CN112011097B - 一种具有防水性和高强度的淀粉基全降解膜 - Google Patents

一种具有防水性和高强度的淀粉基全降解膜 Download PDF

Info

Publication number
CN112011097B
CN112011097B CN202010917383.4A CN202010917383A CN112011097B CN 112011097 B CN112011097 B CN 112011097B CN 202010917383 A CN202010917383 A CN 202010917383A CN 112011097 B CN112011097 B CN 112011097B
Authority
CN
China
Prior art keywords
starch
parts
high strength
stirring
degradable film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010917383.4A
Other languages
English (en)
Other versions
CN112011097A (zh
Inventor
陈一
李知函
刘文勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGZHOU XINLIAN ZHITONG INDUSTRIAL CO LTD
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN202010917383.4A priority Critical patent/CN112011097B/zh
Publication of CN112011097A publication Critical patent/CN112011097A/zh
Application granted granted Critical
Publication of CN112011097B publication Critical patent/CN112011097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • C08J2303/10Oxidised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/04Starch derivatives
    • C08J2403/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种具有防水性和高强度的淀粉基全降解膜,该淀粉基膜以双醛淀粉、氧化淀粉、醛基化透明质酸、八臂聚乙二醇氨基、O‑羧甲基壳聚糖、八氨盐基笼状倍半硅氧烷、甘油为原料,通过流延法制备而得,该膜由于内部多种反应而导致其具有更好的强度和抗撕性,由于疏水粒子在膜中的排列导致其具有更好的防水性,以上优势使得该膜可应用于包装领域。

Description

一种具有防水性和高强度的淀粉基全降解膜
技术领域
本发明属于包装品制备领域,具体涉及一种由淀粉为主要原料,具有可全降解、高强度、防水性特征的膜材料。
背景技术
2020年1月出台了严格的禁塑令,在一定时间段将禁止作为包装的塑料制品使用,这就要求开发新的可降解材料作为替代品。多种生物质可降解基料被用于此领域的开发,如淀粉、植物纤维、生物聚酯如聚乳酸等被广泛应用于制备不同的包装制品。膜材料在包装中用量巨大,是重点的研发对象。
淀粉来源广泛,价格便宜,是一种可用于代塑的理想生物质材料,然而由于淀粉分子链自身结构的关系,单独作为膜材料其强度无法满足包装的需要,而淀粉本身吸水,也很容易造成因为潮湿而造成的性能下降。大量针对淀粉改性以提高膜性能的技术被开发,主要包括物理改性或化学改性方式。物理改性包括塑化和共混,塑化即采用甘油等物质提高淀粉的可塑性,而共混中各种不同聚合物、生物质,纳米粒子均被使用,如淀粉与不可降解树脂PE、PP的共混,与可降解树脂PLA、PCL的共混等,还可与生物质如明胶、壳聚糖等共混。纳米粒子也被广泛应用,如纳米石墨烯、碳纳米管、纳米植物纤维等均被使用,化学改性则是将在淀粉中接入不同基团以提高物质的强度、相容性等,如淀粉接马来酸酐,淀粉接枝聚乳酸和淀粉基团改性等。而化学改性和物理改性也可结合,即化学改性后再实施物理混合。而在膜制备中又包括了挤出熔融法和水溶液流延法,淀粉基膜采用这两种方法均可成型,各有利弊。如流延法制备的膜相对较薄,生产效率更高,表面更加光滑,而挤出成型的膜相对可以实现一定程度取向从而提高某方面性能。尽管如此,目前的淀粉基膜在性能上仍无法达到理想,其中最需要的解决的就是淀粉膜容易吸水而引起强度下降问题。为解决此问题,本发明提供一种具有一定防水性和高强度的淀粉基膜,在包装领域具有巨大的应用潜力。
发明内容
为了克服上述现有技术的缺点与不足,本发明的目的是提供一种可适应于流延加工的全降解淀粉基复合膜配方及这种膜的制备方法。
本发明是通过以下技术方案实现的:
一种具有防水性和高强度的淀粉基全降解膜,由以下组分和对应比例组成:
双醛淀粉 40-60份
羧基淀粉 8-16份
硼砂 0.5-1份
醛基化透明质酸 5-10份
八臂聚乙二醇氨基 3-6份
O-羧甲基壳聚糖 4-8份
八氨盐基笼状倍半硅氧烷 1-3份
甘油 6-12份
进一步,所述具有防水性和高强度的淀粉基全降解膜的制备过程为:
(1)将双醛淀粉、羧基淀粉、醛基化透明质酸加入去离子水中,浓度为4-8g/L,加热至60-65℃,于150-300rmp转速搅拌20-30min至淀粉全部糊化,后冷却至室温,静置3-5小时,得到料液I;
(2)将O-羧甲基壳聚糖、八臂聚乙二醇氨基、八氨盐基笼状倍半硅氧烷加入去离子水中,于室温下100-200rmp转速搅拌30-60min至物料完全溶解,浓度介于60-120g/L之间,得到料液II;
(3)将料液I和料液II混合后,室温下100-200rmp转速搅拌30-60min,后在保持搅拌状态下缓慢加入甘油,加入速率按份数计算为1-1.5份/min,继续搅拌20-30min,得到料液III;
(4)将料液III加热至40℃,加入质量浓度为3-5%的硼砂水溶液加入料液III;以300-500rmp转速搅拌1-2min,后迅速投入流延设备中流延,流延速度为0.3-0.6m/min,流延板温度设置为40-60℃。
进一步,所述双醛淀粉的醛基的质量含量介于1.2%-1.9%之间,较高的醛基含量有利于淀粉的水溶及后续的席夫碱反应。
进一步,所述羧基淀粉中羧基的质量分数介于1.25%-1.75%之间,可以选择羧甲基淀粉或羧乙基淀粉。
进一步,所述醛基化透明质酸中醛基的质量分数为0.56%-1.06%之间。
进一步,所述八臂聚乙二醇氨基的分子量介于6000-12000之间,其分子结构式如下:
Figure 287742DEST_PATH_IMAGE001
进一步,所述八氨盐基笼状倍半硅氧烷(Oa-POSS)为笼状倍半硅氧烷(POSS)的改性产物。此POSS单体因为有大量氨盐基的存在,使得单体具有良好的水溶性。其结构式如下:
Figure 67479DEST_PATH_IMAGE002
进一步,所述O-羧甲基壳聚糖的羧甲基取代度介于0.8-1.2之间,其中,羧甲基的取代均在O位发生,O-羧甲基壳聚糖可溶于水。
进一步,所述硼砂可以和淀粉发生交联反应。
进一步,所述甘油的加入可以提高淀粉的塑形,增加加工成型性,也可与膜中其他物质如透明质酸等产生氢键作用进而提高膜的强度。
进一步,在流延后的水溶液中将发生如下反应:双醛淀粉和醛基化透明质酸中的醛基与八臂聚乙二醇氨基及O-羧甲基壳聚糖中的氨基发生席夫碱反应;硼酸与淀粉之间发生的交联反应。
进一步,羧基淀粉中的羧基、透明质酸中的羧基、羧甲基壳聚糖中的羧基可发生相互作用,也可与甘油等中的羟基发生相互氢键作用,进而强化膜的强度。
进一步,所述八氨盐基笼状倍半硅氧烷在膜成型和干燥后硅骨架排布在膜表面,形成微缩水区域,进而提高膜的防水性。
进一步,按照本发明方法制备的淀粉膜,其性能区间如下:
厚度:0.2-0.4mm;抗拉强度(MPa):26 - 38;断裂伸长率(%):144-231;
横向撕裂强度(kN/m):224-285;纵向撕裂强度(kN/m):182-224;
水蒸气透过率(g .cm .cm-2 .s-1 .Pa-1):8.4×10-12- 2.3×10-12
膜表面接触角(o):85-105。
以下将详细描述本发明的示例性实施方法。但这些实施方法仅为示范性目的,而本发明不限于此。
具体实施例1
一种具有防水性和高强度的淀粉基全降解膜,由以下组分和对应比例组成:
双醛淀粉 55份
羧基淀粉 12份
硼砂 0.6份
醛基化透明质酸 7.8份
八臂聚乙二醇氨基 4.6份
O-羧甲基壳聚糖 6.8份
八氨盐基笼状倍半硅氧烷 2.2份
甘油 8.5份
所述具有防水性和高强度的淀粉基全降解膜的制备过程为:
(1)将双醛淀粉、羧基淀粉、醛基化透明质酸加入去离子水中,浓度为6.5g/L,加热至62℃,于200rmp转速搅拌25min至淀粉全部糊化,后冷却至室温,静置4小时,得到料液I;
(2)将O-羧甲基壳聚糖、八臂聚乙二醇氨基、八氨盐基笼状倍半硅氧烷加入去离子水中,于室温下150rmp转速搅拌40min至物料完全溶解,浓度为90g/L,得到料液II;
(3)将料液I和料液II共混后,室温下150rmp转速搅拌50min,后在保持搅拌状态下缓慢加入甘油,加入速率按份数计算为1.2份/min,继续搅拌25min,得到料液III;
(4)将料液III加热至40℃,加入质量浓度为4%的硼砂水溶液加入料液III;以400rmp转速搅拌1.5min,后迅速投入流延设备中流延,流延速度为0.5m/min,流延板温度设置为50℃。
所述双醛淀粉的醛基的质量含量为1.7%。
所述羧基淀粉中羧基的质量分数为1.5%。
所述醛基化透明质酸中醛基的质量分数为0.84%。
所述八臂聚乙二醇氨基的分子量为8000。
所述O-羧甲基壳聚糖的羧甲基取代度为0.9。
按照本实施例制备的淀粉基膜,其性能区间如下:
厚度:0.3mm;抗拉强度(MPa):32.6;断裂伸长率(%):175.4;
横向撕裂强度(kN/m):253.8;纵向撕裂强度(kN/m):201.7;
水蒸气透过率(g .cm .cm-2 .s-1 .Pa-1):6.3×10-12
膜表面接触角(o):94。
具体实施例2
一种具有防水性和高强度的淀粉基全降解膜,由以下组分和对应比例组成:
双醛淀粉 52份
羧基淀粉 15份
硼砂 0.8份
醛基化透明质酸 8份
八臂聚乙二醇氨基 5.5份
O-羧甲基壳聚糖 6.5份
八氨盐基笼状倍半硅氧烷 2.5份
甘油 10份
所述具有防水性和高强度的淀粉基全降解膜的制备过程为:
(1)将双醛淀粉、羧基淀粉、醛基化透明质酸加入去离子水中,浓度为6g/L,加热至62℃,于200rmp转速搅拌25min至淀粉全部糊化,后冷却至室温,静置4小时,得到料液I;
(2)将O-羧甲基壳聚糖、八臂聚乙二醇氨基、八氨盐基笼状倍半硅氧烷加入去离子水中,于室温下180rmp转速搅拌45min至物料完全溶解,浓度为90g/L之间,得到料液II;
(3)将料液I和料液II共混后,室温下150rmp转速搅拌50min,后在保持搅拌状态下缓慢加入甘油,加入速率按份数计算为1.4份/min,继续搅拌25min,得到料液III;
(4)将料液III加热至40℃,加入质量浓度为3.5%的硼砂水溶液加入料液III;以450rmp转速搅拌1.5min,后迅速投入流延设备中流延,流延速度为0.4m/min,流延板温度设置为50℃。
所述双醛淀粉中的醛基的质量含量为1.6%。
所述羧基淀粉中羧基的质量分数为1.4%。
所述醛基化透明质酸中醛基的质量分数介于0.56%-1.06%之间。
所述八臂聚乙二醇氨基的分子量为10000。
所述O-羧甲基壳聚糖的羧甲基取代度为0.9。
按照本实施例制备的淀粉基膜,其性能区间如下:
厚度:0.28mm;抗拉强度(MPa):34.2;断裂伸长率(%):191.7;
横向撕裂强度(kN/m):234.6;纵向撕裂强度(kN/m):189.5;
水蒸气透过率(g .cm .cm-2 .s-1 .Pa-1):5.2×10-12
膜表面接触角(o):97.2。

Claims (6)

1.一种具有防水性和高强度的淀粉基全降解膜,由以下组分和对应比例组成:
双醛淀粉 40-60份
羧基淀粉 8-16份
硼砂 0.5-1份
醛基化透明质酸 5-10份
八臂聚乙二醇氨基 3-6份
O-羧甲基壳聚糖 4-8份
八氨盐基笼状倍半硅氧烷 1-3份
甘油 6-12份
所述具有防水性和高强度的淀粉基全降解膜的制备过程为:
(1)将双醛淀粉、羧基淀粉、醛基化透明质酸加入去离子水中,浓度为4-8g/L,加热至60-65℃,于150-300rmp转速搅拌20-30min至淀粉全部糊化,后冷却至室温,静置3-5小时,得到料液I;
(2)将O-羧甲基壳聚糖、八臂聚乙二醇氨基、八氨盐基笼状倍半硅氧烷加入去离子水中,于室温下100-200rmp转速搅拌30-60min至物料完全溶解,浓度介于60-120g/L之间,得到料液II;
(3)将料液I和料液II混合后,室温下100-200rmp转速搅拌30-60min,后在保持搅拌状态下缓慢加入甘油,加入速率按份数计算为1-1.5份/min,继续搅拌20-30min,得到料液III;
(4)将料液III加热至40℃,加入质量浓度为3-5%的硼砂水溶液加入料液III;以300-500rmp转速搅拌1-2min,后迅速投入流延设备中流延,流延速度为0.3-0.6m/min,流延板温度设置为40-60℃。
2.如权利要求1所述的一种具有防水性和高强度的淀粉基全降解膜,其特征在于,所述双醛淀粉中醛基的质量含量介于1.2%-1.9%之间。
3.如权利要求1所述的一种具有防水性和高强度的淀粉基全降解膜,其特征在于,所述羧基淀粉中羧基的质量分数介于1.25%-1.75%之间。
4.如权利要求1所述的一种具有防水性和高强度的淀粉基全降解膜,其特征在于,所述醛基化透明质酸中醛基的质量分数介于0.56%-1.06%之间。
5.如权利要求1所述的一种具有防水性和高强度的淀粉基全降解膜,其特征在于,所述八臂聚乙二醇氨基的分子量介于6000-12000之间。
6.如权利要求1所述的一种具有防水性和高强度的淀粉基全降解膜,其特征在于,所述O-羧甲基壳聚糖的羧甲基取代度介于0.8-1.2之间。
CN202010917383.4A 2020-09-03 2020-09-03 一种具有防水性和高强度的淀粉基全降解膜 Active CN112011097B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010917383.4A CN112011097B (zh) 2020-09-03 2020-09-03 一种具有防水性和高强度的淀粉基全降解膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010917383.4A CN112011097B (zh) 2020-09-03 2020-09-03 一种具有防水性和高强度的淀粉基全降解膜

Publications (2)

Publication Number Publication Date
CN112011097A CN112011097A (zh) 2020-12-01
CN112011097B true CN112011097B (zh) 2022-03-08

Family

ID=73515732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010917383.4A Active CN112011097B (zh) 2020-09-03 2020-09-03 一种具有防水性和高强度的淀粉基全降解膜

Country Status (1)

Country Link
CN (1) CN112011097B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569937A (zh) * 2004-04-27 2005-01-26 胡靖� 可完全生物降解的包装膜及地膜
CN105237813A (zh) * 2014-07-08 2016-01-13 蒋永清 一种水稻田用降解地膜的配方及其制备方法
CN110358273A (zh) * 2019-08-13 2019-10-22 湖南工业大学 一种具有高抗穿刺性能的生物质抗菌膜
CN110437505A (zh) * 2019-08-13 2019-11-12 湖南工业大学 一种高强韧生物质基膜材料及制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569937A (zh) * 2004-04-27 2005-01-26 胡靖� 可完全生物降解的包装膜及地膜
CN105237813A (zh) * 2014-07-08 2016-01-13 蒋永清 一种水稻田用降解地膜的配方及其制备方法
CN110358273A (zh) * 2019-08-13 2019-10-22 湖南工业大学 一种具有高抗穿刺性能的生物质抗菌膜
CN110437505A (zh) * 2019-08-13 2019-11-12 湖南工业大学 一种高强韧生物质基膜材料及制备工艺

Also Published As

Publication number Publication date
CN112011097A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Ray et al. In situ processing of cellulose nanocomposites
CN101497678B (zh) 热塑性葡甘聚糖及其制备方法
Zhang et al. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry
CN110408180B (zh) 一种木质素-淀粉组合母粒复合的生物降解聚酯材料及其制备方法
CN105086383A (zh) 基于辐照改性的pbat复合薄膜及其制备方法
CN111690240A (zh) 一种聚乳酸/纳米纤维素复合材料及其制备方法
WO2023103114A1 (zh) 一种环保全生物降解塑料及片材制品
Ke et al. High-heat and UV-barrier poly (lactic acid) by microwave-assisted functionalization of waste natural fibers
CN109320933B (zh) 一种增强增韧竹纤维/聚乳酸复合材料及其制备方法
Toyama et al. Development of cardanol-bonded cellulose thermoplastics: high productivity achieved in two-step heterogeneous process
CN109467897B (zh) 一种反应性增容的竹纤维/聚乳酸复合材料及其制备方法
CN112011097B (zh) 一种具有防水性和高强度的淀粉基全降解膜
Ju et al. Thermal and mechanical properties of polyethylene glycol (PEG)-modified lignin/polylactic acid (PLA) biocomposites
Mano et al. P (CL-b-LLA) diblock copolymers grafting onto cellulosic nanocrystals
CN111704790A (zh) 一种3d打印用聚乳酸基复合线材的制备方法
Fang et al. A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly (butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites
CN107759990B (zh) 一种全生物基聚乳酸复合材料及其制备方法
CN106700040A (zh) 通过双螺杆反应挤出法开环聚合法制备聚乳酸的方法
Rasidi et al. Mechanical Properties and Biodegradability of Polylactic Acid/Acrylonitrile Butadiene Styrene with Cellulose Particle Isolated from Nypa Fruticans Husk
CN109553809B (zh) 一种高韧性pbs/淀粉复合材料及其制备方法
Jiang et al. Preparation of high‐performance poly (butylene adipate‐co‐terephthalate)/thermoplastic starch compounds with epoxidized soybean oil as compatibilizer
CN107698714B (zh) 一种衣康酸酐接枝聚乳酸共聚物及其制备方法和应用
CN113150520A (zh) 一种用于一次性勺子的生物降解塑料
CN106633579A (zh) 热塑性魔芋葡甘聚糖纳米复合材料的制备方法
CN112707973B (zh) 制备淀粉离聚物的方法以及其改性的全降解塑料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Chen Yi

Inventor after: Li Zhihan

Inventor after: Liu Wenyong

Inventor after: Cui Jianming

Inventor after: Zeng Xiaobin

Inventor before: Chen Yi

Inventor before: Li Zhihan

Inventor before: Liu Wenyong

CB03 Change of inventor or designer information
TR01 Transfer of patent right

Effective date of registration: 20220714

Address after: 412000 Taishan Road, Tianyuan District, Zhuzhou, Hunan Province, No. 88

Patentee after: HUNAN University OF TECHNOLOGY

Patentee after: GUANGZHOU XINLIAN ZHITONG INDUSTRIAL CO.,LTD.

Address before: 412000 Taishan Road, Tianyuan District, Zhuzhou, Hunan Province, No. 88

Patentee before: HUNAN University OF TECHNOLOGY

TR01 Transfer of patent right