CN111992201A - 微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用 - Google Patents

微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用 Download PDF

Info

Publication number
CN111992201A
CN111992201A CN202010847743.8A CN202010847743A CN111992201A CN 111992201 A CN111992201 A CN 111992201A CN 202010847743 A CN202010847743 A CN 202010847743A CN 111992201 A CN111992201 A CN 111992201A
Authority
CN
China
Prior art keywords
photocatalyst
bivo
bivo4
invo4
microwave hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010847743.8A
Other languages
English (en)
Inventor
赵德强
王子怡
陈晴空
陈垚
袁绍春
黎琪
何林漪
祖义梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Jiaotong University
Original Assignee
Chongqing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Jiaotong University filed Critical Chongqing Jiaotong University
Priority to CN202010847743.8A priority Critical patent/CN111992201A/zh
Publication of CN111992201A publication Critical patent/CN111992201A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料技术领域,涉及微波水热法一步合成BiVO4/InVO4光催化剂的方法及其应用。该方法主要步骤包括:将Bi(NO3)3·5H2O和In(NO3)3·XH2O加入硝酸溶液中,得到混合液A,将NH4VO3溶于NaOH溶液,得到混合液B,将两者混合,于微波加热条件下反应即可。本发明方法制备工艺简单,采用微波水热法一步合成,制备出不同摩尔比的BiVO4/InVO4光催化还原Cr(Ⅵ),有效地提升了BiVO4及InVO4的光催化性能。

Description

微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用
技术领域
本发明属于光催化材料技术领域,涉及微波水热法一步合成BiVO4/InVO4光催化剂的方法及其应用。
背景技术
铬是地球上第七大最丰富的元素,主要以铬铁矿(FeCr2O4)矿石的形式开采。铬也是重要的工业材料,被广泛用于电镀,铁合金产品,皮革制造,燃料和化学产品中。Cr(Ⅵ)已被美国环境保护署(EPA)列为A类致癌物质,并且在水溶液中具有较高的溶解度和流动性,无法进行生物降解,且可以通过食物链富集在动物和人体组织中。根据pH和浓度,它们主要以Cr2O7 2-,HCrO4 -和CrO4 2-的形式存在,浓度>1000mg/L时主要为Cr2O7 2-,浓度<1000mg/L且1<pH<6.5主要为HCrO4 -,浓度<1000mg/L且pH>6.5时主要为CrO4 2-。与Cr(Ⅵ)相比,Cr(Ⅲ)更为稳定,并且Cr(Ⅲ)是人体必需的微量元素。所以利用BiVO4/InVO4光催化剂Cr6+还原为Cr3+具有重要意义。
近年来,以半导体为基础的新型绿色光催化技术得到了广泛的关注。光催化技术是一种利用光能产生光生载流子并进一步物质转化的技术。半导体型光催化剂主要受其本身的导带(CB)、价带(VB)相对位置的影响。当入射光线的能量大于等于光催化剂的带隙宽度时,价带(VB)上的电子被激发,从而迁至导带(CB),而价带电子的空缺导致其形成大量的空穴,光生空穴具有氧化性,而光生电子具有还原性,因此两者所产生的氧化还原系统可对某些污染物进行降解;且由于电荷力的作用,光生空穴与光生电子会发生复合。
钒酸铋(BiVO4)是一种在可见光下具有很好光催化活性的光催化材料,其组成元素来源广泛、化学和热稳定性好、在水溶液中稳定性好、无毒、环境友好,且能够有效地利用太阳能,达到降解有机物的目的。因良好的催化特性而引起广泛关注,但是其表面吸附能力较弱以及广生电子和空穴易复合。BiVO4的理论导带为+0.4eV,BiVO4的理论价带为+2.8eV,水体中通常铬浓度<1000mg/L且1<pH<6.5,因此其主要存在形式为HCrO4-;
Figure BDA0002643657920000011
Cr6+/Cr3+的理论电位为1.35eV,其在BiVO4的理论价带的范围之内,因此,BiVO4导带电子在热力学上可还原Cr6+为Cr3+。InVO4也同样具有良好光催化性能,InVO4的理论导带为-0.19eV,InVO4的理论价带为+1.71eV,将两种及以上的半导体材料进行复合,可形成II型交错方式异质结,能有效地抑制光生电子的复合,同时可以扩展其光吸收能量范围,以提高其光催化活性。BiVO4/InVO4构成异质结后形成能带差,可以相互促进,循环稳定。
BiVO4和InVO4制备方法有很多,水热合成法是较为常见、简便的一种方法,且通过水热法合成的单斜晶体被证明具有更加优良的光催化性能,其粒径更小,可见光下光生载流子分离高效。水热合成法是在一定温度及压力条件下,利用水溶液中的物质化学反应来合成所需产品。微波水热法即利用微波设备作为加热工具,实现分子水平上的搅拌。它能够克服水热容器加热不均匀的缺点,缩短反应时间,提高工作效率,有加热速度快,加热均匀,无温度梯度,无滞后效应等优点。
因此,为了进一步提升BiVO4和InVO4对Cr(Ⅵ)的催化效率,需改进制备方法,以催化效果更好的复合催化剂。
发明内容
本发明要解决的技术问题是:提供一种复合催化剂的制备方法,以提高其催化效率。
本发明解决其技术问题所采用的一个技术方案是:微波水热法一步制备BiVO4/InVO4光催化剂的制备方法,包括以下步骤:
(1)配置混合液A:将Bi(NO3)3·5H2O和In(NO3)3·XH2O加入硝酸溶液中,加入去离子水,搅拌得到混合液A;
(2)配置混合液B:将NH4VO3溶于NaOH溶液,搅拌后得到混合液B;
(3)反应:将混合液B加入混合液A中,搅拌混合后,置于微波反应器反应,自然冷却得到BiVO4/InVO4
具体的,所述步骤(1)中Bi(NO3)3·5H2O和In(NO3)3·XH2O的摩尔比为(0.75~0.25)︰(0.25~0.75)。
优选的,所述步骤(1)中Bi(NO3)3·5H2O和In(NO3)3·xH2O的摩尔比为0.75︰0.25。
具体的,所述步骤(1)中In(NO3)3·XH2O中X摩尔比为4~5。
具体的,所述步骤(1)中所述的HNO3溶液所用的浓度为3.8~4.2mol/L。
具体的,所述步骤(2)中加入去离子水的与硝酸的体积比约为10︰1。
具体的,所述步骤(3)中溶液A和溶液B体积比约为13︰1。
具体的,所述步骤(3)中,微波反应的条件为:反应温度150~170℃,功率110~130W,升温20~30min,反应35~45min,使混合液A和混合液B充分融合,以得到效果较好的BiVO4/InVO4产物。
优选的,所述步骤(3)中自然冷却后还包括:反应混合液抽滤洗涤、干燥。
具体的,所述反应混合液抽滤洗涤至滤液pH值等于7,为防止后续对其性能探究的实验中水解,影响实验效果。
具体的,所述干燥为:在55~65℃将滤液干燥22~26h,使干燥充分便于后续表征和性能探究。
本发明还提供了所述制备方法得到的BiVO4/InVO4光催化剂。
本发明还提供了所述微波水热法一步合成BiVO4/InVO4光催化剂的方法、所述的BiVO4/InVO4光催化剂在还原Cr(Ⅵ)中的用途。
本发明的有益效果是:该制备方法微波水热一步合成法较为简单,制备条件容易控制,所制备的BiVO4/InVO4复合光催化剂具有无污染,催化效率高等优点。该发明有效地提高了BiVO4及InVO4的光催化性能,并且得到0.75BiVO4/0.25InVO4对Cr(Ⅵ)的还原效果最佳,具有一定的应用价值。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
图1为本发明实施例1制备得到的BiVO4的扫描电镜图;
图2为本发明实施例2制备得到的InVO4的扫描电镜图;
图3为本发明实施例3制备得到的0.75BiVO4/0.25InVO4的扫描电镜图;
图4为本发明实施例1~3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4的(100-800eV)X射线光电子能谱图;
图5为本发明实施例1~3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4与BiVO4的(155-170eV)X射线光电子能谱图;
图6为本发明实施例1~3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4与InVO4的(440-460eV)X射线光电子能谱图;
图7为本发明实施例1~3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4的(505-535eV)X射线光电子能谱图;
图8为本发明实施例1~3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4的X射线衍射图;
图9为本发明实施例1~3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4光催化剂污染物浓度随时间的变化;
图10为本发明实施例3制备得到的0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4光催化剂还原Cr(Ⅵ)后的显色效果。
具体实施方式
现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1 BiVO4的制备
采用微波水热法合成BiVO4,步骤如下:2mmol Bi(NO3)3·5H2O溶解于4mL 4mol/LHNO3溶液中,然后加入50mL去离子水溶液,紧接着搅拌30min,该混合液记为混合液A;2mmolNH4VO3溶于4mL 4mol/L NaOH溶液,搅拌30min,该混合液记为混合液B。将B加入A搅拌混合一小时后,加入到聚四氟乙烯标准罐后置于微波反应器反应,反应条件为:温度160℃,功率120W,升温25min,反应40min。反应后自然冷却,反应混合液抽滤洗涤至滤液pH值等于7。所得样品60℃干燥24h。
实施例2 InVO4的制备
采用微波水热法合成InVO4,步骤如下:2mmol In(NO3)3·XH2O(Wt In为29%)溶解于4mL 4mol/L HNO3溶液中,然后加入50mL去离子水溶液,紧接着搅拌30min,该混合液记为混合液C;2mmol NH4VO3溶于4mL 4mol/L NaOH溶液,搅拌30min,该混合液记为混合液D。将D加入C搅拌混合一小时后,加入到聚四氟乙烯标准罐后置于微波反应器反应,反应条件为:温度160℃,功率120W,升温25min,反应40min。反应后自然冷却,反应混合液抽滤洗涤至滤液pH值等于7。所得样品60℃干燥24h。
实施例3 BiVO4/InVO4光催化剂的合成
通过微波水热法合成,步骤如下:将总量为2mmol的Bi(NO3)3·5H2O和In(NO3)3·XH2O按照摩尔比0.75:0.25;0.5:0.5;0.25:0.75加入4mL 4mol/L HNO3溶液中,然后加入50mL去离子水溶液,紧接着搅拌30min,该混合液记为混合液E;2mmol NH4VO3溶于4mL 4mol/L NaOH溶液,搅拌30min,该混合液记为混合液F。将F加入E搅拌混合一小时后,加入到聚四氟乙烯标准罐后置于微波反应器反应,反应条件为:温度160℃,功率120W,升温25min,反应40min。反应后自然冷却,反应混合液抽滤洗涤至滤液pH值等于7。所得样品60℃干燥24h。所得样品记作:0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4
将实施例1~3制备得到的催化剂进行光学测定:
电镜扫描,如图1、2、3所示,从图可以看出,制得的BiVO4光催化剂的形貌为许多长形棒状堆积形成的团状结构;制得的InVO4光催化剂的形貌为近球体;制得的BiVO4/InVO4光催化剂的形貌为单斜相晶体,该种形貌具有良好的结晶度,更稳定。
0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4的(100-800eV)X射线光电子能谱图,如图4所示(该图的结果是通过X-ray PhotoelectronSpectroscopy(XPS)(Thermoscientific XPS K-alpha)设备获得的),由图可知,对比BiVO4谱峰中含有C、Bi、V、O,0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4的谱峰中都含有C、Bi、In、V、O。
0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、与BiVO4的(155-170eV)X射线光电子能谱图如图5所示,由图可知,对比BiVO4谱峰中含有Bi 4f(Bi3+),0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4谱峰中也同样含有。
0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、与InVO4的(440-460eV)X射线光电子能谱图如图6所示,由图可知,对比InVO4谱峰中含有In 3d,0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4谱峰中也同样含有。
0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4的(505-535eV)X射线光电子能谱图如图7所示,由图可知,对比BiVO4和InVO4谱峰中都含有V2p,0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4谱峰中也同样含有。
X射线衍射图由图8所示,由图可知,通过与BiVO4和InVO4图谱的比对发现实施例1所合成的产品证实为BiVO4/InVO4复合物。
实施例4 BiVO4/InVO4光催化剂的应用
用于光催化还原Cr(Ⅵ),按照下述步骤进行:
0.01g催化剂加入到25ml 10mg/L Cr6+溶液(K2CrO4配制)中,充分搅拌,通过H2SO4调节pH=4,加入一定量空穴清除剂甲醇。暗吸附平衡后,采用300W Xe灯模拟太阳光(通过<420nm截止滤光片获得可见光)进行光催化还原反应,每隔20min采用分析Cr6+含量。
0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4光催化剂下污染物浓度随时间的变化如图9所示,由图可知,0.75BiVO4/0.25InVO4得到了最好的结果。
取1mL反应溶液稀释至50mL,后加入1︰1磷酸和硫酸溶液和二苯卡巴肼(diphenylcarbazide,DPC)进行显色,通过分光光度计测定540nm进行比色。
0.75BiVO4/0.25InVO4、0.5BiVO4/0.5InVO4、0.25BiVO4/0.75InVO4、BiVO4与InVO4光催化剂还原Cr(Ⅵ)后的显色效果如图10所示,由图同样印证了0.75BiVO4/0.25InVO4效果最好。
实施例5不同现有技术制备方法得到类似复合光催化剂的比较
文献1:铋系可见光催化材料的制备及其光催化还原Cr(Ⅵ)的研究.南华大学,2014。制备方法:称取等物质的量(2mmol)的NH4VO3和Bi(NO3)3·5H2O溶于1mol/L的HNO3溶液中,并添加0.4gSDBS,剧烈搅拌,在150℃烘箱中反应24h,洗涤干燥。
文献2:石墨相氮化碳的改性及其对水体中六价铬的光催化还原作用.中南林业科技大学,2019。制备方法:将6g石墨粉5gK2S2O8和5g P2O5加入到24mL浓度为98%的浓硫酸中,在80℃反应4.5h,冷却至室温后,加入1000mL超纯水,并静置12小时。将产物洗涤至中性,然后在60℃下干燥,得到预氧化的石墨烯;将得到的预氧化石墨加入240mL.98%浓度的浓硫酸中。加入5g的NaNO3和30g的KMnO4,在0℃反应4h,加热至35℃保持2h,加入500mL超纯水,98℃反应1h,然后加入1000mL超纯水和40mL H2O2,连续反应2小时,用10%浓度的HCI溶液洗涤所得产物,并用大量水洗涤至中性。并在50℃下超声分散2小时,得到质量浓度为5mg/mL的氧化石墨烯水悬浮液。将获得的1g氮化碳和29mL氧化石墨烯水溶液溶解在100mL甲醇中,在50℃下超声分散3小时,并在80℃的烘箱中干燥6小时以获得官能化的二元复合光催化材料GO/g-C3N4
并与本申请方法进行比较,结果见表1。从表中结果可以看出,本申请的方法制备得到的复合催化剂对Cr6+的去除效果好,反应时间快,效率高。
表1现有技术的比较
Figure BDA0002643657920000061

Claims (10)

1.微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:包括以下步骤:
(1)配置混合液A:将Bi(NO3)3·5H2O和In(NO3)3·XH2O分别加入硝酸溶液中,加入去离子水,混合均匀得到混合液A;
(2)配置混合液B:将NH4VO3溶于NaOH溶液,配置混合液B;
(3)反应:将混合液B加入混合液A中,搅拌混合后,置于微波反应器反应,自然冷却得到BiVO4/InVO4
2.如权利要求1所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:所述步骤(1)中,In(NO3)3·XH2O中X摩尔比为4~5;
进一步的,所述步骤(1)中,Bi(NO3)3·5H2O和In(NO3)3·XH2O的摩尔比为(0.75~0.25)︰(0.25~0.75);
优选的,Bi(NO3)3·5H2O和In(NO3)3·xH2O的摩尔比为0.75︰0.25。
3.如权利要求1或2所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:步骤(1)中所述的HNO3溶液用的浓度为3.8~4.2mol/L。
4.如权利要求1~3任一项所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:所述步骤(2)中加入去离子水的与硝酸的体积比约为10︰1;
优选的,所述步骤(3)中溶液A和溶液B体积比约为13︰1。
5.如权利要求1~4任一项所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:所述步骤(3)中,微波反应的条件为:反应温度150~170℃,功率110~130W,升温20~30min,反应时间35~45min。
6.如权利要求1~5任一项所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:所述步骤(3)中自然冷却后还包括:反应混合液抽滤洗涤、干燥。
7.如权利要求6所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:所述反应混合液抽滤洗涤至滤液pH值等于7。
8.如权利要求6所述的微波水热法一步合成BiVO4/InVO4光催化剂的方法,其特征在于:所述干燥为:在55~65℃将滤液干燥22~26h 。
9.权利要求1~8任一项所述微波水热法一步合成BiVO4/InVO4光催化剂的方法制备得到的BiVO4/InVO4光催化剂。
10.权利要求1~8任一项所述微波水热法一步合成BiVO4/InVO4光催化剂的方法、权利要求9所述的BiVO4/InVO4光催化剂在还原Cr(Ⅵ)中的用途。
CN202010847743.8A 2020-08-21 2020-08-21 微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用 Pending CN111992201A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010847743.8A CN111992201A (zh) 2020-08-21 2020-08-21 微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010847743.8A CN111992201A (zh) 2020-08-21 2020-08-21 微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用

Publications (1)

Publication Number Publication Date
CN111992201A true CN111992201A (zh) 2020-11-27

Family

ID=73473486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010847743.8A Pending CN111992201A (zh) 2020-08-21 2020-08-21 微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用

Country Status (1)

Country Link
CN (1) CN111992201A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244877A (zh) * 2021-06-09 2021-08-13 重庆交通大学 一种氮掺杂羟基磷酸铜吸附剂配方及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275988A (zh) * 2011-05-24 2011-12-14 陕西科技大学 一种微波水热法合成单斜相钒酸铋光催化剂粉体的方法
CN102580721A (zh) * 2011-12-19 2012-07-18 陕西科技大学 微波水热制备TiO2/BiVO4复合光催化剂的方法
CN103433019A (zh) * 2013-08-15 2013-12-11 陕西科技大学 一种Sm 掺杂BiVO4光催化剂及其制备方法和应用
CN105080534A (zh) * 2015-08-10 2015-11-25 广西大学 光催化剂BiVO4的微波水热合成法
WO2018082175A1 (zh) * 2016-11-07 2018-05-11 杭州同净环境科技有限公司 一种复合光催化剂及其制备方法、应用
CN108325516A (zh) * 2018-02-13 2018-07-27 中国科学院海洋研究所 一种BiVO4/InVO4异质结催化剂及其制备方法和应用
CN109433185A (zh) * 2018-12-10 2019-03-08 北华大学 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂
CN109999786A (zh) * 2019-03-20 2019-07-12 中南林业科技大学 一种半导体光催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275988A (zh) * 2011-05-24 2011-12-14 陕西科技大学 一种微波水热法合成单斜相钒酸铋光催化剂粉体的方法
CN102580721A (zh) * 2011-12-19 2012-07-18 陕西科技大学 微波水热制备TiO2/BiVO4复合光催化剂的方法
CN103433019A (zh) * 2013-08-15 2013-12-11 陕西科技大学 一种Sm 掺杂BiVO4光催化剂及其制备方法和应用
CN105080534A (zh) * 2015-08-10 2015-11-25 广西大学 光催化剂BiVO4的微波水热合成法
WO2018082175A1 (zh) * 2016-11-07 2018-05-11 杭州同净环境科技有限公司 一种复合光催化剂及其制备方法、应用
CN108325516A (zh) * 2018-02-13 2018-07-27 中国科学院海洋研究所 一种BiVO4/InVO4异质结催化剂及其制备方法和应用
CN109433185A (zh) * 2018-12-10 2019-03-08 北华大学 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂
CN109999786A (zh) * 2019-03-20 2019-07-12 中南林业科技大学 一种半导体光催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG GUO ET AL.: "Novel BiVO4/InVO4 heterojunctions: Facile synthesis and efficient visible-light photocatalytic performance for the degradation of rhodamine B", 《SEPARATION AND PURIFICATION TECHNOLOGY》, no. 141, pages 246 - 255, XP029132463, DOI: 10.1016/j.seppur.2014.11.026 *
LING YU ET AL.: "One-pot microwave synthesized high-performance BiVO4/InVO4 heterojunction for photocatalytic reduction of Cr6+", 《SEPARATION AND PURIFICATION TECHNOLOGY》, no. 310, pages 1 - 9 *
QINGKONG CHEN ET AL.: "One-pot microwave synthesized high-performance BiVO4/InVO4 heterojunction for photocatalytic reduction of Cr6+", 《SEPARATION AND PURIFICATIONTECHNOLOGY》, no. 310, pages 1 - 9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244877A (zh) * 2021-06-09 2021-08-13 重庆交通大学 一种氮掺杂羟基磷酸铜吸附剂配方及制备方法

Similar Documents

Publication Publication Date Title
Sepahvand et al. Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction
Li et al. Efficient reduction of Cr (VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light
WO2017012210A1 (zh) 金属氧化物-氮化碳复合材料及其制备方法和应用
Wan et al. A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/rGO heterojunction for efficient photocatalytic H2 production
CN103073054B (zh) 纳米带状六钛酸钾的制备方法
Peng et al. Synthesis, characterization and photocatalytic activity of Zn (OH) F hierarchical nanofibers prepared by a simple solution-based method
Ramasubbu et al. Zn (II) porphyrin sensitized (TiO2@ Cd-MOF) nanocomposite aerogel as novel photocatalyst for the effective degradation of methyl orange (MO) dye
CN111453804A (zh) 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法
Ba et al. Synthesis of hierarchically mesoporous polymeric carbon nitride with mesoporous melamine as a precursor for enhanced photocatalytic performance
CN110860283A (zh) 一种水热法合成碳纤维-钒酸铋光催化材料的制备方法
CN115283015B (zh) 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法
Dharmaraja et al. Investigation on photocatalytic activity of ZnS/NiFe2O4 NCs under sunlight irradiation via a novel two-step synthesis approach
Huang et al. Precursor-modified strategy to synthesize thin porous amino-rich graphitic carbon nitride with enhanced photocatalytic degradation of RhB and hydrogen evolution performances
Wang et al. Novel SrTiO 3/NaTaO 3 and visible-light-driven SrTiO 3/NaTaO 3: N nano-heterojunctions with high interface-lattice matching for efficient photocatalytic removal of organic dye
Zhou et al. Highly efficient solar-driven photocatalytic hydrogen evolution by a ternary 3D ZnIn 2 S 4–MoS 2 microsphere/1D TiO 2 nanobelt heterostructure
CN111992201A (zh) 微波水热法一步合成BiVO4/InVO4光催化剂的方法和应用
Chen et al. Titanate nanowire/NiO nanoflake core/shell heterostructured nanonanocomposite catalyst for methylene blue photodegradation
CN108212187B (zh) Fe掺杂Bi2O2CO3光催化剂的制备方法及Fe掺杂Bi2O2CO3光催化剂
Han et al. Combination of theory and experiment achieving one-dimensional MWO4 (M= Zn, Ni, and Cu) photocatalysts with broad-spectrum degradation
CN111939957A (zh) 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法
CN115845832B (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用
CN111266114A (zh) 一种金属铁/氧化锌/碳三元纳米复合可见光催化剂及其制备方法和应用
CN114849789B (zh) Mil-125负载1t相硫化钼复合光催化剂的制备方法及其应用
CN113600214B (zh) 一种核壳型Fe2O3@TixOy-Pz光催化剂的制备方法及应用
Hosseinpour et al. Construction of a Ce‐UiO‐66/MCo2O4 Heterojunction for Photocatalytic Cr (VI) Detoxification Through ap‐n Junction Formation Mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination