CN110358273A - 一种具有高抗穿刺性能的生物质抗菌膜 - Google Patents

一种具有高抗穿刺性能的生物质抗菌膜 Download PDF

Info

Publication number
CN110358273A
CN110358273A CN201910744824.2A CN201910744824A CN110358273A CN 110358273 A CN110358273 A CN 110358273A CN 201910744824 A CN201910744824 A CN 201910744824A CN 110358273 A CN110358273 A CN 110358273A
Authority
CN
China
Prior art keywords
parts
arm
resistance performance
film
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910744824.2A
Other languages
English (en)
Other versions
CN110358273B (zh
Inventor
陈一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jin Changhui science and Technology Co.,Ltd.
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201910744824.2A priority Critical patent/CN110358273B/zh
Publication of CN110358273A publication Critical patent/CN110358273A/zh
Application granted granted Critical
Publication of CN110358273B publication Critical patent/CN110358273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种具有高抗穿刺性能的生物质抗菌膜,该复合膜由以下物质流延成膜,具体包括:端羧基聚乳酸、脂肪族聚碳酸酯、聚乳酸羟基乙酸共聚物、六臂聚乙二醇羧基、四臂聚乙二醇丙醛、壳聚糖,海藻酸钠,该生物质复合材料加工工艺简单,具有优异的强度、抗穿刺特性和抗菌性,可实现全降解,可适用于需高强韧和抗穿刺性的食品包装领域。

Description

一种具有高抗穿刺性能的生物质抗菌膜
技术领域
本发明涉及一种生物质膜材料的制备方法,尤其涉及一种具有良好力学性能的,可抗穿刺的,具有抗菌性的生物质膜材料的制备方法。
背景技术
塑料材料虽然拥有较优异的性能和广泛的适用性,但其来源于石油产品且无法降解,在资源危机和环境污染越发严重的今天,寻找性能优良且可再生的替代材料则成为目前材料领域研究的重中之重。
在目前的可降解材料中,多种生物可降解材料被用于塑料替代中。如淀粉、聚乳酸、生物聚酯等。淀粉因其便宜的价格和广泛的来源已被深入研究并通过改性与复合制备了多种生活与工业用品,如淀粉基膜、淀粉餐具等。但淀粉有其天然的缺陷,它的力学性能差,性能不稳定,只能运用于对力学性能要求低的领域。而聚乳酸的出现改变了这一现状。聚乳酸(PLA)是脂肪族聚酯,以乳酸(2-羟基丙酸)为基本结构单元。PLA可通过发酵玉米等天然原料制得,也可采用乳酸缩聚制得。PLA 及其终端产品可在堆肥条件下自然分解成为CO2和水,降低了固体废弃物排放量,是一种绿色环保的生物来源材料。PLA具有类似于聚苯乙烯的力学特性,弯曲模量和拉伸强度较好,但热稳定性和抗冲击性能差,在热成型加工过程中存在熔体黏度低的缺陷,限制了它的应用。在改善了这些缺点后,PLA将可有望作为塑料材料的最佳替代品可被运用于工业、民用领域。而其他生物聚酯也各有特点,如脂肪族聚碳酸酯为无定型材料,软和韧,无法单独使用。而聚己二酸对苯二甲酸丁二酯(PBAT)、聚丁二酸丁二醇酯(PBS)、聚(β羟基丁酸酯-co-β羟基戊酸酯)(PBHV)等生物聚酯性能均各有特性,或强度不够、或韧性不足,或价格过高,均无法完全单独使用。而目前的各种改性方式也未能完全解决性能的问题。如聚乳酸与多种材料复合以达到增韧效果,如淀粉、聚己内酯、聚乙烯等,但由于共混材料本身的强度较低,且和聚乳酸相容性存在较大差异,故增韧效果有限,且严重影响聚乳酸复合材料的强度。流延方式制备膜材料也是一种通用的方式,但相容性的问题、结晶的问题所导致的力学性能的问题同样存在。
针对生物质聚酯制备的流延膜膜材料研究仍较少,借助于不同生物质聚酯的性能搭配与改性,综合调节材料的性能,并通过结构设计來实现对材料结晶、无定形区域的控制,以实现具有力学性能的生物质膜材料,是一个新型的膜材料制备研究领域。
发明内容
本发明的目的是为了克服生物质膜材料相力学性能较差的缺陷,提供一种具有优异力学性能,尤其是优异抗穿刺性和抗菌性的膜材料。
本发明的目的是通过以下技术方案实现的:
一种具有高抗穿刺性能的生物质抗菌膜,其特征在于,膜由以下物质流延成膜:端羧基聚乳酸、脂肪族聚碳酸酯、聚乳酸羟基乙酸共聚物、六臂聚乙二醇羧基、四臂聚乙二醇丙醛、八臂丙基丙烯酸笼型聚倍半硅氧烷、壳聚糖,海藻酸钠,各原料组分按质量份数比例如下:
端羧基聚乳酸 25-35份
脂肪族聚碳酸酯 15-25份
聚乳酸羟基乙酸共聚物 5-9份
六臂聚乙二醇羧基 1-3份
四臂聚乙二醇丙醛 2-4份
八臂丙基丙烯酸笼型聚倍半硅氧烷 0.6-1.2份
壳聚糖 6-12份
海藻酸钠 5-10份。
进一步,所述端羧基聚乳酸的分子量介于150000-350000之间,端羧基占端基比例介于70%-90%之间。
进一步,所述脂肪族聚碳酸酯的分子量介于30000-60000之间。
进一步,所述聚乳酸羟基乙酸共聚物中聚乳酸和羟基乙酸的摩尔比介于3:1-1:1之间,分子量介于15000-30000之间,其分子结构式如下:
进一步,所述六臂聚乙二醇羧基的分子量介于10000-20000之间,其分子结构式如下:
进一步,所述四臂聚乙二醇丙醛的分子量介于5000-10000之间,其分子结构式如下:
四臂聚乙二醇丙醛的丙醛基在溶液状态下可与壳聚糖N基进行反应,起到交联作用。
进一步,本发明所涉及八臂丙基丙烯酸笼型聚倍半硅氧烷是一种具有八面体笼状结构的硅氧结构,笼型聚倍半硅氧烷(POSS)在笼状结构的角落上存在8个可进行改性的基团R。本发明中R基团为丙基丙烯酸,其分子结构式如下:
八臂马来酸酐笼型聚倍半硅氧烷具有明显的两亲结构,POSS亲油,端基丙烯酸基团亲水,可有效连接体系中的亲水、亲油组分;端基的马来酸酐具有羧基,可和体系中的端羧基聚乳酸、六臂聚乙二醇羧基产生相互作用,强化基体的强度,同时,POSS属于纳米粒子,有利于材料中聚乳酸的结晶,进而调节整体膜的强度。
进一步,所述壳聚糖的分子量介于80000-200000之间。
进一步,所述的一种具有高抗穿刺性能的生物质抗菌膜的制备过程如下:
(1)将所有原料均匀溶解于二氯甲烷和N,N-二甲基甲酰胺的混合液中,流延于聚四氟乙烯表面,流延温度设为35oC-50oC,流延完毕后干燥60-120分钟;其中二氯甲烷和N,N-二甲基甲酰胺的体积比介于2:1和4:1之间,溶质质量分数介于5%-15%之间;
(2)配置质量分数为3%的氯化钙水溶液,将干燥后形成的膜浸泡在氯化钙水溶液中,静置3-6小时;
(3)将膜取出20 oC下真空干燥3-6小时,得到最终膜材料。
进一步,所述氯化钙水溶液浸泡将交联膜中的海藻酸钠,从而提高膜的强度。
进一步,本发明的有益效果在:复合膜使用了多种具有星型结构的物质,并引入了多种可实现一定交联和强相互作用的物质,从而实现了膜的多维度强度,也促进了极性和非极性链段之间的结合,进而保证了膜的均匀性;如端羧基聚乳酸、聚乳酸羟基乙酸共聚物、六臂聚乙二醇羧基、八臂丙基丙烯酸笼型聚倍半硅氧烷的羧基均产生强相互作用;六臂聚乙二醇羧基、四臂聚乙二醇丙醛的多臂结构可有效连接基体材质,强化多维度上的强度;壳聚糖通过丙醛基的交联、海藻酸钠通过钙离子的交联可以进一步强化膜的强度,尤其是抗穿刺的效果;壳聚糖的存在和分散可有效提高膜的抗菌效果。
以下将详细描述本发明的示例性实施方法。但这些实施方法仅为示范性目的,而本发明不限于此。
具体实施例1
一种具有高抗穿刺性能的生物质抗菌膜,由以下物质流延成膜:端羧基聚乳酸、脂肪族聚碳酸酯、聚乳酸羟基乙酸共聚物、六臂聚乙二醇羧基、四臂聚乙二醇丙醛、八臂丙基丙烯酸笼型聚倍半硅氧烷、壳聚糖,海藻酸钠,各原料组分按质量份数比例如下:
端羧基聚乳酸 24份
脂肪族聚碳酸酯 18份
聚乳酸羟基乙酸共聚物 7.5份
六臂聚乙二醇羧基 2份
四臂聚乙二醇丙醛 3.2份
八臂丙基丙烯酸笼型聚倍半硅氧烷 0.8 份
壳聚糖 8份
海藻酸钠 6份
所述端羧基聚乳酸的分子量为250000,端羧基占端基比例为85%。
所述脂肪族聚碳酸酯的分子量为42000。
所述聚乳酸羟基乙酸共聚物中聚乳酸和羟基乙酸的摩尔比为2:1,分子量为22000。
所述六臂聚乙二醇羧基的分子量为15800。
所述四臂聚乙二醇丙醛的分子量为7500。
所述壳聚糖的分子量为120000。
所述的一种具有高抗穿刺性能的生物质抗菌膜的制备过程如下:
(1)将所有原料均匀溶解于二氯甲烷和N,N-二甲基甲酰胺的混合液中,流延于聚四氟乙烯表面,流延温度设为40 oC,流延完毕后干燥80分钟;其中二氯甲烷和N,N-二甲基甲酰胺的体积比为3:1,溶质质量分数为10%;
(2)配置质量分数为3%的氯化钙水溶液,将干燥后形成的膜浸泡在氯化钙水溶液中,静置4小时;
(3)将膜取出20 oC下真空干燥4小时,得到最终膜材料。
薄膜力学性能及抗穿刺性能如表1,抗穿刺性能根本标准GB/T 10024-2008测定。
具体实施例2
一种具有高抗穿刺性能的生物质抗菌膜,由以下物质流延成膜:端羧基聚乳酸、脂肪族聚碳酸酯、聚乳酸羟基乙酸共聚物、六臂聚乙二醇羧基、四臂聚乙二醇丙醛、八臂丙基丙烯酸笼型聚倍半硅氧烷、壳聚糖,海藻酸钠,各原料组分按质量份数比例如下:
端羧基聚乳酸 32份
脂肪族聚碳酸酯 18份
聚乳酸羟基乙酸共聚物 6.2份
六臂聚乙二醇羧基 2.5份
四臂聚乙二醇丙醛 3.2份
八臂丙基丙烯酸笼型聚倍半硅氧烷 1份
壳聚糖 10份
海藻酸钠 8份
所述端羧基聚乳酸的分子量为300000,端羧基占端基比例为76%。
所述脂肪族聚碳酸酯的分子量为52000。
所述聚乳酸羟基乙酸共聚物中聚乳酸和羟基乙酸的摩尔比为1.2:1,分子量为22000。
所述六臂聚乙二醇羧基的分子量为12000。
所述四臂聚乙二醇丙醛的分子量为8000。
所述壳聚糖的分子量为140000。
所述的一种具有高抗穿刺性能的生物质抗菌膜的制备过程如下:
(1)将所有原料均匀溶解于二氯甲烷和N,N-二甲基甲酰胺的混合液中,流延于聚四氟乙烯表面,流延温度设为45oC,流延完毕后干燥90分钟;其中二氯甲烷和N,N-二甲基甲酰胺的体积比为5:2,溶质质量分数为12%;
(2)配置质量分数为3%的氯化钙水溶液,将干燥后形成的膜浸泡在氯化钙水溶液中,静置5小时;
(3)将膜取出20 oC下真空干燥5小时,得到最终膜材料。
薄膜力学性能及抗穿刺性能如表1,抗穿刺性能根本标准GB/T 10024-2008测定。
表1 实施例1、2制备膜材料性能
膜性能 实施例1 实施例2
断裂延伸率(%) 42.35±2.4 44.54±3.2
拉伸强度(Mpa) 36.31±2.24 32.85±2.62
横向撕裂强度(kN/m) 215.3±12.1 198.2±13.1
纵向撕裂强度(kN/m) 213.4±8.2 219.7±7.5
抗穿刺力(N) 12.45 12.84

Claims (7)

1.一种具有高抗穿刺性能的生物质抗菌膜,由以下物质为原料流延成膜:端羧基聚乳酸、脂肪族聚碳酸酯、聚乳酸羟基乙酸共聚物、六臂聚乙二醇羧基、四臂聚乙二醇丙醛、八臂丙基丙烯酸笼型聚倍半硅氧烷、壳聚糖,海藻酸钠,各原料组分按质量份数比例如下:
端羧基聚乳酸 25-35份
脂肪族聚碳酸酯 15-25份
聚乳酸羟基乙酸共聚物 5-9份
六臂聚乙二醇羧基 1-3份
四臂聚乙二醇丙醛 2-4份
八臂丙基丙烯酸笼型聚倍半硅氧烷 0.6-1.2份
壳聚糖 6-12份
海藻酸钠 5-10份
其特征还在于,膜的制备过程如下:
(1)将所有原料均匀溶解于二氯甲烷和N,N-二甲基甲酰胺的混合液中,流延于聚四氟乙烯表面,流延温度设为35oC-50oC,流延完毕后干燥60-120分钟;其中二氯甲烷和N,N-二甲基甲酰胺的体积比介于2:1和4:1之间,溶质质量分数介于5%-15%之间;
(2)配置质量分数为3%的氯化钙水溶液,将干燥后形成的膜浸泡在氯化钙水溶液中,静置3-6小时;
(3)将膜取出20 oC下真空干燥3-6小时,得到最终膜材料。
2.如权利要求1所述的一种具有高抗穿刺性能的生物质抗菌膜,其特征在于:所述端羧基聚乳酸的分子量介于150000-350000 之间,端羧基占端基比例介于70%-90%之间。
3.如权利要求1所述的一种具有高抗穿刺性能的生物质抗菌膜,其特征在于:所述脂肪族聚碳酸酯的分子量介于30000-60000之间。
4.如权利要求1所述的一种具有高抗穿刺性能的生物质抗菌膜,其特征在于:所述聚乳酸羟基乙酸共聚物中聚乳酸和羟基乙酸的摩尔比介于3:1-1:1之间,分子量介于15000-30000之间。
5.如权利要求1所述的一种具有高抗穿刺性能的生物质抗菌膜,其特征在于:所述六臂聚乙二醇羧基的分子量介于10000-20000之间。
6.如权利要求1所述的一种具有高抗穿刺性能的生物质抗菌膜,其特征在于:所述四臂聚乙二醇丙醛的分子量介于5000-10000之间。
7.如权利要求1所述的一种具有高抗穿刺性能的生物质抗菌膜,其特征在于:所述壳聚糖的分子量介于80000-200000之间。
CN201910744824.2A 2019-08-13 2019-08-13 一种具有高抗穿刺性能的生物质抗菌膜 Active CN110358273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910744824.2A CN110358273B (zh) 2019-08-13 2019-08-13 一种具有高抗穿刺性能的生物质抗菌膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910744824.2A CN110358273B (zh) 2019-08-13 2019-08-13 一种具有高抗穿刺性能的生物质抗菌膜

Publications (2)

Publication Number Publication Date
CN110358273A true CN110358273A (zh) 2019-10-22
CN110358273B CN110358273B (zh) 2021-04-30

Family

ID=68224703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910744824.2A Active CN110358273B (zh) 2019-08-13 2019-08-13 一种具有高抗穿刺性能的生物质抗菌膜

Country Status (1)

Country Link
CN (1) CN110358273B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973803A (zh) * 2020-09-03 2020-11-24 湖南工业大学 一种具有优异力学性能和抗菌性的壳聚糖基抗菌伤口敷料
CN112011097A (zh) * 2020-09-03 2020-12-01 湖南工业大学 一种具有防水性和高强度的淀粉基全降解膜
CN114276655A (zh) * 2021-07-29 2022-04-05 南京工程学院 一种可降解热塑性弹性体及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558663A (zh) * 2014-12-31 2015-04-29 北京林业大学 一种具有优良抗菌性及可降解性的薄膜及其制备方法
CN105440611A (zh) * 2015-05-03 2016-03-30 湖南工业大学 一种具有抗菌阻隔性的高强韧聚乳酸复合膜
CN105459536A (zh) * 2015-05-03 2016-04-06 湖南工业大学 一种五层共挤高强度阻隔抗菌环保复合膜
CN106633087A (zh) * 2016-10-09 2017-05-10 苏州大学 一种八臂杂臂星形聚合物及其制备方法
KR101741255B1 (ko) * 2016-03-11 2017-05-29 오스템임플란트 주식회사 두께 구배를 가지는 치조골 재생용 멤브레인
CN108610539A (zh) * 2018-05-14 2018-10-02 安乡中意彩印包装有限责任公司 一种彩印包装用环保抗菌复合膜及其制备方法
CN109021276A (zh) * 2018-09-03 2018-12-18 巩义市欧洁源环保技术服务有限公司 一种食用菌保鲜包装用可生物降解复合膜及其制备方法
CN109651970A (zh) * 2018-12-19 2019-04-19 苏州新中德新型材料有限公司 高强度抗穿刺保护膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558663A (zh) * 2014-12-31 2015-04-29 北京林业大学 一种具有优良抗菌性及可降解性的薄膜及其制备方法
CN105440611A (zh) * 2015-05-03 2016-03-30 湖南工业大学 一种具有抗菌阻隔性的高强韧聚乳酸复合膜
CN105459536A (zh) * 2015-05-03 2016-04-06 湖南工业大学 一种五层共挤高强度阻隔抗菌环保复合膜
KR101741255B1 (ko) * 2016-03-11 2017-05-29 오스템임플란트 주식회사 두께 구배를 가지는 치조골 재생용 멤브레인
CN106633087A (zh) * 2016-10-09 2017-05-10 苏州大学 一种八臂杂臂星形聚合物及其制备方法
CN108610539A (zh) * 2018-05-14 2018-10-02 安乡中意彩印包装有限责任公司 一种彩印包装用环保抗菌复合膜及其制备方法
CN109021276A (zh) * 2018-09-03 2018-12-18 巩义市欧洁源环保技术服务有限公司 一种食用菌保鲜包装用可生物降解复合膜及其制备方法
CN109651970A (zh) * 2018-12-19 2019-04-19 苏州新中德新型材料有限公司 高强度抗穿刺保护膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YARET GABRIELA TORRES-HERNÁNDEZ ET.AL.: ""Biological Compatibility of a Polylactic Acid Composite Reinforced with Natural Chitosan Obtained from Shrimp Waste"", 《MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111973803A (zh) * 2020-09-03 2020-11-24 湖南工业大学 一种具有优异力学性能和抗菌性的壳聚糖基抗菌伤口敷料
CN112011097A (zh) * 2020-09-03 2020-12-01 湖南工业大学 一种具有防水性和高强度的淀粉基全降解膜
CN112011097B (zh) * 2020-09-03 2022-03-08 湖南工业大学 一种具有防水性和高强度的淀粉基全降解膜
CN111973803B (zh) * 2020-09-03 2022-04-01 湖南工业大学 一种具有优异力学性能和抗菌性的壳聚糖基抗菌伤口敷料
CN114276655A (zh) * 2021-07-29 2022-04-05 南京工程学院 一种可降解热塑性弹性体及其制备方法
CN114276655B (zh) * 2021-07-29 2023-04-25 南京工程学院 一种可降解热塑性弹性体及其制备方法

Also Published As

Publication number Publication date
CN110358273B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Elsawy et al. Hydrolytic degradation of polylactic acid (PLA) and its composites
Mokhena et al. Thermoplastic processing of PLA/cellulose nanomaterials composites
Shojaeiarani et al. Cellulose nanocrystal based composites: A review
Chakrabarty et al. Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them
Abdulkhani et al. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite
Abhilash et al. Biopolymers for biocomposites and chemical sensor applications
Lee et al. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties
Lipsa et al. Biodegradation of poly (lactic acid) and some of its based systems with Trichoderma viride
CN110358273A (zh) 一种具有高抗穿刺性能的生物质抗菌膜
Stepanova et al. Modification of cellulose micro-and nanomaterials to improve properties of aliphatic polyesters/cellulose composites: A review
Azeredo et al. Wheat straw hemicellulose films as affected by citric acid
Goffin et al. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites
Yu Biodegradable polymer blends and composites from renewable resources
Panaitescu et al. Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose
Yu et al. Polymer blends and composites from renewable resources
Wu Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues
CN110437504A (zh) 一种双层复合生物质基流延抗菌膜及其制备工艺
Zhou et al. Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals
Yan et al. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite
WO2005120808A1 (en) Process for the production of biodegradable films having improved mechanical properties
CN114316542B (zh) 一种高强度可生物降解塑料及其制备方法
Singh et al. Biodegradable polymers as packaging materials
Ávila Ramírez et al. Nanocomposites based on poly (lactic acid) and bacterial cellulose acetylated by an α-hydroxyacid catalyzed route
CN110387112A (zh) 一种可降解食品包装膜材料及制备工艺
Li et al. Synthesis and characterization of MPS-g-PLA copolymer and its application in surface modification of bacterial cellulose

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191022

Assignee: Zhuzhou ruidel Intelligent Equipment Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048585

Denomination of invention: A biomass antibacterial film with high puncture resistance

Granted publication date: 20210430

License type: Common License

Record date: 20231129

Application publication date: 20191022

Assignee: ZHUZHOU HONGDA POLYMER MATERIALS Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048584

Denomination of invention: A biomass antibacterial film with high puncture resistance

Granted publication date: 20210430

License type: Common License

Record date: 20231129

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191022

Assignee: ZHUZHOU AMALLOY MATERIAL Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048989

Denomination of invention: A biomass antibacterial film with high puncture resistance

Granted publication date: 20210430

License type: Common License

Record date: 20231204

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231206

Address after: 518000, No. 5 Hongling 2nd Road, Liulian Community, Pingdi Street, Longgang District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Jin Changhui science and Technology Co.,Ltd.

Address before: 412000 Taishan Road, Tianyuan District, Zhuzhou, Hunan Province, No. 88

Patentee before: HUNAN University OF TECHNOLOGY

EC01 Cancellation of recordation of patent licensing contract

Assignee: Zhuzhou ruidel Intelligent Equipment Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048585

Date of cancellation: 20240517

Assignee: ZHUZHOU HONGDA POLYMER MATERIALS Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048584

Date of cancellation: 20240517

Assignee: ZHUZHOU AMALLOY MATERIAL Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048989

Date of cancellation: 20240517