112014835B (zh) | 2020-09-01 | 2020-09-01 | 分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112014835B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777574A (zh) * | 2021-08-30 | 2021-12-10 | 深圳市道通智能汽车有限公司 | 稀疏阵列解栅瓣方法、装置及相关设备 |
CN114114240A (zh) * | 2021-11-03 | 2022-03-01 | 中国电子科技集团公司信息科学研究院 | 超稀疏阵列在栅瓣影响下的三维目标跟踪方法和装置 |
WO2023041305A1 (de) * | 2021-09-14 | 2023-03-23 | Mercedes-Benz Group AG | Verfahren zur auflösung von winkelmehrdeutigkeiten in einem radarnetzwerk |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3500414A (en) * | 1968-10-25 | 1970-03-10 | Us Navy | Thinned antenna array with reduced grating lobe ambiguities |
US3935572A (en) * | 1973-11-23 | 1976-01-27 | Hughes Aircraft Company | System for resolving velocity ambiguity in pulse-doppler radar |
JPH08146128A (ja) * | 1994-11-16 | 1996-06-07 | Mitsubishi Electric Corp | 追尾装置 |
JP2005083814A (ja) * | 2003-09-05 | 2005-03-31 | Toshiba Corp | レーダ装置 |
CN101813764A (zh) * | 2010-03-25 | 2010-08-25 | 电子科技大学 | 一种针对均匀超稀疏阵列天线波束指向模糊的抑制方法 |
CN103713285A (zh) * | 2014-01-09 | 2014-04-09 | 西安电子科技大学 | 基于信息融合的分布式米波阵列雷达测角方法 |
US20150198709A1 (en) * | 2013-08-29 | 2015-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Radar system and target detection method |
US20160252608A1 (en) * | 2015-02-27 | 2016-09-01 | Ford Global Technologies, Llc | Digital beamforming based resolution of out-of-path targets showing up as in-path due to grating lobes in array antenna radars |
CN109031277A (zh) * | 2018-06-21 | 2018-12-18 | 电子科技大学 | 一种穿墙雷达多目标图像域稳健跟踪方法 |
CN109856634A (zh) * | 2019-03-06 | 2019-06-07 | 湖南太康电子信息技术有限公司 | 一种超宽带稀疏阵列极坐标成像下的栅瓣去除方法 |
CN110988811A (zh) * | 2019-12-20 | 2020-04-10 | 中国电子科技集团公司第二十研究所 | 一种应用于稀疏布阵宽带相控阵的栅瓣解模糊方法 |
CN110988835A (zh) * | 2019-11-27 | 2020-04-10 | 中国船舶重工集团公司第七二四研究所 | 一种分布式相参雷达测角方法 |
CN111596290A (zh) * | 2020-06-01 | 2020-08-28 | 中国电子科技集团公司信息科学研究院 | 一种基于最大相关熵扩展卡尔曼滤波的雷达目标跟踪方法 |
CN114114240A (zh) * | 2021-11-03 | 2022-03-01 | 中国电子科技集团公司信息科学研究院 | 超稀疏阵列在栅瓣影响下的三维目标跟踪方法和装置 |
-
2020
- 2020-09-01 CN CN202010906974.1A patent/CN112014835B/zh active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3500414A (en) * | 1968-10-25 | 1970-03-10 | Us Navy | Thinned antenna array with reduced grating lobe ambiguities |
US3935572A (en) * | 1973-11-23 | 1976-01-27 | Hughes Aircraft Company | System for resolving velocity ambiguity in pulse-doppler radar |
JPH08146128A (ja) * | 1994-11-16 | 1996-06-07 | Mitsubishi Electric Corp | 追尾装置 |
JP2005083814A (ja) * | 2003-09-05 | 2005-03-31 | Toshiba Corp | レーダ装置 |
CN101813764A (zh) * | 2010-03-25 | 2010-08-25 | 电子科技大学 | 一种针对均匀超稀疏阵列天线波束指向模糊的抑制方法 |
US20150198709A1 (en) * | 2013-08-29 | 2015-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Radar system and target detection method |
CN103713285A (zh) * | 2014-01-09 | 2014-04-09 | 西安电子科技大学 | 基于信息融合的分布式米波阵列雷达测角方法 |
US20160252608A1 (en) * | 2015-02-27 | 2016-09-01 | Ford Global Technologies, Llc | Digital beamforming based resolution of out-of-path targets showing up as in-path due to grating lobes in array antenna radars |
CN105929370A (zh) * | 2015-02-27 | 2016-09-07 | 福特全球技术公司 | 栅瓣检测的基于数字波束形成的分辨 |
CN109031277A (zh) * | 2018-06-21 | 2018-12-18 | 电子科技大学 | 一种穿墙雷达多目标图像域稳健跟踪方法 |
CN109856634A (zh) * | 2019-03-06 | 2019-06-07 | 湖南太康电子信息技术有限公司 | 一种超宽带稀疏阵列极坐标成像下的栅瓣去除方法 |
CN110988835A (zh) * | 2019-11-27 | 2020-04-10 | 中国船舶重工集团公司第七二四研究所 | 一种分布式相参雷达测角方法 |
CN110988811A (zh) * | 2019-12-20 | 2020-04-10 | 中国电子科技集团公司第二十研究所 | 一种应用于稀疏布阵宽带相控阵的栅瓣解模糊方法 |
CN111596290A (zh) * | 2020-06-01 | 2020-08-28 | 中国电子科技集团公司信息科学研究院 | 一种基于最大相关熵扩展卡尔曼滤波的雷达目标跟踪方法 |
CN114114240A (zh) * | 2021-11-03 | 2022-03-01 | 中国电子科技集团公司信息科学研究院 | 超稀疏阵列在栅瓣影响下的三维目标跟踪方法和装置 |
Non-Patent Citations (5)
Title |
---|
CHANG, R: "Research On Grating Lobe Suppression Based On The Virtual Array Transformation Algorithm", 《2012 10TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION & EM THEORY》 * |
张道成: "基于阵列优化的超低栅瓣光学相控阵研究", 《中国优秀硕士学位论文全文数据库基础科学辑》 * |
殷丕磊: "地基宽带分布式全相参雷达技术研究", 《中国优秀博士学位论文全文数据库信息科技辑》 * |
王恒: "基于最大相关熵的雷达扩展卡尔曼滤波算法研究", 《中国传媒大学学报(自然科学版)》 * |
陈国浩: "穿墙成像雷达扩展目标跟踪技术研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777574A (zh) * | 2021-08-30 | 2021-12-10 | 深圳市道通智能汽车有限公司 | 稀疏阵列解栅瓣方法、装置及相关设备 |
WO2023029914A1 (zh) * | 2021-08-30 | 2023-03-09 | 深圳市塞防科技有限公司 | 稀疏阵列解栅瓣方法、装置及相关设备 |
WO2023041305A1 (de) * | 2021-09-14 | 2023-03-23 | Mercedes-Benz Group AG | Verfahren zur auflösung von winkelmehrdeutigkeiten in einem radarnetzwerk |
CN114114240A (zh) * | 2021-11-03 | 2022-03-01 | 中国电子科技集团公司信息科学研究院 | 超稀疏阵列在栅瓣影响下的三维目标跟踪方法和装置 |
CN114114240B (zh) * | 2021-11-03 | 2024-02-27 | 中国电子科技集团公司信息科学研究院 | 超稀疏阵列在栅瓣影响下的三维目标跟踪方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112014835B (zh) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109669178B (zh) | 一种星载三阵元单脉冲两维测向方法 | |
CN112014835A (zh) | 分布式稀疏阵列雷达在栅瓣模糊下的目标跟踪方法和装置 | |
CN103353595B (zh) | 基于阵列内插压缩感知的米波雷达测高方法 | |
CN103235292B (zh) | 平面相控阵调零保形校正的全维和差测角方法 | |
CN108872926B (zh) | 一种基于凸优化的幅相误差校正及doa估计方法 | |
CN111398902B (zh) | 一种直角三角形三元水听器阵被动测距测向方法 | |
CN102419432A (zh) | 一种基于虚拟基线的圆阵相位干涉仪二维测向方法 | |
CN114114240B (zh) | 超稀疏阵列在栅瓣影响下的三维目标跟踪方法和装置 | |
CN111999714B (zh) | 基于多散射点估计和杂波知识辅助的自适应融合检测方法 | |
CN110837074A (zh) | 一种基于数字波束形成的多同频信源相位干涉仪测向方法 | |
CN110261826A (zh) | 一种零陷展宽的相干干扰抑制方法 | |
CN114814830A (zh) | 一种基于鲁棒主成分分析降噪的米波雷达低仰角测高方法 | |
CN110261837B (zh) | 一种基于航迹信息的复杂目标rcs计算方法 | |
RU2615491C1 (ru) | Способ одновременного измерения двух угловых координат цели в обзорной амплитудной моноимпульсной радиолокационной системе с антенной решеткой и цифровой обработкой сигнала | |
Athley et al. | On radar detection and direction finding using sparse arrays | |
CN109884337A (zh) | 一种利用高频地波雷达探测海面风向的方法 | |
Sebt et al. | Geometric Arithmetic Mean Method for Low Altitude Target Elevation Angle Tracking | |
CN116299387B (zh) | 非均匀杂波下干扰正交抑制的目标智能检测方法 | |
CN114740434A (zh) | 一种等距分布子阵列系统及抗伴飞式干扰的方法 | |
CN113946955B (zh) | 基于融合中心反馈信息的多目标贝叶斯波达方向估计方法 | |
CN116400293A (zh) | 伪单站高精度无源定位系统 | |
CN116106829A (zh) | 部分均匀杂波加干扰下目标智能检测方法 | |
CN115906372A (zh) | 一种基于稀疏阵幅相误差校正的无网格参数估计方法 | |
CN114609580A (zh) | 一种基于非圆信号的无孔互质阵列设计方法 | |
CN112698263A (zh) | 一种基于正交传播算子的单基地互质mimo阵列doa估计算法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |