CN112013569A - 具有升高的轴承润滑剂温度的传热回路及其供应方法 - Google Patents

具有升高的轴承润滑剂温度的传热回路及其供应方法 Download PDF

Info

Publication number
CN112013569A
CN112013569A CN202010481793.9A CN202010481793A CN112013569A CN 112013569 A CN112013569 A CN 112013569A CN 202010481793 A CN202010481793 A CN 202010481793A CN 112013569 A CN112013569 A CN 112013569A
Authority
CN
China
Prior art keywords
working fluid
compressor
flow path
heat transfer
transfer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010481793.9A
Other languages
English (en)
Inventor
杰伊·H·约翰逊
郑胜化
查尔斯·罗斯勒尔
约瑟夫·M·黑格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trane International Inc
Original Assignee
Trane International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trane International Inc filed Critical Trane International Inc
Publication of CN112013569A publication Critical patent/CN112013569A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种传热回路,包括:具有气体轴承的压缩器、冷凝器、膨胀器、蒸发器、润滑剂流路和热源。所述润滑剂流路接收工作流体的一部分,并将所述工作流体的所述一部分供应到所述压缩器的气体轴承。一种向传热回路中的压缩器的气轴承供应润滑剂的方法,包括:压缩和进一步加热在蒸发器中被加热的工作流体的至少一部分;以及,将经压缩和进一步被加热的工作流体供应到所述压缩器的气体轴承。一种向热回路中的压缩器的气体轴承供应润滑剂的方法,包括:在润滑剂流路内生成经压缩的气态工作流体。

Description

具有升高的轴承润滑剂温度的传热回路及其供应方法
技术领域
本公开涉及采暖、通风、空调和制冷(“HVACR”)系统。更具体地,本文的实施例涉及用于HVACR系统的传热回路。
背景技术
HVACR系统通常用于对封闭的空间(例如,商业建筑物或住宅建筑物的内部空间、冷藏运输单元的内部空间等)进行加热、冷却和/或通风。HVACR系统可以包括用于向该区域提供冷却或加热的空气的传热回路。传热回路利用工作流体直接或间接冷却或加热空气。通常,传热回路包括用于压缩工作流体的压缩器。压缩器包括需要润滑才能正常工作的一个或多个轴承。
发明内容
HVACR系统可包括被配置为加热和/或冷却过程流体(例如,空气、水和/或乙二醇等)的传热回路。工作流体通过传热回路循环。传热回路包括用于压缩工作流体的压缩器。工作流体和过程流体分离地流过热交换器来冷却和/或加热过程流体。热交换器可以是冷凝器或蒸发器。
传热回路包括具有气体轴承的压缩器和润滑剂流路。润滑剂流路将气态工作流体作为润滑剂供应到气体轴承,以润滑气体轴承。传热回路包括热源,该热源被配置为在气体轴承中防止液态工作流体。
在实施例中,热源是加热器,该加热器被配置为升高流过润滑剂流路的出口的气态工作流体的温度。在实施例中,加热器被配置为加热气体轴承并防止气态工作流体在气体轴承中冷凝。
在实施例中,热源是辅压缩器,其在启动或关机期间向气体轴承提供经压缩的气态工作流体。
在实施例中,润滑剂流路包括罐体,并且热源是设置在罐体中的加热器。当要启动压缩器时,加热器被配置为通过使罐体中的液态工作流体汽化来生成经压缩的气态工作流体。在压缩器启动期间,润滑剂流路将经压缩的气态工作流体供应到气体轴承。
在实施例中,工作流体包括一种或多种低GWP的制冷剂。在实施例中,工作流体包括至少一种HFO制冷剂。在实施例中,传热回路是无油的,并且工作流体中的制冷剂润滑了传热回路。
在实施例中,工作流体包括一种或多种制冷剂,并且在润滑剂流路的出口处的一种或多种制冷剂中的每一种都是气态的。
在实施例中,供应到气体轴承的工作流体具有等于或约4.0°F或大于4.0°F的过热。在实施例中,润滑剂流路包括加热器。在实施例中,在润滑剂流路的入口处的工作流体具有小于4.0°F的过热。
在实施例中,润滑剂流路的入口在蒸发器处或在蒸发器之后且在冷凝器之前连接到传热回路的主流动路径。在实施例中,润滑剂流路包括加热器和辅压缩器二者。
在实施例中,加热器是电加热器。
在实施例中,加热器是热交换器,工作流体和过程流体分离地通过该热交换器流动。当工作流体和第二过程流体流过热交换器时,过程流体加热工作流体。在实施例中,利用过程流体来冷却下游的生热部件。
在实施例中,一种将润滑剂供应到传热回路中的压缩器的气体轴承的方法包括:利用过程流体来压缩和进一步加热在蒸发器中被加热的工作流体的至少一部分。该方法还包括将经压缩和进一步被加热的工作流体作为润滑剂供应到压缩器的气体轴承。
附图说明
通过以下附图将更好地理解所描述的传热回路和操作传热回路的方法的以及其他的特征、方面和优点:
图1是根据实施例的传热回路的示意图。
图2是根据实施例的传热回路的示意图。
图3是根据实施例的传热回路的示意图。
图4是根据实施例的传热回路的示意图。
图5是根据实施例的传热回路的示意图。
图6是根据实施例的传热回路的示意图。
图7是根据实施例的传热回路的示意图。
图8是根据实施例的传热回路的示意图。
图9是根据实施例的向传热回路中的压缩器的气体轴承供应润滑剂的方法的框图。
图10是根据实施例的在压缩器的关机或启动期间向传热回路中的压缩器的气体轴承供应润滑剂的方法的框图。
相同的附图标记引用类似的特征。
具体实施方式
采暖、通风、空调和制冷系统(“HVACR”)通常被配置为加热和/或冷却封闭空间(例如,商业建筑物或住宅建筑物的内部空间、冷藏运输单元的内部空间等)。HVACR系统包括用于加热或冷却过程流体(例如,空气、水和/或乙二醇等)的传热回路。工作流体流过传热回路并被用于加热或冷却过程流体。过程流体可以直接或间接加热和/或冷却封闭空间。例如,间接加热和/或冷却可以包括:工作流体加热和/或冷却中间流体(例如,空气、水和/或乙二醇等),然后经加热/经冷却的中间流体加热和/或冷却过程流体。
工作流体包括一种或多种制冷剂。工作流体还可包括一种或多种另外的组分。例如,另外的组分可以是但不限于杂质、制冷系统添加剂、示踪剂、紫外线(“UV”)染料和/或增溶剂。
随着对环境影响(例如,臭氧消耗、全球变暖的影响)的关注增加,最近发生了对HVACR系统中使用的制冷剂类型进行限制的运动(例如,《蒙特利尔议定书》基加利修正案、《巴黎协定》、美国的《重要新替代品政策》(“SNAP”))。特别是,这种运动已经用对环境的影响较小的制冷剂来代替消耗臭氧的制冷剂(例如,氯氟烃(CFC)、氢氯氟烃(HCFC)等)和具有高全球变暖可能性的制冷剂。
替代制冷剂具有较低的全球变暖可能性值(“GWP”),并且不消耗臭氧,毒性较低,与传热回路及其设备的材料兼容,并且在传热回路的整个的设备使用期限中化学稳定。例如,先前具有较高GWP的制冷剂是R134a、R22、R125等。低GWP制冷剂包括但不限于例如氢氟烯烃(“HFO”)制冷剂。HFO制冷剂包括但不限于,例如,R1234ze(例如,R1234ze(E))、R1336mzz(例如,R1336mzz(Z))、R1234yf、R1233zd、R1234yf等。较低GWP的制冷剂可以被用于制冷剂混合物中,例如但不限于R452B、R454B、R466A、R513A、R514A等。在实施例中,较低GWP的制冷剂包括非臭氧消耗的较低GWP的HFC,例如但不限于R32等。在实施例中,较低GWP的制冷剂具有小于700的GWP。
传热回路包括经压缩的工作流体的压缩器。该压缩器包括一个或多个气体轴承。所述气体轴承形成经压缩的气体的薄层,以防止轴承表面(例如,轴承的外表面、轴的外表面、推力表面等)之间的接触。气体轴承可以是空气静压气体轴承或空气动力-空气静压混合气体轴承。
在实施例中,空气静压气体轴承在压缩器正常工作期间利用经压缩的气体的外部源来形成薄气体层。经压缩的气体的外部源是被压缩器压缩的气体。当压缩器正在启动或关机时,压缩器不会正常工作。
在实施例中,空气静压-空气动力混合气体轴承利用加压气体的外部源和轴承表面两者,该轴承表面被专门配置为,在被旋转或面对旋转表面时生成薄气体层/促进薄气体层的形成。空气静压-空气动力混合气体轴承利用外部气体源,直到压缩器的轴达到其轴承表面能够生成薄气体层的速度。空气静压气体轴承和空气静压-动力混合气体轴承都利用外部气体源。
传热回路可以被配置为将经压缩的工作流体提供给压缩器的气体轴承。气体轴承中的每个气体轴承利用经压缩的工作流体作为加压气体的外部源,以形成防止其轴承表面接触的薄气体层。经压缩的制冷剂温度升高。由于较低GWP的制冷剂的不同的化学结构,所以其与诸如R134a、R22、R125等之类的早先的制冷剂具有不同的热力学性质。与早先的制冷剂相比,替代制冷剂具有更大的热容量。例如,这种更大的热容量是由于较低GWP的制冷剂包括具有更多原子的分子和/或更复杂的结构而引起的。当在压缩器中进行压缩时,这种更大的热容量导致包含较低GWP的制冷剂中的一种或多种较低GWP的制冷剂的工质从压缩器中排出的温度比早先的制冷剂更接近它们开始冷凝的温度。当工作流体中的制冷剂部分或全部被较低GWP的制冷剂替代时,这可以导致从压缩器排出的经压缩的工作流体(相对于没有较低GWP的制冷剂的工作流体)具有更少量的过热。工作流体的过热是在相同压力下其当前温度与其露点之间的差(例如,T(Px)过热=T(Px)当前-T(Px)露点)。露点是工作流体在相同压力下开始冷凝的温度。由于包括较低GWP的制冷剂的工作流体更接近其冷凝温度/压力,所以在流入和流过气体轴承时可能发生部分冷凝,这可能降低性能和/或损坏气体轴承和/或压缩器。本文描述的实施例针对向压缩器的气体轴承供应润滑剂的传热回路和方法,其解决了由于例如使用较低GWP的制冷剂而可能发生的润滑冷凝问题。
图1是根据实施例的传热回路1的示意图。在实施例中,可以在HVACR系统中使用传热回路1。传热回路1包括压缩器10、冷凝器30、膨胀装置40和蒸发器50。在实施例中,传热回路1可以被修改为包括附加的部件,例如节热器热交换器、一个或多个阀、传感器(例如,流量传感器、温度传感器)、接收器罐体等。
传热回路1的部件被流体连接。传热回路1可以被配置为可以在冷却模式下工作的冷却系统(例如,HVACR系统的流体冷却器、空调系统等),或者传热回路1可以被配置为作为可以在冷却模式或加热模式下工作的热泵系统。
工作流体流过传热回路1。通过传热回路1的工作流体的主流动路径5从压缩器10延伸通过冷凝器30、膨胀装置40、蒸发器50,并且返回到压缩器10。更具体地,主流动路径5从压缩器10的出口14延伸回到压缩器10的吸入口12。工作流体包括一种或多种较低GWP的制冷剂。在实施例中,工作流体包括一种或多种HFO制冷剂。在实施例中,传热回路1是无油的并且由工作流体的制冷剂润滑。
在图中提供虚线以指示流体流过热交换器(例如,冷凝器30、蒸发器50),并且应理解为未指定通过每个热交换器的特定流动路径。附图中提供用于说明不同特征之间的电子通信的虚线。例如,从控制器90延伸到温度传感器92的虚线表示控制器90从温度传感器92接收测量值(例如,温度测量值)时。例如,从控制器90延伸到加热器80的虚线表示控制器90控制加热器80。在实施例中,控制器90包括用于存储信息的存储器(未示出)和处理器(未示出)。在图1中和在下面描述时将控制器90描述/示出为单个部件。然而,应当了解,在实施例中,如附图所示和本文所述的“控制器”可以包括多个分立或互连的部件,其包括存储器(未示出)和处理器(未示出)。
处于更低气压的气态的工作流体被吸入压缩器10的吸入口12。在实施例中,压缩器10是离心式压缩器、螺杆压缩器或涡旋压缩器。离心式压缩器利用连接到轴和/或板的一系列旋转叶片来压缩气体。在实施例中,随着轴和/或板的旋转,气体被引入到叶片的外半径。当叶片旋转时,气体径向向内吸入,然后沿轴向方向排出。叶片以一定速度旋转,导致吸入的气体在径向向内流动时被压缩。因此,经压缩的气体沿轴向方向排出。在另一实施例中,沿着轴和/或板的轴线供应气体,并且旋转叶片通过迫使气体径向向外流动来压缩气体。因此,经压缩的气体沿径向方向排出。螺杆压缩器利用啮合螺杆,旋转所述啮合螺杆中的一个或多个啮合螺杆来压缩气体。在实施例中,气体被引入到啮合螺杆的端部或侧面,并且随着啮合螺杆被旋转而在啮合螺杆之间进行压缩。然后将气体从螺杆的与螺杆的侧面或所述端部相隔的第二端部排出。涡旋压缩器利用至少一对相互啮合的涡旋件,其中一个或两个涡旋件相对于彼此旋转。在实施例中,将气体引入到网状涡旋件的外周或内周,并且将气体吸入并圈闭在相互啮合的涡旋件之间的气穴(pocket)中。当相互啮合的涡旋件相对于彼此旋转时,气穴沿着相互啮合的涡旋件移动并且变得更小,其对被圈闭在每个气穴中的气体进行压缩。然后气穴到达出口,并且从相互啮合的涡旋件之间排出经压缩的气体。
压缩器10包括至少一个气体轴承16。气体轴承16可以是止推气体轴承和/或径向气体轴承。气体轴承16是空气静压气体轴承或空气动力-空气静压混合气体轴承。气体轴承16利用经压缩的气体的外部源形成气体薄层,该气体薄层防止其轴承表面之间的接触。
当工作流体从压缩器的吸入口12到压缩器10的出口14流过压缩器10时,工作流体被压缩。压缩器10中的工作流体的压缩还导致工作流体的温度升高。因此,工作流体的压缩还导致压缩器10的出口14处的工作流体的温度(相对于入口12处的工作流体的温度)升高。
更高压力和温度的工作流体从压缩器的出口14排出。大多数工作流体从压缩器10的出口14通过主流动路径5流到冷凝器30。工作流体的一部分从压缩器出口14排出并流入润滑剂流路60的入口62。在下面更详细地讨论润滑剂流路60。
第一过程流体PF1与工作流体分离地流过冷凝器。冷凝器30是热交换器,其允许工作流体和第一过程流体PF1具有传热关系,而不会在它们流过冷凝器30时发生物理混合。当工作流体流过冷凝器30时,工作流体被第一过程流体PF1冷却。因此,第一过程流体PF1被工作流体加热并以相对于进入冷凝器30的温度更高的温度离开冷凝器30。在实施例中,第一过程流体PF1可以是空气、水和/或乙二醇等,其适合于从工作流体和传热回路1吸收和传热量。例如,第一过程流体PF1可以是从外部大气循环的环境空气,将被加热为热水的水或用于从传热回路1传热的任何合适的流体。当工作流体在冷凝器30中冷却时,其变为液态或大部分为液态。
液态/气态工作流体从冷凝器30流到膨胀装置40。膨胀装置40允许工作流体膨胀。膨胀导致工作流体的温度显著降低。如本文所描述的“膨胀装置”也可以被称为膨胀器。在实施例中,膨胀器可以是膨胀阀、膨胀板、膨胀容器、孔口等、或其他这种类型的膨胀机构。应当了解,膨胀器可以是在现场用于使工作流体膨胀以使工作流体温度降低的任何类型的膨胀器。
然后,更低温度的气/液工作流体从膨胀装置40流到并且流过蒸发器50。第二过程流体PF2也与工作流体分离地流过蒸发器50。蒸发器50是热交换器,其允许工作流体和第二过程流体PF2在蒸发器50内处于传热关系而无需物理混合。当工作流体和第二过程流体PF2流过蒸发器50时,工作流体从第二过程流体PF2吸收热量,其冷却第二过程流体PF2。因此,第二过程流体PF2以比其进入蒸发器50的温度低的温度离开蒸发器50。当工作流体离开蒸发器50时,其为气态或大部分为气态。工作流体从蒸发器50流到压缩器10的吸入口12。
在实施例中,第二过程流体PF2由HVACR系统进行空气冷却,并使其流通到要调节的封闭空间。在实施例中,第二过程流体PF2是中间流体(例如,水、传热流体等),而经冷却的第二过程流体PF2可以由HVACR系统用于冷却要调节的封闭空间中的空气或使其流通到要调节的封闭空间。
从压缩器10排出的经压缩的工作流体的一部分流入润滑剂流路60中,而不是流入冷凝器30中。在实施例中,流入润滑剂流路60的经压缩的工作流体的一部分是从压缩器10排出的工作流体的体积中的等于或约0.2%至等于或约5%。在实施例中,流入润滑剂流路60的经压缩的工作流体的一部分是被压缩器10压缩的工作流体的体积中的等于或约0.2%至等于或约5%。
如上所述,压缩器10包括气体轴承16,气体轴承16需要经压缩的气态润滑剂以正常工作。通过润滑剂流路60将经压缩的工作流体供应到气体轴承16,以润滑气体轴承16。被供应到气体轴承16的工作流体是气态的。更具体地,从润滑剂流路供应到气体轴承16的工作流体的制冷剂均是气态的。气体轴承16在其轴承表面(未示出)之间形成流动的气态工作流体的薄层,以防止轴承表面之间的接触。然后,薄层中的气体与通过吸入口12进入压缩器10的工作流体混合,并被压缩并从压缩器10的出口14排出。
如图1所示,润滑剂流路60包括加热器80,加热器80被配置为在工作流体通过润滑剂流路60时加热工作流体。加热器80被设置在润滑剂流路60的入口62和出口64之间。在实施例中,加热器80是传热回路1的热源。
在实施例中,由压缩器10排出的工作流体具有小于4°F的过热。在实施例中,由压缩器排出的工作流体具有小于3°F的过热。加热器80被配置为加热工作流体,使得被供应到气体轴承16的经压缩的工作流体具有希望的过热量。在实施例中,希望的过热量为等于或约4°F或大于4°F。在实施例中,希望的过热量为等于或约4.5°F或大于4.5°F。在实施例中,希望的过热量为等于或约5°F或大于5°F。
加热器80增加了被供应到压缩器10的气体轴承16的经压缩的工作流体的过热量。更大的过热量防止了被供应到气体轴承16的气态制冷剂在气体轴承16中冷凝。在实施例中,从润滑剂流路60的出口64排出的经压缩的工作流体中的所有制冷剂完全是气态的。
在实施例中,图1中的加热器80是电加热器。向加热器80供应电力,并且加热器80基于所供应的电力生成热量,该热量被用于升高流过加热器80的工作流体的温度。在实施例中,传热回路1包括控制器90和温度传感器92。温度传感器92位于加热器80之后,并且感测经过加热器80之后的经压缩的工作流体的温度T1。例如,温度T1是润滑剂流路60的出口64处的经压缩的工作流体的温度。控制器90被配置为控制由加热器80提供给流过加热器80的工作流体的加热,使得工作流体具有如上所述的希望的过热量。控制器90可以基于温度T1来控制由加热器80提供给工作流体的热量。在实施例中,通过控制器90将电力供应到加热器80。控制器90被配置为向加热器80供应一定量的电力,使得加热器80将工作流体加热至与希望的过热量相对应的温度。
在实施例中,气体轴承16需要用于充分支撑负载的最小量的工作流体。负载可以根据压缩器10的工作条件(例如,压缩比、正在被压缩的工作流体的体积流量等)而变化。例如,基于压缩器10的构造和/或压缩器10的以前的测试,可以知道压缩器10的每种工作状况下的用于气体轴承16充分支撑其负载的工作流体的量。
在实施例中,润滑剂流路60包括可选的阀66和可选的流量传感器94。在实施例中,控制器90基于流量传感器94来操作可选的阀66,使得润滑剂流路60至少向气体轴承16提供足够量的工作流体以用于气体轴承16支撑其负荷。在这样的实施例中,一旦压缩器10完成其启动或关机,可选的阀66就可停止通过润滑剂流路60到气体轴承16的流。在实施例中,润滑剂流路60可以被配置为被动地控制流过润滑剂流路60的工作流体的量。例如,在实施例中,入口62的尺寸可以被确定为至少使得足够量的工作流体从主流动路径5流入润滑剂流路60中并且被供应到轴承16。在实施例中,入口62的尺寸基于在润滑剂流路60的入口62处的主流动路径5的压力,使得入口62的尺寸和在入口62处的主流动路径5的压力至少使足够量的工作流体从主流动路径5流入润滑剂流路60中。在实施例中,在入口62处的主流动路径5的压力可以是在压缩器10的正常工作期间在入口62处的主流动路径5中出现的最小压力。在实施例中,润滑剂流路60可以部分地或完全地被结合到压缩器10的壳体中。在实施例中,润滑剂流路60的一部分或全部可以位于压缩器10的外部。
在实施例中,气体轴承16可以是空气静压-液体静压(hydrostatic)混合轴承,其在压缩器10的正常工作期间不利用外部加压气体。在这样的实施例中,润滑剂流路60可以被配置为,在压缩器10未正在启动和/或正在关机时停止向气体轴承16供应工作流体。例如,实施例中的控制器190可以被配置为,在压缩器10未正在启动和/或关机时关闭可选的阀66。
图2是根据实施例的传热回路101的示意图。在实施例中,可以在HVACR系统中采用传热回路101。除了润滑剂流路160的构造以外,传热回路101类似于图1中的传热回路1。例如,传热回路101包括:主流动路径105;具有吸气入口112、出口114和至少一个气体轴承116的压缩器110;以及冷凝器130;膨胀装置140;以及蒸发器150。类似于图1中的传热回路1,冷凝器130利用第一过程流体PF1来冷却流过冷凝器130的工作流体,而蒸发器150利用流过蒸发器150的工作流体来冷却第二过程流体PF2。与关于图1中的传热回路1所讨论的类似,实施例中的传热回路101可以包括除了图2中所示的那些之外的附加部件。在实施例中,传热回路101是无油的并且由工作流体的制冷剂润滑。
类似于图1中的润滑剂流路60,润滑剂流路160将经压缩的工作流体提供给压缩器110的气体轴承116。润滑剂流路160包括入口162、出口164、以及设置在入口162和出口164之间的加热器180。加热器180是包括第一侧182和第二侧184的热交换器。应当理解,热交换器中的“侧”是指穿过热交换器的单独的流动通道,而不是指特定的物理朝向。流过加热器180的第一侧182和第二侧184的流体交换热量,但没有物理混合。经压缩的工作流体通过入口162进入润滑剂流路160,并通过出口164离开润滑剂流路160。经压缩的工作流体通过从入口162流到加热器180,通过加热器180的第一侧182,从加热器180到达出口164,来流过润滑剂流路160。工作流体从润滑剂流路160的出口164流到气体轴承116。润滑剂流路160将一定量的润滑剂供应到气体轴承116以充分润滑气体轴承116。
冷却回路170被配置为冷却生热部件172。例如,部件172的操作导致生热部件172的温度升高。在实施例中,生热部件172是变频器(VFD)。例如,VFD可以用于压缩器110。在另一实施例中,生热部件172可以是HVACR系统的不同的电子或机械部件,其在操作期间生成热量并且需要冷却。第三过程流体PF3流过冷却回路170,并且是用于传递来自生热部件172的热量并冷却生热部件172的介质。在实施例中,第三过程流体PF3可以是空气、水和/或乙二醇等,其适合于吸收热量并从部件172传递到另一种流体(例如,工作流体)。
第三过程流体PF3流过加热器180的第二侧184。在实施例中,第三过程流体PF3在被部件172加热之后,通过从部件172流到并通过泵174,从泵174流到加热器180,通过加热器180的第二侧184,并从加热器180返回到部件172。泵174被配置为使第三过程流体PF3通过冷却回路170循环。当工作流体流过加热器180的第一侧182时,工作流体从第二侧184中的第三过程流体PF3吸收热量,从而冷却第三过程流体PF3。因此,因为流过第一侧182的工作流体从第二侧184中的第三过程流体PF3吸收热量,因此其被加热。冷却的第三过程流体PF3然后从加热器180流回部件172。在实施例中,加热器180是传热回路101的热源。
图2中的冷却回路170包括生热部件172、泵174和加热器180。然而,应当了解,在实施例中的冷却回路170可以被修改为,重新定位或不包括泵174,和/或包括诸如阀、传感器(例如,流量传感器、温度传感器)、接收器罐体等之类的附加部件。
传热回路101包括控制器190。在实施例中,控制器190可以是HVACR系统的控制器。润滑剂流路160包括类似于图1中的温度传感器92的温度传感器192。温度传感器192感测通过加热器180之后工作流体的温度T1。控制器190被配置为,控制由加热器180提供给流过加热器180的工作流体的加热,使得从润滑剂流路160供应到气体轴承116的工作流体具有希望的过热量。控制器190可以基于温度T1来控制由加热器180提供给工作流体的热量。例如,控制器190可以操作泵174,使得由润滑剂流路160提供给气体轴承116的经压缩的工作流体具有希望的过热量。所希望的过热量可以与上面关于图1中的润滑剂流路60所讨论的相同。在实施例中,润滑剂流路160还可包括辅加热器(例如,加热器80、图3中的加热器280等)以补充加热器180。
从压缩器110排出的经压缩的工作流体的一部分流入润滑剂流路160中,而不是流入冷凝器130中。在实施例中,流入润滑剂流路160的经压缩的工作流体的一部分是从压缩器110排出的工作流体的体积中的等于或约0.2%至等于或约5%。在实施例中,流入润滑剂流路160的经压缩的工作流体的一部分是被压缩器110压缩的工作流体的体积中的等于或约0.2%至等于或约5%。
在实施例中,润滑剂流路160可以包括可选的阀166和可选的流量传感器194,其被控制器190用于控制流过润滑剂流路160并被供应到气体轴承116的工作流体的量,与图1中的可选的阀66和流量传感器94类似。在实施例中,润滑剂流路160可以被配置为被动地控制流过润滑剂流路160的工作流体的量。例如,实施例中的入口162的尺寸可以被确定为至少使用于轴承116的足够量的工作流体从主流动路径105流入润滑剂流路160。
在实施例中,气体轴承116可以是空气静压-液体静压(hydrostatic)混合轴承,其在压缩器110的正常工作期间不利用外部加压气体。在这样的实施例中,润滑剂流路160可以被配置为,在压缩器110未正在启动和/或正在关机时停止向气体轴承116供应工作流体。例如,实施例中的控制器190可以被配置为,在压缩器110未正在启动和/或关机时关闭可选的阀166。
图3是根据实施例的传热回路201的示意图。在实施例中,可以在HVACR系统中采用传热回路201。除了润滑剂流路260的构造以外,传热回路201类似于图1中的传热回路1。例如,传热回路201包括主流动路径205;压缩器210,其具有吸入口212、出口214和至少一个气体轴承216;冷凝器230;膨胀装置240;以及蒸发器250,其类似于图1中的传热回路1。类似于图1中的传热回路1,冷凝器230利用第一过程流体PF1来冷却流过冷凝器230的工作流体,而蒸发器250利用流过蒸发器250的工作流体来冷却第二过程流体PF2。与关于图1中的传热回路1所讨论的类似,实施例中的传热回路201可以包括除了图3中所示的那些之外的附加部件。在实施例中,传热回路201是无油的并且由工作流体的制冷剂润滑。
类似于图1中的润滑剂流路60,润滑剂流路260将经压缩的工作流体供应到压缩器210的气体轴承216。润滑剂流路260包括入口262和出口264、以及设置在入口262和出口264之间的加热器280。加热器280是包括第一侧282和第二侧284的热交换器。流过加热器280的第一侧282和第二侧284的流体交换热量,但没有物理混合。经压缩的工作流体通过入口262进入润滑剂流路260,并通过出口264离开润滑剂流路260。润滑剂流路260中的经压缩的工作流体从润滑剂流路260的入口262流到加热器280,通过加热器280的第一侧282,并从加热器280流到出口264。工作流体从润滑剂流路260的出口264流到压缩器210的气体轴承216,以润滑气体轴承216。在实施例中,加热器280是传热回路201的热源。
冷却回路270被配置为冷却压缩器210的电机218。第三过程PF3流体流过冷却回路270,并且是用于从压缩器210的电机218传递热量以冷却电机218的介质。在实施例中,第三过程流体PF3可以是空气、水和/或乙二醇等,其适合于吸收热量并将热量从电机218传递到另一流体(例如,工作流体)。第三过程流体PF3可以沿着电机218的表面流动并从电机218吸收热量。例如,电机218可以包括定子(未示出)和转子(未示出),并且第三过程流体PF3可以沿着定子和/或转子的表面被引导,从而从电机218吸收热量。
在实施例中,第三过程流体PF3在被电机218加热之后,从电机218流到加热器280,通过电机280的第二侧284,从加热器280流到并且通过泵274,并从泵274返回到电机218。泵274被配置为使第三过程流体PF3通过冷却回路270循环。
图3中的冷却回路270包括电机218、泵274和加热器280。然而,应当了解,实施例中的冷却回路270可以被修改为移动或不包括泵274,和/或包括诸如阀、传感器(例如,流量传感器、温度传感器)、接收器罐体等之类的附加部件。
流过加热器280的第一侧282的工作流体从加热器280的第二侧284中的第三过程流体PF3吸收热量,其冷却第三过程流体PF3。因此,因为流过第一侧282的工作流体从第二侧284中的第三过程流体PF3吸收热量,因此其被加热。然后,冷却的第三过程流体PF3从加热器280流回到压缩器210的电机218。
传热回路201包括控制器290。在实施例中,控制器290可以是HVACR的控制器。润滑剂流路260包括类似于图1中的温度传感器92的温度传感器292。温度传感器292感测在被加热器280加热之后的工作流体的温度T1。控制器290可以基于温度T1来操作加热器280,使得从润滑剂流路260供应到气体轴承216的工作流体具有希望的过热量。例如,控制器290可以控制泵274的操作,使得由润滑剂流路260提供给气体轴承216的工作流体具有希望的过热量。所希望的过热量可以与上面关于图1中的润滑剂流路60所讨论的相同。
从压缩器210排出的经压缩的工作流体的一部分流入润滑剂流路260中,而不是流入冷凝器230中。在实施例中,流入润滑剂流路260的经压缩的工作流体的一部分是从压缩器210排出的工作流体的体积中的等于或约0.2%至等于或约5%。在实施例中,流入润滑剂流路260的经压缩的工作流体的一部分是被压缩器210压缩的工作流体的体积中的等于或约0.2%至等于或约5%。在实施例中,润滑剂流路260可以包括可选的阀266和可选的流量传感器294,其被控制器290用于控制流过润滑剂流路260并被供应到气体轴承216的工作流体的量,其类似于图1中的阀门66和流量传感器94。在实施例中,润滑剂流路260可以被配置为被动地控制流过润滑剂流路260的工作流体的量。例如,实施例中的入口262的尺寸可以被确定为至少使用于轴承216的足够量的工作流体从主流动路径205流入润滑剂流路260。
在实施例中,气体轴承216可以是空气静压-液体静压(hydrostatic)混合轴承,其在压缩器210的正常工作期间不利用外部加压气体。在这样的实施例中,润滑剂流路260可以被配置为,在压缩器210未正在启动和/或正在关机时停止向气体轴承216供应工作流体。例如,实施例中的控制器290可以被配置为,在压缩器210未正在启动和/或关机时关闭可选的阀266。
图4是根据实施例的传热回路301的示意图。在实施例中,可以在HVACR系统中采用传热回路301。除了润滑剂流路360之外,传热回路301类似于图1中的传热回路1。例如,传热回路301包括主流动路径305;压缩器310,其具有吸入口312、出口314和至少一个气体轴承316;冷凝器330;膨胀装置340;以及蒸发器350。类似于图1中的传热回路1,冷凝器330利用第一过程流体PF1来冷却流过冷凝器330的工作流体,而蒸发器350利用流过蒸发器350的工作流体来冷却第二过程流体PF2。与关于图1中的传热回路1所讨论的类似,实施例中的传热回路301可以包括除了图4中所示的那些之外的附加部件。在实施例中,传热回路是无油的并且由工作流体的制冷剂润滑。
润滑剂流路360将经压缩的工作流体供应到压缩器310的气体轴承316。润滑剂流路360包括入口362、出口364、辅压缩器375和加热器380。辅压缩器375和加热器380设置在入口362和出口364之间。在图1中,润滑剂流路360的入口362连接到蒸发器350,而润滑剂流路360的出口364连接到压缩器310。在实施例中,加热器380是传热回路301的热源。
蒸发器350包括入口352、第一出口354和第二出口356。在通过膨胀装置340膨胀之后,工作流体从膨胀装置340流到蒸发器350的入口352。在通过入口352进入蒸发器350之后,工作流体流过蒸发器350,并通过第一出口354和第二出口356从蒸发器350排出。进入蒸发器350的大部分工作流体通过第一出口354排出。从第一出口354排出之后,工作流体从蒸发器350流到压缩器310的吸入口312。润滑剂流路360从蒸发器350接收其工作流体。从第二出口356排出的工作流体流入润滑剂流路360的入口362。润滑剂流路360的入口362被流体连接到蒸发器350的第二出口356。在实施例中,润滑剂流路360的入口362被直接连接到蒸发器350的第二出口356。
在图4中,润滑剂流路360的入口362连接到蒸发器350。然而,应当了解实施例中的润滑剂流路360的入口362,入口362可以在蒸发器350之后且在压缩器310之前连接到传热回路301的主流动路径305。
工作流体通过入口362进入润滑剂流路360并通过出口364离开润滑剂流路360。工作流体通过从入口362流过辅压缩器375,通过加热器380,并从加热器380流到出口364,来流过润滑剂流路360。在实施例中,润滑剂流路360中的辅压缩器375和加热器380的位置可以颠倒。工作流体从润滑剂流路360的出口364流到压缩器310的气体轴承316。工作流体从润滑剂流路360流到压缩器310的气体轴承316,以润滑气体轴承316。
流过辅压缩器375的工作流体被压缩到更高的压力。在实施例中,辅压缩器375可以是正排量式压缩器或离心式压缩器。在实施例中,辅压缩器375可以是无油压缩器。辅压缩器375被配置为压缩工作流体,使得被提供给气体轴承316的工作流体具有足够的压力。例如,基于压缩器310的构造和/或压缩器310的以前的测试,可以知道压缩器310的每种工作状况下所需的用于气体轴承316充分支撑其负载的工作流体的压力和/或量。经压缩的工作流体从辅压缩器375流到加热器380。加热器380加热经压缩的工作流体,使得经压缩的工作流体在被供应到气体轴承316时具有希望的过热量。所希望的过热量可以与上文关于图1中的润滑剂流路60所讨论的相同。在实施例中,压缩器310的气体轴承316可以被配置为,在压缩器310的关机和/或启动期间利用加压的工作流体。在压缩器310关机、正在关机和/或正在启动时,润滑剂流路360能够有利地以所述压力和所述量来提供工作流体,以使气体轴承316正确地工作。
在实施例中,图4中的加热器380是电加热器,其利用电来加热工作流体,其与上文关于图1中的电加热器80所进行的讨论类似。然而,应当了解,实施例中的加热器380可以是利用第三过程流体来加热工作流体的热交换器(例如,加热器180、加热器280等)。例如,第三过程流体可以流过冷却回路(例如,冷却回路170、冷却回路270等),并且被配置为对冷却回路中的装置(例如,生热部件172、电机218等)进行冷却。
传热回路301包括控制器390。在实施例中,控制器390可以是HVACR的控制器。润滑剂流路360包括类似于图1中的温度传感器92的温度传感器392。温度传感器392感测在被加热器380加热之后的工作流体的温度T2。控制器390被配置为,控制由加热器380提供给流过加热器380的工作流体的加热,使得被供应到气体轴承316的工作流体具有希望的过热量。控制器390可以基于温度T2来控制由加热器380提供给工作流体的热量。通过加热器380之后的工作流体的温度T2大于进入压缩器310的吸入口312的工作流体的温度T3
进入蒸发器350的工作流体的一部分流入润滑剂流路360中,而不是离开蒸发器350并流入压缩器310的吸入口312。在实施例中,进入蒸发器350的工作流体的体积中的等于或约0.2%至等于或约5%流入润滑剂流路360。在实施例中,流入润滑剂流路360的经压缩的工作流体的一部分是被压缩器310压缩的工作流体的体积中的等于或约0.2%至等于或约5%。在实施例中,润滑剂流路360可以包括可选的阀366和可选的流量传感器394,控制器390使用其来控制流过润滑剂流路360并被供应到气体轴承316的工作流体的量,类似于图1中的可选的阀66和流量传感器94。在实施例中,辅压缩器375可以是可变速度的,并且控制器390可以控制辅压缩器375的速度以控制被供应到气体轴承316的工作流体360的量。在实施例中,润滑剂流路360可以被配置为被动地控制流过润滑剂流路360的工作流体的量。例如,在实施例中,入口362的尺寸可以被确定为至少使用于轴承316的足够量的工作流体从蒸发器350流入润滑剂流路360。在实施例中,辅压缩器375的尺寸可以被确定为使润滑剂流路360至少向气体轴承316提供足够量的工作流体。
在实施例中,气体轴承316可以是空气静压-液体静压(hydrostatic)混合轴承,其在压缩器310的正常工作期间不利用外部加压气体。在这样的实施例中,润滑剂流路360可以被配置为,在压缩器310未正在启动和/或正在关机时停止向气体轴承316供应工作流体。例如,实施例中的控制器390可以被配置为,在压缩器310未正在启动和/或关机时关闭可选的阀366。例如,实施例中的控制器390可以被配置为,在压缩器310未正在启动和/或关机时将辅压缩器375关机。
图5是根据实施例的传热回路401的示意图。在实施例中,可以在HVACR系统中采用传热回路401。除了加热器480以外,传热回路401类似于图1中的传热回路1。例如,传热回路401包括主流动路径405;压缩器410,其具有吸入口412、出口414和至少一个气体轴承416;冷凝器430;膨胀装置440;以及蒸发器450。类似于图1中的传热回路1,冷凝器430利用第一过程流体PF1来冷却流过冷凝器430的工作流体,而蒸发器450利用流过蒸发器450的工作流体来冷却第二过程流体PF2。如上文关于图1中的传热回路1所讨论的类似,实施例中的传热回路401可以包括除图5中所示的部件之外的附加部件。在实施例中,传热回路401是无油的并且由工作流体的制冷剂润滑。
类似于图1中的润滑剂流路60,润滑剂流路460将经压缩的工作流体供应到压缩器410的气体轴承416。润滑剂流路包括入口462和出口464。润滑剂流路460的入口462在压缩器410和冷凝器430之间连接到传热回路401的主流动路径405。从压缩器410排出的经压缩的工作流体的一部分流入润滑剂流路460中,而不是流入冷凝器430中。润滑剂流路460将经压缩的工作流体的一部分供应到压缩器410的气体轴承416,以润滑气体轴承416。
如图5所示,加热器480位于蒸发器450和压缩器410之间。在蒸发器450中被加热之后,由蒸发器450排出的工作流体从蒸发器450流到加热器480。工作流体流过加热器480并被进一步加热。然后,工作流体从加热器480流到压缩器410的吸入口412。当工作流体流过压缩器410时,其被压缩器410压缩,并且经压缩的工作流体从压缩器410的出口414排出。
加热器480被配置为,加热被提供给压缩器410的工作流体,使得由润滑剂流路460提供给气体轴承416的经压缩的工作流体具有希望的过热。如上所述,随着工作流体在压缩器410中受到压缩,工作流体的温度升高。从压缩器410排出的工作流体的温度T5大于进入压缩器110的吸入口412的工作流体的温度T6。在实施例中,从压缩器410的出口414排出的工作流体具有希望的过热量,而在加热器480之后且在压缩器410之前的工作流体不具有希望的过热量。所希望的过热量可以与上文关于图1中的润滑剂流路60所讨论的相同。在实施例中,加热器480是传热回路401的源。
传热回路401包括控制器490。在实施例中,控制器490可以是HVACR的控制器。控制器490控制加热器480。控制器490控制由加热器480提供给流过加热器480的工作流体的热量,使得从润滑剂流路460供应到气体轴承416的工作流体具有希望的过热量。可以直接或间接地确定被供应到气体轴承416的工作流体的温度T5(例如,在出口464处的工作流体的温度)。在实施例中,润滑剂流路460包括温度传感器492,温度传感器492感测流过润滑剂流路460的工作流体的温度T5。在实施例中,温度传感器492可以位于润滑剂流路460中、在压缩器410的出口414处、或者在压缩器410的出口414和润滑剂流路460的入口462之间。在实施例中,温度传感器496位于加热器480之后和压缩器410之前,并且感测从加热器480排出的工作流体的温度Th。例如,可以基于温度T6来确定从润滑剂流路460供应的工作流体的温度T5。控制器492可以基于温度T5和温度T6中的至少一个温度来控制由加热器480提供给工作流体的热量。
从压缩器410排出的经压缩的工作流体的一部分流入润滑剂流路460中,而不是流入冷凝器430中。在实施例中,流入润滑剂流路460的经压缩的工作流体的一部分是从压缩器410排出的工作流体的体积中的等于或约0.2%至等于或约5%。在实施例中,流入润滑剂流路460的经压缩的工作流体的一部分是被压缩器410压缩的工作流体的体积中的等于或约0.2%至等于或约5%。
在实施例中,润滑剂流路460可以包括可选的阀466和可选的流量传感器(流量传感器494),其被控制器490用于控制流过润滑剂流路460并被供应到气体轴承416的工作流体的量,类似于图1中的可选的阀66和流量传感器94。在实施例中,润滑剂流路460可以被配置为被动地控制流过润滑剂流路460的工作流体的量。例如,在实施例中,入口462的尺寸可以被确定为至少使用于气体轴承416的足够量的工作流体从主流动路径405流入润滑剂流路460。
在实施例中,气体轴承416可以是空气静压-液体静压(hydrostatic)混合轴承,其在压缩器410的正常工作期间不利用外部加压气体。在这样的实施例中,润滑剂流路460可以被配置为,在压缩器410未正在启动和/或正在关机时停止向气体轴承416供应工作流体。例如,实施例中的控制器490可以被配置为,在压缩器410未正在启动和/或关机时关闭可选的阀466。
在实施例中,图5中的加热器480是电加热器,其利用电来加热工作流体,其与上文针对图1中的加热器80所进行的讨论类似。然而,应当了解,实施例中的加热器480可以是利用第三过程流体来加热工作流体的热交换器(例如,加热器180、加热器280等)。例如,第三过程流体可以流过冷却回路(例如,冷却回路170、冷却回路270等),并且冷却需要冷却的一个或多个装置(例如,生热部件172、电机218以及冷却装置等)。
图6是根据实施例的传热回路501的示意图。在实施例中,可以在HVACR系统中采用传热回路501。除了润滑剂流路560之外,传热回路501类似于图1中的传热回路1。例如,传热回路501包括主流动路径505;压缩器510,其具有吸入口512、出口514和至少一个气体轴承516;冷凝器530;膨胀装置540;蒸发器550;以及控制器590。冷凝器530利用第一过程流体PF1来冷却流过冷凝器530的工作流体,并且蒸发器550利用流过蒸发器550的工作流体来冷却第二过程流体PF2,类似于图1中的传热回路1。与关于图1中的传热回路1所讨论的类似,实施例中的传热回路501可以包括除了图6中所示的那些之外的附加部件。在实施例中,控制器590可以是HVACR系统的控制器。在实施例中,传热回路501是无油的并且由工作流体的制冷剂润滑。
在实施例中,空气静压气体轴承需要最小压力和/或流速的压缩气体以提供支撑(例如,支撑压缩器510的轴)。在实施例中,空气动力-空气静压混合气体轴承需要最小压力和/或流速的压缩气体来提供支撑,直到轴达到特定的转速。压缩气体的量、压缩气体的最小压力和/或气体轴承提供支撑的特定轴转速取决于特定的空气静压或空气动力-空气静压混合气体轴承的构造。在没有至少提供最小的气压、最小的气体量和/或轴以低于特定转速旋转时,气体轴承接触其相对表面(例如,压缩器轴的外表面、压缩器的壳体的表面等),其导致气体轴承的磨损和/或损坏。
润滑剂流路560将经压缩的工作流体供应到压缩器510的气体轴承516。润滑剂流路560包括第一入口562A、出口564、可选的阀567A、辅压缩器575和可选的罐体577。第一入口562A、辅压缩器575和可选的罐体577被配置为,在压缩器510的启动和/或关机期间将经压缩的气态工作流体供应到气体轴承516。
在压缩器510的启动和/或关机期间,辅压缩器575经由入口562A从蒸发器550吸入并压缩气态工作流体。在实施例中,经压缩的气态工作流体从辅压缩器575流到出口564,并且被供应到压缩器510的气体轴承516,直到压缩器完成其启动。在实施例中,辅压缩器575在压缩器510的关机期间向气体轴承510供应经压缩的气态工作流体,直到压缩器510关机为止(例如,直到压缩器510的轴不再旋转为止)。辅压缩器575在压缩器510的关机和/或启动期间生成由气体轴承516使用的经压缩的气态工作流体。
在实施例中,润滑剂流路560包括可选的罐体577和可选的阀567A。罐体577在辅压缩器575和润滑剂流路560的出口564之间。阀567A在罐体577和润滑剂流路560的出口之间。可选的罐体577和可选的阀567A用于在罐体577中填充特定量的经压缩的气态工作流体,以在压缩器560的关机和/或启动期间使用。在实施例中,辅压缩器575将经压缩的气态工作流体排入罐体577中。阀567A关闭,使得工作流体在罐体577内积聚并被压缩。一旦罐体577包含足以以压缩气体的最小量及其压力向气体轴承516供应的工作到直到所述关机或启动被完成为止的经压缩的气态工作流体,就打开阀567A。然后,经压缩的气态工作流体从罐体577流到润滑剂流路560的出口564,并从润滑剂流路560供应到气体轴承516。在实施例中,可选的阀567A由控制器590控制。在实施例中,传热回路501包括可选的压力传感器592,压力传感器592被控制器590用于检测罐体577中的工作流体的压力。
在实施例中,辅压缩器575具有比压缩器510更小的容量。在实施例中,辅压缩器575的更低的效率导致从辅压缩器575排出的经压缩的工作流体的更大的热量。在实施例中,如上所述,该更大的热量可以为经压缩的工作流体提供更多的过热。在实施例中,辅压缩器575是传热回路501的热源。
在实施例中,气体轴承516是混合空气静压-液体动力轴承。润滑剂流路560将经压缩的气态工作流体提供给气体轴承516,直到轴(例如,图8中的轴720)以最小速度旋转,从而为混合空气静压-液体动力气体轴承516提供支撑。
在实施例中,气体轴承516是空气静压轴承,并且润滑剂流路560包括具有可选的第二入口562B和可选的阀567B的可选的入口管线569。一旦压缩器510能够生成用于空气静压气体轴承516的足够的经压缩的气态工作流体(例如,当压缩器未正在关机或启动时),气态的经压缩的工作流体的一部分就经由第二入口562B从主流动路径505进入润滑剂流路560。气态的经压缩的工作流体的一部分然后通过润滑剂流路被供应到空气静压气体轴承516。阀567B防止从辅压缩器575排出的经压缩的工作流体流入主流动路径505。在实施例中,阀567B可以是由控制器590操作的止回阀或控制阀。
在实施例中,可选的入口管线569可具有类似于图1中的润滑剂流路60、图2中的润滑剂流路160或图3中的润滑剂流路260的构造。例如,润滑剂流路560还可包括位于润滑剂流路560的可选的第二入口562B和出口564之间的加热器(例如,加热器80、加热器180、加热器280),以增加从第二入口562B流到出口564的气态工作流体的过热。在实施例中,类似于图5中的传热回路401,传热回路501可以包括设置在蒸发器550与压缩器510的吸入口512之间的加热器(例如,加热器480)。
在图6中,润滑剂流路560的第一入口562A在蒸发器550与压缩器510的吸入口512之间连接到主流动路径505。然而,应当了解,实施例中的润滑剂流路560的第一入口562A可以被流体连接到压缩器510的电机518的电机壳体519(在图6中被示为562A’)。工作流体可以通过电机壳体519并沿着电机518循环,以冷却电机518,与上文关于图3所讨论的类似。在实施例中,第一入口562A’被流体连接到电机壳体519,并且由辅压缩器575吸入的工作流体来自电机壳体519,而不是来自蒸发器550和压缩器510之间。例如,这种构造可以有利地避免在气体轴承516与蒸发器550和/或吸入口512之间生成压力差。电机518和电机壳体519在图6中被示出为在图6中的压缩器510的内部。然而,应当了解,在实施例中,电机518和电机壳体519可以从外部附接到压缩器510。
图7是根据实施例的传热回路601的示意图。在实施例中,可以在HVACR系统中采用传热回路601。除了润滑剂流路660之外,传热回路601类似于图1中的传热回路1。例如,传热回路601包括主流动路径605;压缩器610,其具有吸入口612、出口614和至少一个气体轴承616;冷凝器630;膨胀装置640;蒸发器650;以及控制器690。类似于图1中的传热回路1,冷凝器630利用第一过程流体PF1来冷却流过冷凝器630的工作流体,而蒸发器650利用流过蒸发器650的工作流体来冷却第二过程流体PF2。在实施例中,控制器690可以是HVACR系统的控制器。与关于图1中的传热回路1所讨论的类似,实施例中的传热回路601可以包括除了图7中所示的那些之外的附加部件。在实施例中,传热回路601是无油的并且由工作流体的制冷剂润滑。
润滑剂流路660将经压缩的工作流体供应到压缩器610的气体轴承616。润滑剂流路660包括入口662A、出口664、罐体677,阀667A、泵665和加热器680。在实施例中,润滑剂流路660的入口662A在冷凝器630处被连接到主流动路径605。润滑剂流路660的入口662A被连接到冷凝器630并从冷凝器630接收工作流体。
在实施例中,当压缩器610要启动时,泵665被配置为将液态工作流体从冷凝器630泵送到罐体677中。在将预定量的工作流体泵送到罐体677中之后,加热器680加热罐体677中的液态工作流体,直到液态工作流体开始汽化。阀667A关闭,使得气态工作流体在罐体677内被压缩。一旦罐体677中的经压缩的气态工作流体达到预定压力,就打开阀667A,并且经压缩的气态工作流体从罐体677流到润滑剂流路660的出口664。润滑剂流路660将经压缩的气态工作流体供应到压缩器610的气体轴承616。气态工作流体的预定压力是允许润滑剂流路660向气轴承616供应足够的经压缩的气态工作流体以供气轴承616提供支撑(例如直到压缩器610完成其启动为止)的压力。例如,液态工作流体的预定量是允许罐体为气体轴承616建立足够量和压力的经压缩的气态工作流体的量。在实施例中,控制器690可以利用一个或多个传感器692来检测罐体677内的流体的压力、温度和/或液位。
在实施例中,气体轴承616可以是需要连续的压缩气体流以提供支撑的空气静压轴承。润滑剂流路660可以包括可选的第二入口662B,其用于在压缩器排放足够的经压缩的气态工作流体时(例如,不在压缩器610的关机或启动期间)从压缩器610向空气静压气体轴承616供应经压缩的气态工作流体。在实施例中,润滑剂流路660可以包括可选的阀667B,以防止流体通过可选的第二入口662B从罐体677流入主流动路径605。例如,可选的阀667B可以是由控制器690操作的止回阀或控制阀。在实施例中,从压缩器610的出口614排出的经压缩的工作流体的一部分通过第二入口662B流入润滑剂流路660。然后,加热器680加热流过润滑剂流路660的经压缩的气态工作流体,使得被提供给气体轴承616的经压缩的气态工作流体具有更高的过热,其与上面关于图1中的润滑剂流路60所讨论的类似。
在实施例中,加热器680是传热回路601的热源。在实施例中,加热器680是电加热器。在实施例中,加热器680是利用第三过程流体(例如,图2中的第三过程流体PF3)的热交换器。在实施例中,类似于图5中的传热回路401,传热回路601可以包括被设置在主流动路径605中的蒸发器650和压缩器610的吸入口612之间的加热器(例如,加热器480)。
在实施例中,润滑剂流路660可以包括热电冷却器668,而不是泵665,以将液态工作流体添加到罐体677。热电冷却器668能够利用电力提供冷却。在实施例中,控制器690将电力供应给热电冷却器668,并且热电冷却器668使用所供应的电力来冷却罐体677内的流体。热电冷却器668位于罐体677内,并且被配置为冷凝罐体677内的气态工作流体。当气态工作流体在罐体677中冷凝时,更多的气态工作流体被吸入罐体677中并被冷凝。在这样的实施例中,润滑剂流路660的入口662A在冷凝器630之前并且在压缩器610的吸入口612之后而不是在冷凝器630连接到主流动路径605。例如,在这样的实施例中,润滑剂流路660可以包括入口662B而不是入口662A,或者入口662A可以连接到压缩器610的末级SL,而不是冷凝器630。热电冷却器668保持打开,直到罐体677至少包含预定量的液态工作流体,如上文关于泵665的讨论类似。在实施例中,控制器690控制热电冷却器668。
为了清楚起见,上文提供的针对传热回路1、传热回路101、传热回路201、传热回路301、传热回路401、传热回路501、传热回路601的描述是针对单个气体轴承进行描述的。然而,应理解,压缩器可以包括多个气体轴承(例如,多个径向气体轴承、多个推力气体轴承、止推轴承和径向气体轴承的组合等)。在实施例中,压缩器(例如,压缩器10、压缩器110、压缩器210、压缩器310、压缩器410、压缩器510、压缩器610)可以包括多个气体轴承,并且润滑剂流路(例如,润滑剂流路60、润滑剂流路160、润滑剂流路260、润滑剂流路360、润滑剂流路460、润滑剂流路560、润滑剂流路660)将经压缩的气态工作流体供应到气体轴承中的每个气体轴承,以充分润滑气体轴承中的每个气体轴承。
图8是根据实施例的传热回路701的示意图。在实施例中,可以在HVACR系统中采用传热回路701。除了滑剂流760和压缩器710的内部构造之外,传热回路701类似于图1中的传热回路1。例如,传热回路701包括主流动路径705;压缩器710具有吸入口712、出口714和至少一个气体轴承716A、716B、716C;冷凝器730;膨胀装置740;蒸发器750;以及控制器790。类似于图1中的传热回路1,冷凝器730利用第一过程流体PF1来冷却流过冷凝器730的工作流体,而蒸发器750利用流过蒸发器750的工作流体来冷却第二过程流体PF2。在实施例中,控制器790可以是HVACR系统的控制器。与关于图1中的传热回路1所讨论的类似,实施例中的传热回路701可以包括除了图8中所示的那些之外的附加部件。在实施例中,传热回路701是无油的并且由工作流体的制冷剂润滑。
压缩器710包括被配置为使轴720旋转的电机718。叶轮722被附接到轴720的端部。当轴720旋转时,叶轮722旋转并且压缩工作流体。如图8所示,压缩器710具有壳体711,该壳体既是压缩器710的壳体也是电机718的壳体。然而,在实施例中,电机718可以在压缩器710的外部。在实施例中,电机718可以包括与压缩器710的壳体711分离的壳体。
润滑剂流路760将经压缩的工作流体供应到压缩器710的气体轴承716A、气体轴承716B、气体轴承716C。润滑剂流路760包括入口762和出口764。在主流动路径705中并且从压缩器710排出的经压缩的气态工作流体的一部分通过入口762进入润滑剂流路760。润滑剂流路760经由润滑剂流路760的出口764将经压缩的气态工作流体供应到压缩器710的气体轴承716A、气体轴承716B、气体轴承716C。在图8中示出润滑剂流路760,其延伸到压缩器710的壳体711的外部。然而,实施例中的润滑剂流路760可以被结合到压缩器710的壳体711中。
润滑剂流路760将经压缩的气态工作流体供应到气体轴承716A以润滑气体轴承716A。当气态工作流体流过气体轴承716A时,气态工作流体膨胀。该膨胀导致气态工作流体冷却,这也冷却气体轴承716A。压缩器710包括加热器780A,加热器780A加热第一气体轴承716A。加热器780A防止气体轴承716A达到将导致气体轴承716A内的气态工作流体冷凝的温度。例如,如果不阻止气体轴承716A的冷却,则气体轴承716A可以在气态工作流体流过气体轴承716A时冷却气态工作流体,导致气态工作流体在气体轴承716A内冷凝。加热器780A被示出为被附接到气体轴承716A。然而,在实施例中,加热器780可以被结合到气体轴承716A中。
在实施例中,控制器790控制由加热器780A提供给气体轴承716A的热量。温度传感器792A检测气体轴承716A的温度T7。在实施例中,温度传感器792A是热电偶。在实施例中,控制器790控制由加热器780A提供给气体轴承716A的热量。由加热器780A提供给气体轴承716A的热量至少将气体轴承716A保持在预定温度T7。预定温度T7防止被提供给气体轴承716A的气态工作流体在流过气体轴承716A时达到其冷凝的温度。预定温度T7等于或约4°F或大于4°F,然后为气体轴承716A中工作流体的露点温度。预定温度T7等于或约4.5°F或大于4.5°F,然后为气体轴承716A中工作流体的露点温度。预定温度T7等于或约5°F或大于5°F,然后为气体轴承716A中工作流体的露点温度。
压缩器710包括具有第二加热器780B的第二气体轴承716B和具有第三加热器780C的第三气体轴承716C。第二加热器780B和第三加热器780C中的每一个加热器被配置为以与针对第一气体轴承716A和第一加热器780A所描述的类似的方式加热它们各自的气体轴承716B、716C。在实施例中,压缩器710包括用于检测第二气体轴承716B的温度T8的温度传感器792B和用于检测第三气体轴承716C的温度T9的温度传感器792C。类似于第一加热器780A和第一气体轴承716A,控制器790可以控制由每个加热器780B、780C提供给其各自的气体轴承716B、716C的热量。在实施例中,加热器780A、加热器780B、加热器780C中的每一个加热器是传热回路701的热源。
图8所示的压缩器710包括三个气体轴承716A、716B、716C。然而,实施例中的压缩器710可以具有与三不同的轴承数量。在实施例中,压缩器710可以具有单个气体轴承716A、716B、716C。在实施例中,压缩器710可以具有一个或多个气体轴承716A、716B、716C。在实施例中,压缩器710可以具有至少一个止推气体轴承716A和至少一个径向气体轴承716B、716C。图8所示的压缩器710是单级压缩器。然而,实施例中的压缩器710可以包括多级。
图9是向传热回路中的压缩器的至少一个气体轴承供应润滑剂的方法800的实施例的框图。例如,方法800可以用于向图1中的传热回路1中的、图2中的传热回路101中的、图3中的传热回路201中的、图4的传热回路301中的、图5中的传热回路401中的或图7中的传热回路601中的气体轴承供应润滑剂。用于气体轴承的润滑剂是在传热回路中流动的工作流体的一部分。在实施例中,在HVACR系统中采用传热回路。方法800在810处开始。
在810处,在蒸发器(例如,蒸发器50、蒸发器150、蒸发器250、蒸发器350、蒸发器450、蒸发器650)中加热工作流体。蒸发器利用工作流体(例如,第二过程流体PF2)加热工作流体。工作流体和过程流体分离地流过蒸发器并处于传热关系。当流过蒸发器的工作流体从过程流体吸收热量时,流过蒸发器的过程流体被冷却。然后方法800进行到820。
在820处,在蒸发器中被加热的工作流体的至少一部分被压缩并被进一步加热。工作流体的所述至少一部分被加热器(例如,加热器80、加热器180、加热器280、加热器380、加热器480、加热器680)进一步加热。工作流体的所述至少一部分被压缩器(例如,压缩器10、压缩器110、压缩器210、压缩器410)或辅压缩器(例如,辅压缩器375)压缩。
在实施例中,820包括:利用压缩器压缩在蒸发器中被加热的工作流体,然后在加热器(例如,传热回路1、传热回路101、传热回路201、传热回路601)中进一步加热经压缩的工作流体的一部分。工作流体的其余部分可以流到冷凝器(例如,冷凝器30、冷凝器130、冷凝器230、冷凝器630)。在实施例中,820包括:利用辅压缩器压缩在蒸发器中加热的工作流体的一部分,并且利用加热器(例如,传热回路301)加热工作流体的所述一部分。工作流体的所述一部分可以首先被辅压缩器压缩,然后被加热器加热。备选地,可以利用加热器加热工作流体的所述一部分,然后用辅压缩器进行压缩。在蒸发器中被加热的工作流体的剩余部分被压缩器压缩。然后方法800进行到830。
在830处,已经被加热器加热的经压缩的工作流体被供应到压缩器(例如,压缩器10、压缩器110、压缩器210、压缩器310、压缩器410、压缩器610)的气体轴承(例如,气体轴承16、气体轴承116、气体轴承216、气体轴承316、气体轴承416、气体轴承616)。经压缩的工作流体作为气体轴承的润滑剂被供应到气体轴承。工作流体被加热器加热,以具有希望的过热量。希望的过热可以与上文关于图1所描述的相同。
在实施例中,可以基于如图1至图5和图7所示和如上文所述的传热回路1、传热回路101、传热回路201、传热回路301、传热回路401和传热回路601来修改方法800。例如,实施例中的方法800可以包括:加热器利用另一过程流体(例如,上面讨论的第三过程流体PF3)来加热流过加热器的工作流体,利用冷凝器(例如,冷凝器30、冷凝器130、冷凝器230、冷凝器330、冷凝器430、冷凝器630)来使工作流体冷凝,和/或利用膨胀装置(例如,膨胀装置40、膨胀装置140、膨胀装置240、膨胀装置340、膨胀装置440、膨胀装置640)来使工作流体膨胀。
图10是在压缩器的启动和关机中的至少一个期间向传热回路中的压缩器的至少一个气体轴承供应润滑剂的方法900的实施例的框图。例如,方法900可以用于将润滑剂供应到图6中的传热回路501中或图7中的传热回路601中的气体轴承。被供应到气体轴承的润滑剂是在传热回路中流动的工作流体的一部分。在实施例中,在HVACR系统中采用传热回路。方法900在910处开始。
在910处,工作流体从传热回路的主流动路径(例如,主流动路径505、主流动路径605)吸入润滑剂流路(例如,润滑剂流路560、润滑剂流路660)中。在实施例中,在910处,通过辅压缩器575从蒸发器(例如,蒸发器550)或压缩器(例如,压缩器510)的电机壳体(例如,电机壳体519)吸入气态工作流体。在实施例中,在910处,工作流体通过泵(例如,泵665)从冷凝器(例如,冷凝器630)或过热电冷却装置(例如,热电冷却装置668)从压缩器(例如,压缩器610)的末级吸入到罐体(例如,罐体677)中。然后方法900进行到920。
在920处,在润滑剂流路内基于被吸入的工作流体来生成经压缩的气态工作流体。经压缩的气态工作流体被供应到压缩器的至少一个气体轴承(例如,气体轴承516、气体轴承616)。在润滑剂流路内生成的经压缩的工作流体被供应到气体轴承,直到压缩器完成其启动或关机。
在实施例中,辅压缩器(例如,辅压缩器575)压缩被吸入的气态工作流体以生成经压缩的气态工作流体。在实施例中,加热器(例如,加热器680)使润滑剂流路的罐体(例如,罐体677)内的被吸入的液态工作流体汽化。随着加热器使更多的液态工作流体汽化,气态工作流体被压缩。然后将经压缩的气态工作流体供应到压缩器的气体轴承,直到压缩器完成其启动和/或关机。
在实施例中,可以基于如图6和图7所示以及如上所述的传热回路501和传热回路601来修改方法900。
方面
方面1至方面17中的任何方面可以与方面18至方面24中的任何方面结合,并且方面18至方面20中的任何方面可以与方面21至方面24中的任何方面结合。
方面1:一种传热回路,包括:
压缩器,用于压缩工作流体,所述压缩器包括气体轴承;
冷凝器,用于利用第一过程流体冷却所述工作流体;
膨胀器,用于使所述工作流体膨胀;
蒸发器,用于利用第二过程流体加热所述工作流体;
所述工作流体的主流动路径,从所述压缩器延伸通过所述冷凝器、所述膨胀器、所述蒸发器并且返回到所述压缩器;
润滑剂流路,包括入口和出口,所述入口从所述主流动路径接收所述工作流体的一部分,而所述出口将所述工作流体的所述一部分供应到所述压缩器的气体轴承,所述工作流体的所述一部分包括在所述润滑剂流路的出口处均呈气态的一种或多种制冷剂;以及
热源,被配置为使流过所述润滑剂流路的所述出口的工作流体的温度和所述气体轴承的温度中的一个温度升高。
方面2:根据方面1所述的传热回路,其中,从所述润滑剂流路供应到所述气体轴承的所述工作流体的所述一部分具有等于或约4.0°F或大于4.0°F的过热。
方面3:根据方面1或方面2中的一个方面给所述的传热回路,其中,所述润滑剂流路包括所述热源,并且所述工作流体的所述一部分在所述润滑剂流路的所述入口处具有小于4.0°F的过热。
方面4:根据方面1至方面3中任一方面所述的传热回路,其中,供应到所述气体轴承的所述工作流体的所述一部分的过热等于或约5.0°F或大于5.0°F。
方面5:根据方面1至方面4中任一方面所述的传热回路,其中,所述润滑剂流路的所述入口在所述蒸发器处或在所述蒸发器之后且在所述冷凝器之前连接到所述主流动路径。
方面6:根据方面1至方面5中任一方面所述的传热回路,其中,所述润滑剂流路的所述入口在所述压缩器之后且在所述冷凝器之前连接到所述主流动路径。
方面7:根据方面1至方面6中任一方面所述的传热回路,其中,所述热源是加热器。
方面8:根据方面7所述的传热回路,其中,所述加热器是电加热器。
方面9:根据方面7所述的传热回路,其中,所述加热器是热交换器,所述工作流体和第三过程流体分离地流过所述加热器,在所述工作流体和所述第三过程流体流过所述加热器时,所述第三过程流体加热所述工作流体。
方面10:根据方面9所述的传热回路,还包括:
冷却回路,包括所述加热器,并且所述第三过程流体流过所述冷却回路。
方面11:根据方面10所述的传热回路,其中,所述冷却回路包括所述压缩器的变频器和电机之一,所述第三过程流体冷却所述压缩器的所述变频器和所述电机之一。
方面12:根据方面7至方面11中任一方面所述的传热回路,其中,
所述润滑剂流路包括罐体和热电冷却器,所述加热器和所述热电冷却器被设置在所述罐体内,
所述热电冷却器和所述加热器被配置为,在所述润滑剂流路的罐体内生成用于供应到所述气体轴承的经压缩的气态工作流体,通过所述热电冷却器使所述工作流体的所述一部分冷凝以及通过所述加热器使冷凝的工作流体汽化来生成经压缩的气态工作流体。
方面13:根据方面1所述的传热回路,其中,所述热源是被附接到所述气体轴承或者是所述气体轴承的一部分的加热器。
方面14:根据方面1至方面13中任一方面所述的传热回路,其中,所述润滑剂流路包括:辅压缩器,被配置为压缩流过所述润滑剂流路的所述工作流体的所述一部分,所述润滑剂流路的所述入口连接到所述蒸发器、连接到所述蒸发器和连接到所述压缩器之间或所述压缩器的电机壳体。
方面15:根据方面14所述的传热回路,其中,所述辅压缩器是生热源。
方面16:根据方面1至方面15中任一方面所述的传热回路,其中,所述一种或多种制冷剂包括HFO制冷剂。
方面17:根据方面1至方面16中任一方面所述的传热回路,其中,所述压缩器是无油压缩器。
方面18:一种向传热回路中的压缩器的气体轴承供应润滑剂的方法,所述传热回路包括压缩器、冷凝器、膨胀器、蒸发器和加热器,工作流体流过所述传热回路,所述方法包括:
利用过程流体在所述蒸发器中加热所述工作流体;
压缩和进一步加热在所述蒸发器中被加热的所述工作流体的至少一部分,所述进一步加热包括所述加热器加热在所述蒸发器中被加热的所述工作流体的所述一部分,并且所述压缩包括所述压缩器和辅压缩器中的一个对在所述蒸发器中被加热的所述工作流体的所述一部分进行压缩;以及
将经压缩和进一步被加热的所述工作流体的所述一部分作为润滑剂供应到所述压缩器的气体轴承。
方面19:根据方面18所述的方法,其中,被供应到气体轴承的经压缩和进一步被加热的所述工作流体的一部分具有等于或约4.0°F或大于4.0°F的过热。
方面20:根据方面18或方面19中的一个方面所述的方法,其中,所述压缩包括:所述压缩器对在所述蒸发器中被加热的工作流体进行压缩,并且,由所述加热器加热的所述工作流体的一部分是由所述压缩器压缩的所述工作流体的一部分。
方面21:一种向传热回路中的压缩器的气体轴承供应润滑剂的方法,所述传热回路包括所述压缩器、冷凝器、膨胀器、蒸发器和热源,工作流体流过所述传热回路的,所述工作流体的主流动路径从所述压缩器延伸通过所述冷凝器、所述膨胀器、所述蒸发器并且返回到所述压缩器,所述方法包括:
将所述工作流体的一部分吸入润滑剂流路;以及
基于所述工作流体的所述一部分在所述润滑剂流路内生成经压缩的气态工作流体,经压缩的气态工作流体从所述润滑剂流路供应到所述压缩器的气体轴承。
方面22:根据方面21所述的方法,其中,
所述工作流体的所述一部分是从所述蒸发器或所述压缩器的电机壳体吸入的气态工作流体,并且
基于所述工作流体的所述一部分在所述润滑剂流路内生成经压缩的气态工作流体包括:辅压缩器,压缩所述润滑剂流路内的气态工作流体,以生成经压缩的气态工作流体。
方面23:根据方面21所述的方法,其中,
将所述工作流体的所述一部分吸入所述润滑剂流路包括:将所述工作流体的所述一部分吸入所述润滑剂流路的罐体,并且
基于所述工作流体的所述一部分在所述润滑剂流路内生成经压缩的气态工作流体包括:使所述罐体内的所述工作流体的所述一部分汽化,以生成经压缩的气态工作流体。
方面24:根据方面23所述的方法,其中,
将所述工作流体的所述一部分吸入所述润滑剂流路包括以下中的一项:
将来自所述冷凝器的所述工作流体的所述一部分泵入所述润滑剂流路的罐体中,吸入到所述润滑剂流路中的所述工作流体的所述一部分是液态工作流体,以及
在所述润滑剂流路的罐体内冷凝所述工作流体的所述一部分,吸入到所述润滑剂流路中的所述工作流体的所述一部分是气态工作流体。
本申请中所公开的示例被考虑为在所有方面都是说明性而不是限制性的。本发明的范围由随附权利要求而不是由上述说明来表明;并且源自权利要求的等同含义或范围内的所有变化旨在被包括在权利要求内。

Claims (24)

1.一种传热回路,包括:
压缩器,用于压缩工作流体,所述压缩器包括气体轴承;
冷凝器,用于利用第一过程流体冷却所述工作流体;
膨胀器,用于使所述工作流体膨胀;
蒸发器,用于利用第二过程流体加热所述工作流体;
所述工作流体的主流动路径,从所述压缩器延伸通过所述冷凝器、所述膨胀器、所述蒸发器并且返回到所述压缩器;
润滑剂流路,包括入口和出口,所述入口从所述主流动路径接收所述工作流体的一部分,而所述出口将所述工作流体的所述一部分供应到所述压缩器的气体轴承,所述工作流体的所述一部分包括在所述润滑剂流路的出口处均呈气态的一种或多种制冷剂;以及
热源,被配置为使流过所述润滑剂流路的出口的工作流体的温度和所述气体轴承的温度中的一个温度升高。
2.根据权利要求1所述的传热回路,其中,从所述润滑剂流路供应到所述气体轴承的所述工作流体的所述一部分具有等于或约4.0°F或大于4.0°F的过热。
3.根据权利要求2所述的传热回路,其中,所述润滑剂流路包括所述热源,并且所述工作流体的所述一部分在所述润滑剂流路的入口处具有小于4.0°F的过热。
4.根据权利要求2所述的传热回路,其中,供应到所述气体轴承的所述工作流体的所述一部分的过热等于或约5.0°F或大于5.0°F。
5.根据权利要求1所述的传热回路,其中,所述润滑剂流路的入口在所述蒸发器处或在所述蒸发器之后且在所述冷凝器之前连接到所述主流动路径。
6.根据权利要求5所述的传热回路,其中,所述润滑剂流路的入口在所述压缩器之后且在所述冷凝器之前连接到所述主流动路径。
7.根据权利要求1所述的传热回路,其中,所述热源是加热器。
8.根据权利要求7所述的传热回路,其中,所述加热器是电加热器。
9.根据权利要求7所述的传热回路,其中,所述加热器是热交换器,所述工作流体和第三过程流体分离地流过所述加热器,在所述工作流体和所述第三过程流体流过所述加热器时,所述第三过程流体加热所述工作流体。
10.根据权利要求9所述的传热回路,还包括:
冷却回路,包括所述加热器,并且所述第三过程流体流过所述冷却回路。
11.根据权利要求10所述的传热回路,其中,所述冷却回路包括所述压缩器的变频器和电机之一,所述第三过程流体冷却所述压缩器的变频器和电机之一。
12.根据权利要求7所述的传热回路,其中,所述加热器被附接到所述气体轴承或者是所述气体轴承的一部分。
13.根据权利要求7所述的传热回路,其中,
所述润滑剂流路包括罐体和热电冷却器,所述加热器和所述热电冷却器被设置在所述罐体内,
所述热电冷却器和所述加热器被配置为,在所述润滑剂流路的罐体内生成用于供应到所述气体轴承的经压缩的气态工作流体,通过所述热电冷却器使所述工作流体的所述一部分冷凝以及通过所述加热器使冷凝的工作流体汽化来生成经压缩的气态工作流体。
14.根据权利要求1所述的传热回路,其中,所述一种或多种制冷剂包括HFO制冷剂。
15.根据权利要求1所述的传热回路,其中,所述压缩器是无油压缩器。
16.根据权利要求1所述的传热回路,其中,所述润滑剂流路包括:辅压缩器,被配置为压缩流过所述润滑剂流路的所述工作流体的所述一部分,所述润滑剂流路的入口被连接到所述蒸发器,连接到所述蒸发器与所述压缩器之间或连接到所述压缩器的电机壳体。
17.根据权利要求16所述的传热回路,其中,所述辅压缩器是所述热源。
18.一种向传热回路中的压缩器的气体轴承供应润滑剂的方法,所述传热回路包括所述压缩器、冷凝器、膨胀器、蒸发器和加热器,工作流体流过所述传热回路,所述方法包括:
利用过程流体在所述蒸发器中加热所述工作流体;
压缩和进一步加热在所述蒸发器中被加热的所述工作流体的至少一部分,所述进一步加热包括所述加热器加热在所述蒸发器中被加热的所述工作流体的所述一部分,并且所述压缩包括所述压缩器和辅压缩器中的一个对在所述蒸发器中被加热的所述工作流体的所述一部分进行压缩;以及
将经压缩和进一步被加热的所述工作流体的所述一部分作为润滑剂供应到所述压缩器的气体轴承。
19.根据权利要求18所述的方法,其中,被供应到所述气体轴承的经压缩和进一步被加热的所述工作流体的一部分具有等于或约4.0°F或大于4.0°F的过热。
20.根据权利要求18所述的方法,其中,所述压缩包括所述压缩器对在所述蒸发器中被加热的所述工作流体进行压缩,并且由所述加热器加热的所述工作流体的所述一部分是由所述压缩器压缩的所述工作流体的一部分。
21.一种向传热回路中的压缩器的气体轴承供应润滑剂的方法,所述传热回路包括所述压缩器、冷凝器、膨胀器、蒸发器和热源,工作流体流过所述传热回路的,所述工作流体的主流动路径从所述压缩器延伸通过所述冷凝器、所述膨胀器、所述蒸发器并且返回到所述压缩器,所述方法包括:
将所述工作流体的一部分吸入润滑剂流路;以及
基于所述工作流体的所述一部分在所述润滑剂流路内生成经压缩的气态工作流体,所述经压缩的气态工作流体从所述润滑剂流路供应到所述压缩器的气体轴承。
22.根据权利要求21所述的方法,其中,
所述工作流体的所述一部分是从所述蒸发器或所述压缩器的电机壳体吸入的气态工作流体,并且
基于所述工作流体的所述一部分在所述润滑剂流路内生成经压缩的气态工作流体包括:辅压缩器,压缩所述润滑剂流路内的气态工作流体,以生成所述经压缩的气态工作流体。
23.根据权利要求21所述的方法,其中,
将所述工作流体的所述一部分吸入所述润滑剂流路包括:将所述工作流体的所述一部分吸入所述润滑剂流路的罐体,并且
基于所述工作流体的所述一部分在所述润滑剂流路内生成经压缩的气态工作流体包括:使所述罐体内的所述工作流体的所述一部分汽化,以生成经压缩的气态工作流体。
24.根据权利要求23所述的方法,其中,
将所述工作流体的所述一部分吸入所述润滑剂流路包括以下中的一项:
将来自所述冷凝器的所述工作流体的所述一部分泵入所述润滑剂流路的罐体中,吸入到所述润滑剂流路中的所述工作流体的所述一部分是液态工作流体,以及
在所述润滑剂流路的罐体内冷凝所述工作流体的所述一部分,吸入到所述润滑剂流路中的所述工作流体的所述一部分是气态工作流体。
CN202010481793.9A 2019-05-31 2020-05-29 具有升高的轴承润滑剂温度的传热回路及其供应方法 Pending CN112013569A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/427,763 2019-05-31
US16/427,763 US20200378657A1 (en) 2019-05-31 2019-05-31 Heat transfer circuit with increased bearing lubricant temperature, and method of supplying thereof

Publications (1)

Publication Number Publication Date
CN112013569A true CN112013569A (zh) 2020-12-01

Family

ID=70975734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010481793.9A Pending CN112013569A (zh) 2019-05-31 2020-05-29 具有升高的轴承润滑剂温度的传热回路及其供应方法

Country Status (3)

Country Link
US (2) US20200378657A1 (zh)
EP (1) EP3745050A1 (zh)
CN (1) CN112013569A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970197A (zh) * 2021-10-29 2022-01-25 青岛海尔空调电子有限公司 用于供气系统的控制方法及装置、制冷设备、存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201011A (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 空調機
US20210247096A1 (en) * 2020-02-07 2021-08-12 Carrier Corporation A2l compliant contactor
US20210404720A1 (en) * 2020-06-24 2021-12-30 Carrier Corporation Foil bearing lubrication
US11913463B2 (en) * 2021-05-07 2024-02-27 Trane International Inc. Gas bearing compressor backup power
CN113833762B (zh) * 2021-09-08 2024-04-19 青岛海尔空调电子有限公司 用于悬浮轴承的供气系统及制冷系统
CN113945021B (zh) * 2021-10-29 2023-04-28 青岛海尔空调电子有限公司 用于控制冷水机组启停的方法、装置及冷水机组
US20240077239A1 (en) * 2022-09-01 2024-03-07 Trane International Inc. Refrigerant circuit compressor gas bearing feed

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032783B2 (ja) * 1978-12-22 1985-07-30 株式会社荏原製作所 冷凍装置の油戻し装置
JP2008014533A (ja) * 2006-07-04 2008-01-24 Ebara Corp 圧縮式冷凍機の油回収装置
GB201122142D0 (en) * 2011-12-21 2012-02-01 Venus Systems Ltd Centrifugal compressors
US9032753B2 (en) * 2012-03-22 2015-05-19 Trane International Inc. Electronics cooling using lubricant return for a shell-and-tube style evaporator
US10634154B2 (en) * 2016-07-25 2020-04-28 Daikin Applied Americas Inc. Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
US11274679B2 (en) * 2017-02-14 2022-03-15 Danfoss A/S Oil free centrifugal compressor for use in low capacity applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970197A (zh) * 2021-10-29 2022-01-25 青岛海尔空调电子有限公司 用于供气系统的控制方法及装置、制冷设备、存储介质

Also Published As

Publication number Publication date
US20200378657A1 (en) 2020-12-03
EP3745050A1 (en) 2020-12-02
US20230106287A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
EP3745050A1 (en) Heat transfer circuit with increased bearing lubricant temperature, and method of supplying thereof
CN114111113B (zh) Hvacr系统的润滑剂管理
WO2018022343A1 (en) Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
CN105143789A (zh) 润滑和冷却系统
CN106461278B (zh) 运行冷却器的方法
WO2009091403A1 (en) Refrigerant vapor compression system with lubricant cooler
JP7116340B2 (ja) シールベアリングを備える遠心圧縮機
CN107923663B (zh) 低容量、低gwp的hvac系统
JPH0886516A (ja) 冷凍装置
JP3726541B2 (ja) 冷凍空調装置
JP2004012127A (ja) 可燃性冷媒を用いた冷蔵庫
CN109154456B (zh) 用于冷却器系统的涡轮节热器
JP2016003645A (ja) スクロール圧縮機および空気調和機
JP2004069295A (ja) 可燃性冷媒を用いた冷蔵庫
CN111566420A (zh) 空气调节装置
CN112012929A (zh) 压缩机润滑油质量管理
JP2001241784A (ja) 可燃性冷媒を用いた冷蔵庫
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
CN112368523B (zh) 冷冻循环装置以及其控制方法
JP6150906B2 (ja) 冷凍サイクル装置
JP5965732B2 (ja) 冷凍サイクル装置
JP2004286322A (ja) 冷媒サイクル装置
KR20220031623A (ko) 압축기를 위한 윤활 시스템
JP2007198681A (ja) ヒートポンプ装置
JP6919741B1 (ja) グリス及びグリスが潤滑剤として使用される冷凍サイクル装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination