CN111995418A - 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法 - Google Patents

一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法 Download PDF

Info

Publication number
CN111995418A
CN111995418A CN202010876982.6A CN202010876982A CN111995418A CN 111995418 A CN111995418 A CN 111995418A CN 202010876982 A CN202010876982 A CN 202010876982A CN 111995418 A CN111995418 A CN 111995418A
Authority
CN
China
Prior art keywords
silicon carbide
nanowire
sintering
composite material
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010876982.6A
Other languages
English (en)
Other versions
CN111995418B (zh
Inventor
范宇驰
颜鹏
燕文强
王连军
江莞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202010876982.6A priority Critical patent/CN111995418B/zh
Publication of CN111995418A publication Critical patent/CN111995418A/zh
Application granted granted Critical
Publication of CN111995418B publication Critical patent/CN111995418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法,包括:硅烷偶联剂改性碳化硅纳米线制备,酚醛树脂涂层包覆的碳化硅纳米线制备,碳涂层包覆的碳化硅纳米线制备,碳化硅纳米线增强碳化硅陶瓷复合材料制备。该方法保证碳化硅陶瓷基体与纳米线增强体之间载荷的有效传递,且碳化硅纳米线表面的碳涂层可以有效保护其内部的碳化硅纳米线在高温烧结时不因与基体发生反应而破坏。

Description

一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料 的制备方法
技术领域
本发明属于碳化硅陶瓷基复合材料领域,特别涉及一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法。
背景技术
碳化硅陶瓷基复合材料具有高强度,高硬度,耐化学腐蚀,低热膨胀系数等优点,其高温力学性能尤其出色,能在1600℃的高温下保持较高的机械性能,并且其密度只有合金材料的一半,在航空航天领域的高温部件上具有极大的应用潜力,因此越来越被人们所重视,但是其脆性问题限制了这类材料在诸多高端领域的应用。为了解决碳化硅陶瓷复合材料脆性大这一缺点,采用碳化硅纳米线作为增强体引入到碳化硅陶瓷基体中制成碳化硅陶瓷复合材料可以最大程度的结合二者的优势。碳化硅纳米线具有高强度、高模量、低热膨胀系数和极佳的耐高温性能等优点,可以极大的强化碳化硅陶瓷,改善其脆性,从而使得这类陶瓷复合材料在航空航天发动机、核聚变反应装置、汽车发动机等领域发挥更大的作用。
但是,由于碳化硅纳米线和碳化硅基体同属于碳化硅,二者的物理化学性质高度相似,如果将碳化硅纳米线直接引入到碳化硅陶瓷基体中时会使二者的界面结合强度过高,导致基体产生裂纹时碳化硅纳米线不能有效的拔出,从而不能最大限度的吸收断裂能,因此对碳化硅陶瓷基体的脆性改善不大。曾凡等在论文《反应烧结碳化硅陶瓷的制备及碳化硅纳米线增强研究》中通过在基体粉末中加入SiCNWs来改善RBSC的力学性能,通过调整SiCNWs的含量,最终得的RBSC的抗弯强度比未加入SiCNWs的RBSC抗弯强度提高了50%以上,断裂韧性提高了40%以上。但由于上述原因,当添加的碳化硅纳米线含量较低时,复合陶瓷的力学性能提升不明显;当添加量增加到一定程度,由于碳化硅纳米线在复合陶瓷基体中难以分散均匀,会引起空洞等缺陷,反而降低复合陶瓷的力学性能。
发明内容
本发明所要解决的技术问题是提供一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法,以克服现有技术中碳化硅纳米线与碳化硅陶瓷基体之间的界面结合强度过高的缺陷。
本发明提供一种碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法,包括:
(1)采用硅烷偶联剂对碳化硅纳米线进行表面改性处理,使其表面带有氨基基团;
(2)将步骤(1)中硅烷偶联剂改性后的碳化硅纳米线、间苯二酚和甲醛以比例0.1g:0.2-0.4g:97-193mL在溶剂中混合,搅拌(使间苯二酚和甲醛在碳化硅纳米线表面原位聚合生成酚醛树脂涂层),得到酚醛树脂涂层包覆的碳化硅纳米线;
(3)将步骤(2)中酚醛树脂涂层包覆的碳化硅纳米线碳化(使碳化硅纳米线表面的酚醛树脂涂层高温裂解),使得碳化硅纳米线表面生成无定形的碳黑涂层,得到碳涂层包覆的碳化硅纳米线;
(4)将步骤(3)中碳涂层包覆的碳化硅纳米线与碳化硅粉体、烧结助剂通过湿法球磨混合,干燥,得到碳化硅复合陶瓷,然后液相烧结,得到碳化硅纳米线增强碳化硅陶瓷复合材料,其中,以碳涂层包覆的碳化硅纳米线、碳化硅粉体和烧结助剂总质量为基准,烧结助剂质量分数为0~10wt.%且不为0,碳化硅纳米线质量分数为0~20wt.%且不为0,碳涂层质量分数为0~10wt.%且不为0,其余为碳化硅粉体。
所述步骤(1)中碳化硅纳米线为α-SiC、β-SiC中的至少一种。
所述步骤(1)中碳化硅纳米线的直径为20~600nm,长度为20~200μm,长径比超过100。
所述步骤(1)中采用硅烷偶联剂对碳化硅纳米线进行表面改性处理为:将碳化硅纳米线浸没于甲苯中(例如通过超声和搅拌分散到甲苯中),并加入硅烷偶联剂,加热回流,干燥,得到干燥的表面改性后的碳化硅纳米线。
所述加热回流温度为135~150℃,加热回流时间为6~12h。
所述干燥方式为烘干或冷冻干燥,烘干温度为60~80℃,烘干时间为2~6h,冷冻干燥的时间为12~24h。
所述步骤(2)中溶剂为:体积比为7-9:18-22:0.1的乙醇、去离子水和氨水的混合溶液。
所述步骤(2)中搅拌时间为12~24h。
所述步骤(2)中将步骤(1)中硅烷偶联剂改性后的碳化硅纳米线、间苯二酚和甲醛以比例0.1g:0.2-0.4g:97-193mL在溶剂中混合,搅拌为:将硅烷偶联剂改性后的碳化硅纳米线通过超声分散在溶剂中,使改性后的碳化硅纳米线充分分散开,然后加入间苯二酚和甲醛,搅拌12~24h后干燥,得到酚醛树脂涂层包覆的碳化硅纳米线,其中酚醛树脂涂层的厚度为0~250nm且不为0。
所述步骤(2)中间苯二酚和甲醛的摩尔比为2:1。
所述步骤(3)中碳化的工艺参数为:惰性气体保护下,以1~2℃/min的升温速度升温到300~400℃后保温1.5~2.5h,继续以1~2℃/min的升温速度升温到600~700℃,再保温1.5~2.5h,然后自然降温。
所述步骤(3)中碳涂层的厚度为0~250nm且不为0。
所述步骤(4)中烧结助剂包括氧化铝、氧化钇、碳化硼中至少一种。
所述烧结助剂为氧化铝和氧化钇,氧化铝和氧化钇的总质量分数为5~10wt.%,铝和钇的摩尔比为5:3。
所述步骤(4)中液相烧结为放电等离子烧结、无压烧结、热压烧结、热等静压烧结或反应烧结。
本发明还提供一种上述方法制备得到的碳化硅纳米线增强碳化硅陶瓷复合材料。
本发明还提供一种上述方法制备得到的碳化硅纳米线增强碳化硅陶瓷复合材料的应用。
本发明采用硅烷偶联剂对碳化硅纳米线进行表面改性,使间苯二酚和甲醛在碱性条件下在碳化硅纳米线表面原位聚合生成酚醛树脂涂层,然后经过高温碳化在碳化硅纳米线表面裂解生成一层碳涂层,然后将碳涂层包覆的碳化硅纳米线通过湿法球磨与碳化硅粉体、烧结助剂进行混合得到复合陶瓷粉体,将复合陶瓷粉体利用液相烧结工艺制备成碳化硅纳米线增强碳化硅陶瓷复合材料。上述碳化硅纳米线在包覆碳涂层后在烧结过程中可以和碳化硅陶瓷基体之间保持一个合适的界面结合强度,使碳化硅纳米线不至因界面结合强度过高而受损或在碳化硅陶瓷基体产生裂纹的时候因界面结合强度过高而无法有效的通过桥联机制和拔出机制吸收断裂能,保证了陶瓷基体与纳米线增强体之间载荷的有效传递,同时一定程度上保护了碳化硅纳米线免受物理和化学的损伤。
本发明通过硅烷偶联剂对碳化硅纳米线进行表面改性后,可以增加碳化硅纳米线在水和无水乙醇中的分散性,同时碳化硅纳米线表面带有大量氨基基团,有利于后续进行酚醛树脂的原位聚合,并且这些氨基基团可以有效粘结碳化硅纳米线和酚醛树脂涂层。
本发明通过湿法球磨可以将表面包覆了碳涂层的碳化硅纳米线均匀的分散到碳化硅粉体中,尽量减少碳化硅纳米线的局部团聚。
本发明通过调整碳化硅纳米线与间苯二酚和甲醛的比例可以实现对碳涂层厚度的控制。
有益效果
本发明碳化硅纳米线经过包覆碳涂层能够显著降低碳化硅纳米线和碳化硅陶瓷基体之间的界面结合强度,使其保持在一个适当的强度,保证碳化硅陶瓷基体与纳米线增强体之间载荷的有效传递,且碳化硅纳米线表面的碳涂层可以有效保护其内部的碳化硅纳米线在高温烧结时不因与基体发生反应而破坏。在复合陶瓷基体产生裂纹时,基体传递向碳化硅纳米线的裂纹在界面层处发生偏转,产生纳米线拔出现象,纳米线在拔出和断裂过程中可以吸收大量断裂能,从而发挥补强增韧的作用。当碳化硅复合陶瓷中添加7wt.%SiCNWs(碳涂层厚度约120nm,复合陶瓷中碳含量约3.77wt.%)时,复合陶瓷的MSP强度和断裂韧性分别达到了901Mpa和5.01MPa·m1/2,比不添加碳化硅纳米线的碳化硅陶瓷的MSP强度和断裂韧性(分别为512Mpa和3.93MPa·m1/2)分别提升了约76%和27.4%。
附图说明
图1为本发明实施例1中制备的碳涂层包覆的碳化硅纳米线的透射电镜图。
图2为本发明实施例1中制备的碳化硅纳米线增强碳化硅陶瓷复合材料的断面扫描电镜图。
图3为本发明实施例2中制备的碳涂层包覆的碳化硅纳米线的透射电镜图。
图4为本发明实施例2中制备的碳化硅纳米线增强碳化硅陶瓷复合材料的断面扫描电镜图。
图5为本发明MSP强度计算模型图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
表1为本发明实施例中所使用的原料或试剂规格及来源。本发明实施例中所使用的去离子水是经过和泰实验室纯水系统纯化得到。
表1
材料名称 规格(纯度) 生产商(产地)
SiC粉体 ≥99% 圣戈班
SiCNWs 直径0.1-0.6 长沙赛泰新材料有限公司
Al<sub>2</sub>O<sub>3</sub> ≥99.9% 住友化学
Y<sub>2</sub>O<sub>3</sub> ≥99.9% 中国国药集团上海试剂公司
甲苯 ≥99.5% 中国国药集团上海试剂公司
无水乙醇 分析纯 中国国药集团上海试剂公司
甲醛 37%-40% 中国国药集团上海试剂公司
间苯二酚 ≥99.5% 中国国药集团上海试剂公司
3-氨丙基-三乙氧基硅烷 ≥98% 中国国药集团上海试剂公司
本发明实施例中MSP试验法的强度计算模型图如图5所示,
其中2a是承载模内孔的直径,2b为圆柱压头的直径,t为样品的厚度。压头加载的速率为0.05mm/min,MSP强度σ由下列公式计算得到:
Figure BDA0002652882300000041
公式中:P为样品被破坏时的最大载荷(N);υ为样品材料的泊松比;a为承载膜内孔径;b为圆柱压头内径。
本发明中断裂韧性的测试方法为通过维氏硬度计上传的压痕图像,由计算机软件ImageJ测量出裂纹长度c,利用下列公式计算出断裂韧性值KIC
Figure BDA0002652882300000051
公式中:E为样品的杨氏模量;H为样品的维氏硬度,P为施加的载荷,C为裂纹长度,β为固定参数,取决于压头形状,本发明中使用压头的参数为0.016。
本发明中三点抗弯的测试方法采用的是抗弯强度国标(GB/T 6569-86),试条的尺寸为35mm×3mm×4mm。压头下降的速度为0.5mm/min。采用下列公式计算出三点抗弯强度R。
R=(3F*L)/(2b*h*h)
公式中:F为破坏载荷;L为跨距;b为宽度;h为厚度。
实施例1
(1)将1g碳化硅纳米线和1mL3-氨丙基-三乙氧基硅烷加入到150mL甲苯中,加热回流并持续搅拌6h,然后抽滤并在60℃条件下烘干2h,得到干燥的改性后的碳化硅纳米线。
(2)将0.1g改性后的碳化硅纳米线与0.2g间苯二酚和97mL甲醛均匀分散在由80mL去离子水、32mL无水乙醇和0.4mL氨水组成的溶液中,使用磁力搅拌24h,然后抽滤并冷冻干燥12h,得到包覆了酚醛树脂涂层的碳化硅纳米线。
(3)将步骤(2)中得到的包覆了酚醛树脂涂层的碳化硅纳米线在水平式管式炉中以氦气为保护气体,以2℃/min的升温速度升到350℃,然后保温2h,接着以2℃/min升到650℃,再保温2h,然后自然降温,得到包覆碳涂层的碳化硅纳米线。
(4)通过热重分析测出步骤(3)中碳涂层包覆的碳化硅纳米线中的碳含量(wt.%)和碳化硅纳米线的含量后,设计碳化硅陶瓷粉体中各组分比重,使复合陶瓷粉体中碳化硅纳米线的净含量为5wt.%,碳含量为1.25wt.%,烧结助剂为氧化铝和氧化钇,其总质量比为7wt.%(铝和钇的摩尔比为5:3),其余为α-SiC粉体。通过湿法球磨在150rpm转速下球磨2h并干燥得到碳化硅陶瓷复合材料粉体。
(5)将步骤(4)中所制备的碳化硅陶瓷复合材料粉体通过放电等离子烧结炉烧结成型,工艺参数如下:烧结温度为1800℃,升温速率为130℃/min,保温时间为5min,模具为石墨模具,烧结压力为1000℃以下50Mpa,1000℃以上70MPa。得到的复合陶瓷块体为直径为10mm,厚度约1mm的圆片状块体,通过MSP试验法测出其MSP强度为622MPa;并通过维氏硬度计在复合陶瓷样品抛光面的压痕计算出其断裂韧性为4.43MPa·m1/2
图1表明:本实施例中碳涂层包覆的碳化硅纳米线的透射电镜图,碳涂层均匀的包覆在碳化硅纳米线表面,各处厚度基本一致。
图2表明:本实施例中制备的碳化硅纳米线增强碳化硅陶瓷复合材料的断面扫描电镜图,包覆有碳涂层的碳化硅纳米线在碳化硅复合陶瓷断面中的分布,可以看出碳化硅纳米线产生了明显的拔出行为。
实施例2
根据实施例1,本实施例步骤(1)、(3)、(5)与实施例1相同,将实施例1步骤(2)中间苯二酚的质量改为0.3g,甲醛的体积改为145mL,将实施例1步骤(4)中复合陶瓷粉体中碳化硅纳米线的净含量改为7wt.%,碳含量改为3.76wt.%,其余均与实施例1相同,得到的复合陶瓷块体为直径为10mm,厚度约1mm的圆片状块体,通过MSP试验法测出其MSP强度为901MPa;并通过维氏硬度计在复合陶瓷样品抛光面的压痕计算出其断裂韧性为5.01MPa·m1/2
图3表明:本实施例中碳涂层包覆的碳化硅纳米线的透射电镜图,碳涂层均匀的包覆在碳化硅纳米线表面,各处厚度基本一致。
图4表明:本实施例中制备的碳化硅纳米线增强碳化硅陶瓷复合材料的断面扫描电镜图,包覆有碳涂层的碳化硅纳米线在碳化硅复合陶瓷断面中的分布,可以看出碳化硅纳米线产生了明显的拔出行为。
实施例3
步骤(1)与实施例1步骤(1)相同。
(2)将0.1g改性后的碳化硅纳米线与0.4g间苯二酚和193mL甲醛均匀分散在由80mL去离子水、32mL无水乙醇和0.4mL氨水组成的溶液中,使用磁力搅拌24h,然后抽滤并冷冻干燥12h,得到包覆了酚醛树脂涂层的碳化硅纳米线。
步骤(3)与实施例1步骤(3)相同。
(4)通过热重分析测出步骤(3)中碳涂层包覆的碳化硅纳米线中的碳含量(wt.%)和碳化硅纳米线的含量后,设计碳化硅陶瓷粉体中各组分比重,使复合陶瓷粉体中碳化硅纳米线的净含量为7wt.%,碳含量为5.28wt.%,烧结助剂为氧化铝和碳化硼,其总质量比为10wt.%(铝和硼的摩尔比为4:1),其余为α-SiC粉体。通过湿法球磨在150rpm转速下球磨2h并干燥得到碳化硅陶瓷复合材料粉体。粉体经干压成型,在200Mpa等静压下处理。
(5)预压的复合陶瓷粉体在氩气保护下,置于碳管炉内埋粉烧结,烧结温度为1850℃,保温1h,制备得到碳化硅纳米线增强碳化硅陶瓷复合材料块体。使用日本岛津的AGS-X型万能力学试验机通过三点抗弯法测出该样品的弯曲强度约为280MPa,比未添加碳化硅纳米线的碳化硅陶瓷基体的200MPa提升了约40%。
对比例1
曾凡等在《SiC纳米线增强反应烧结碳化硅陶瓷的性能研究》一文中以碳化硅纳米线为增强体,通过反应烧结制备了碳化硅复合陶瓷。
先将上述原料按α-SiC76wt.%-炭黑14wt.%-树脂6wt.%-羧甲基纤维素钠4wt.%的配比称量后在行星式球磨机中球磨,以去离子水为球磨介质,研磨球为碳化硅球,球料的质量比为5∶1,球磨转速为300r/min,球磨24h后得到碳化硅-碳基体粉末;再在碳化硅-碳基体粉末中添加12wt.%的碳化硅纳米线,调节球磨转速为150r/min,经球磨机混料1.5h后得到六组含有不同质量分数的Si C纳米线复合陶瓷粉体;混料后再经过干燥、造粒、模压成型得到素坯,将素坯放于马弗炉中在900℃脱胶处理;最后进行真空烧结,烧结温度为1550℃,保温时间为2h,得到复合陶瓷试样。
样品采用三点弯曲法,在万能试验机上对试样进行抗弯强度测试,并采用单边缺口梁测试试样的断裂韧性。通过研究表明:与未加入SiC纳米线的反应烧结碳化硅陶瓷相比,添加SiC纳米线的复合陶瓷的抗弯强度和断裂韧性都得到显著的提高,抗弯强度提高了52%,达到320MPa(SiC纳米线含量为12wt%);断裂韧性提高了40.6%,达到4.5MPa·m1/2(SiC纳米线含量为15wt%)。
与该方法制备的碳化硅复合陶瓷相比,本专利所发明的碳化硅复合陶瓷的力学性能更优异,相较于未添加碳化硅纳米线的碳化硅陶瓷力学性能提升更加明显,并且由于所使用的碳化硅纳米线的比重更小,一定程度上避免了碳化硅纳米线在复合陶瓷基体内的团聚现象,并且更好的保护了碳化硅纳米线。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
当然本发明的具有高强度和高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法还可具有多种变换及改型,并不局限于上述实施方式的具体结构。总之,本发明的保护范围应包括那些对于本领域普通技术人员来说显而易见的变换或替代以及改型。

Claims (9)

1.一种碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法,包括:
(1)采用硅烷偶联剂对碳化硅纳米线进行表面改性处理;
(2)将步骤(1)中硅烷偶联剂改性后的碳化硅纳米线、间苯二酚和甲醛以比例0.1g:0.2-0.4g:97-193mL在溶剂中混合,搅拌,得到酚醛树脂涂层包覆的碳化硅纳米线;
(3)将步骤(2)中酚醛树脂涂层包覆的碳化硅纳米线碳化,得到碳涂层包覆的碳化硅纳米线;
(4)将步骤(3)中碳涂层包覆的碳化硅纳米线与碳化硅粉体、烧结助剂通过湿法球磨混合,干燥,得到碳化硅复合陶瓷,然后液相烧结,得到碳化硅纳米线增强碳化硅陶瓷复合材料,其中,以碳涂层包覆的碳化硅纳米线、碳化硅粉体和烧结助剂总质量为基准,烧结助剂质量分数为0~10wt.%且不为0,碳化硅纳米线质量分数为0~20wt.%且不为0,碳涂层质量分数为0~10wt.%且不为0,其余为碳化硅粉体。
2.根据权利要求1所述方法,其特征在于,所述步骤(1)中采用硅烷偶联剂对碳化硅纳米线进行表面改性处理为:将碳化硅纳米线浸没于甲苯中,并加入硅烷偶联剂,回流,干燥,得到干燥的表面改性后的碳化硅纳米线。
3.根据权利要求2所述方法,其特征在于,所述回流温度为135~150℃,回流时间为6~12h;干燥方式为烘干或冷冻干燥。
4.根据权利要求1所述方法,其特征在于,所述步骤(2)中溶剂为:体积比为7-9:18-22:0.1的乙醇、去离子水和氨水的混合溶液;搅拌时间为12~24h。
5.根据权利要求1所述方法,其特征在于,所述步骤(3)中碳化的工艺参数为:惰性气体保护下,以1~2℃/min的升温速度升温到300~400℃后保温1.5~2.5h,继续以1~2℃/min的升温速度升温到600~700℃,再保温1.5~2.5h,然后自然降温。
6.根据权利要求1所述方法,其特征在于,所述步骤(4)中烧结助剂包括氧化铝、氧化钇、碳化硼中的至少一种。
7.根据权利要求1所述方法,其特征在于,所述步骤(4)中液相烧结为放电等离子烧结、无压烧结、热压烧结、热等静压烧结或反应烧结。
8.一种如权利要求1所述方法制备得到的碳化硅纳米线增强碳化硅陶瓷复合材料。
9.一种如权利要求1所述方法制备得到的碳化硅纳米线增强碳化硅陶瓷复合材料的应用。
CN202010876982.6A 2020-08-27 2020-08-27 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法 Active CN111995418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010876982.6A CN111995418B (zh) 2020-08-27 2020-08-27 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010876982.6A CN111995418B (zh) 2020-08-27 2020-08-27 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111995418A true CN111995418A (zh) 2020-11-27
CN111995418B CN111995418B (zh) 2021-07-20

Family

ID=73471853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010876982.6A Active CN111995418B (zh) 2020-08-27 2020-08-27 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111995418B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304386A (zh) * 2022-09-02 2022-11-08 江苏中磊节能科技发展有限公司 一种莫来石复合耐火砖及其加工工艺
CN116924771A (zh) * 2023-08-15 2023-10-24 应县通盛陶瓷有限公司 一种表面光滑的日用陶瓷及其制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847714A (zh) * 2010-05-20 2010-09-29 复旦大学 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
CN102382275A (zh) * 2011-06-04 2012-03-21 桂林理工大学 高性能酚醛树脂/介孔分子筛复合材料的制备方法
US20120280184A1 (en) * 2009-12-16 2012-11-08 Consejo Superior De Investigaciones Cientificas (Csic) Composite Material of Electroconductor Having Controlled Coefficient of Thermical Expansion
CN104549159A (zh) * 2015-01-30 2015-04-29 上海工程技术大学 功能化磁性银纳米线复合材料及其制备方法与应用
CN106747640A (zh) * 2017-01-13 2017-05-31 武汉科技大学 一种氮化硅纳米线增强多孔碳化硅材料及其制备方法
CN108285355A (zh) * 2018-01-22 2018-07-17 浙江理工大学 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN109797307A (zh) * 2019-01-09 2019-05-24 东南大学 一种Ag/C@Ti3AlC2触头材料的制备方法
CN111180714A (zh) * 2020-02-14 2020-05-19 厦门理工学院 一种碳/二氧化钼/硅/碳复合材料、包含其的电池负极及锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280184A1 (en) * 2009-12-16 2012-11-08 Consejo Superior De Investigaciones Cientificas (Csic) Composite Material of Electroconductor Having Controlled Coefficient of Thermical Expansion
CN101847714A (zh) * 2010-05-20 2010-09-29 复旦大学 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
CN102382275A (zh) * 2011-06-04 2012-03-21 桂林理工大学 高性能酚醛树脂/介孔分子筛复合材料的制备方法
CN104549159A (zh) * 2015-01-30 2015-04-29 上海工程技术大学 功能化磁性银纳米线复合材料及其制备方法与应用
CN106747640A (zh) * 2017-01-13 2017-05-31 武汉科技大学 一种氮化硅纳米线增强多孔碳化硅材料及其制备方法
CN108285355A (zh) * 2018-01-22 2018-07-17 浙江理工大学 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN109797307A (zh) * 2019-01-09 2019-05-24 东南大学 一种Ag/C@Ti3AlC2触头材料的制备方法
CN111180714A (zh) * 2020-02-14 2020-05-19 厦门理工学院 一种碳/二氧化钼/硅/碳复合材料、包含其的电池负极及锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304386A (zh) * 2022-09-02 2022-11-08 江苏中磊节能科技发展有限公司 一种莫来石复合耐火砖及其加工工艺
CN116924771A (zh) * 2023-08-15 2023-10-24 应县通盛陶瓷有限公司 一种表面光滑的日用陶瓷及其制备工艺

Also Published As

Publication number Publication date
CN111995418B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN108484171B (zh) 一种碳化硼-硼化钛复相陶瓷材料及其无压烧结制备方法
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN107141004B (zh) 一种碳化硼复合材料及其制备方法
Guo et al. Mechanical and physical behaviors of short pitch-based carbon fiber-reinforced HfB2–SiC matrix composites
Guo et al. Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites
CN106478105A (zh) 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
Skorokhod Processing, Microstructure, and Mechanical Properties of B4C―TiB2 Particulate Sintered Composites. Part II. Fracture and Mechanical Properties
CN111995418B (zh) 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
Guo Effects of VC additives on densification and elastic and mechanical properties of hot-pressed ZrB2–SiC composites
Tan et al. Enhancement of sinterability and mechanical properties of B 4 C ceramics using Ti 3 AlC 2 as a sintering aid
CN101602597B (zh) 硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料及其制备方法
CN104591738A (zh) 一种高韧性碳化硼陶瓷及其制备方法
Zhang et al. Mechanical and thermal shock properties of laminated ZrB2-SiC/SiCw ceramics
CN113816746A (zh) 一种max相高熵陶瓷基复合材料及其制备方法
CN108314455B (zh) 碳化硅陶瓷及其制备方法和应用
Demir Effect of Nicalon SiC fibre heat treatment on short fibre reinforced β-sialon ceramics
Kim et al. Effects of starting powder on microstructure and thermal conductivity of pressureless-sintered fully ceramic microencapsulated fuels
Cao et al. Microstructure, mechanical, and thermal properties of B4C-TiB2-SiC composites prepared by reactive hot-pressing
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN113200759B (zh) 非氧化物max相强韧化氮化硅陶瓷复合材料及其制备方法
CN113582698A (zh) 一种ZrB2-SiC增韧B4C防弹片的制备方法
CN114573351A (zh) 一种碳化硼基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant